
ar
X

iv
:c

s/
03

04
00

5v
1

 [
cs

.D
S]

 1
 A

pr
 2

00
3

Quantum Computation and Lattice Problems

Oded Regev ∗

February 7, 2008

Abstract

We present the first explicit connection between quantum computation and lattice problems.
Namely, we show a solution to the Unique Shortest Vector Problem (SVP) under the assumption
that there exists an algorithm that solves the hidden subgroup problem on the dihedral group
by coset sampling. Moreover, we solve the hidden subgroup problem on the dihedral group by
using an average case subset sum routine. By combining the two results, we get a quantum
reduction from Θ(n2.5)-unique-SVP to the average case subset sum problem.

1 Introduction

Quantum computation is a computation model based on quantum physics. Assuming that the
laws of nature as we know them are true, this might allow us to build computers that are able
to perform tasks that classical computers cannot perform in any reasonable time. One task which
quantum algorithms are known to perform much better than classical algorithm is that of factoring
large integers. The importance of this problem stems from its ubiquitous use in cryptographic
applications. While there are no known polynomial time classical algorithms for this problem,
a groundbreaking result of Shor from 1994 [24] showed a polynomial time quantum algorithm
for factoring integers. In the same paper, Shor showed an algorithm for finding the discrete log.
However, despite enormous effort, we have only a few other problems for which quantum algorithms
provide an exponential speedup (e.g., [11, 26]). Other notable quantum algorithms such as Deutsch
and Jozsa’s algorithm [5] and Simon’s algorithm [25] operate in the black box model. Grover’s
algorithm [10] provides a square root speedup over classical algorithms.

The current search for new quantum algorithms concentrates on problems which are not known
to be NP -hard. These include the graph isomorphism problem and lattice problems. In this paper
we are interested in lattice problems or specifically, the unique shortest vector problem (SVP).
A lattice is a set of all integral linear combinations of a set of n linearly independent vectors
in R

n. This set of n vectors is known as a basis of the lattice. In the SVP we are interested in
finding the shortest nonzero vector in a lattice. In the f(n)-unique-SVP we are given the additional
promise that the shortest vector is shorter by a factor of at least f(n) from all other non parallel
vectors. This problem also has important applications in cryptography. Namely, Ajtai and Dwork’s
cryptosystem [2] and the recent cryptosystem by Regev [22] are based on the hardness of this lattice
problem.

A central problem in quantum computation is the hidden subgroup problem (HSP). Here, we
are given a black box that computes a function on elements of a group G. The function is known to

∗Institute for Advanced Study, Princeton, NJ. E-Mail: odedr@ias.edu. Research supported by NSF grant CCR-
9987845.

1

http://arXiv.org/abs/cs/0304005v1

be constant and distinct on left cosets of a subgroup H 6 G and our goal is to findH. Interestingly,
almost all known quantum algorithms which run super-polynomially faster than classical algorithms
solve special cases of the HSP on Abelian groups. Also, it is known that solving the HSP on the
symmetric group leads to a solution to graph isomorphism [14]. This motivated research into
possible extensions of the HSP to noncommutative groups (see, e.g., [8, 12, 23, 7]). However, prior
to this paper the HSP on groups other than the symmetric group and Abelian groups had no known
applications.

In this paper we will be interested in the HSP on the dihedral group. The dihedral group of
order 2N , denoted DN , is the group of symmetries of an N -sided regular polygon. It is isomorphic
to the abstract group generated by the element ρ of order n and the element τ of order 2 subject
to the relation ρτ = τρ−1. Although the dihedral group has a much simpler structure than the
symmetric group, no efficient solution to the HSP on the dihedral group is known. Ettinger and
Høyer [6] showed that one can obtain sufficient statistical information about the hidden subgroup
with only a polynomial number of queries. However, there is no efficient algorithm that solves the
HSP using this information. Currently, the best known algorithm is due to Kuperberg [17] and
runs in subexponential time 2O(

√
log N).

The following is the main theorem of this paper. The dihedral coset problem is described in
the following paragraph.

Theorem 1.1 If there exists a solution to the dihedral coset problem with failure parameter f then
there exists a quantum algorithm that solves the Θ(n

1
2
+2f)-unique-SVP.

The input to the dihedral coset problem (DCP) is a tensor product of a polynomial number of
registers. Each register is in the state |0, x〉+ |1, (x + d) mod N〉 for some arbitrary x ∈ {0, . . . , N−
1} and d is the same for all registers. These can also be thought of as cosets of the subgroup
{(0, 0), (1, d)} in DN . Our goal is to find the value d. In addition, we say that the DCP has a
failure parameter f if each of the registers with probability at most 1

(log N)f
is in the state |b, x〉 for

arbitrary b, x instead of a coset state. We note that any algorithm that solves the dihedral HSP
by sampling cosets also solves the DCP for some failure parameter f. The reason is that since
the algorithm samples only a polynomial number of cosets, we can take f to be large enough such
that with high probability all the registers are coset states. This is summarized in the following
corollary.

Corollary 1.2 If there exists a solution to the dihedral HSP that samples cosets (e.g., any solution
using the ‘standard method’) then there exists a quantum algorithm that solves poly(n)-unique-SVP.

The following is the second main theorem of this paper. In the subset sum problem we are given
two integers t,N and a set of numbers. We are asked to find a subset of the numbers that sums to
t modulo N . A legal input is an input for which such a subset exists (a formal definition appears
in Section 4) and we are interested in algorithms that solve a non-negligible part of the inputs:

Theorem 1.3 If there exists an algorithm S that solves 1
poly(log N) of the legal subset sum inputs

with parameter N then there exists a solution to the DCP with failure parameter f = 1.

As shown in [6], the dihedral HSP can be reduced to the case where the subgroup is of the form
{(0, 0), (1, d)}. Then, by sampling cosets we obtain states of the form |0, x〉 + |1, (x+ d) mod N〉
with no error. Hence,

Corollary 1.4 If there exists an algorithm S that solves 1
poly(log N) of the legal subset sum inputs

with parameter N then there exists a solution to the dihedral HSP.

2

Finally, the following is an immediate corollary of the two previous theorems:

Corollary 1.5 If there exists an algorithm that solves 1
poly(log N) of the legal subset sum inputs with

parameter N then there exists a quantum algorithm for the Θ(n2.5)-unique-SVP.

This result is known as a worst case to average case quantum reduction. Such reductions are already
known in the classical case [1, 3, 4, 19, 22]. The exponent 2.5 in our reduction is better than the
one in [1, 3, 4, 19]. However, the reduction in [22], which appeared after the original publication
of the current paper, further improves the exponent to 1.5 and hence subsumes our reduction. In
addition, unlike the classical reductions, our subset sum problems have a density of one, i.e., the
size of the input set is very close to logN . Therefore, some cryptographic applications such as the
one by Impagliazzo and Naor [13] cannot be used.

Intuitive overview

Before proceeding to the main part of the paper, we describe our methods in a somewhat intuitive
way. First, let us describe the methods used in solving the unique-SVP. Recall that our solution
is based on a solution to the DCP. We begin by showing how such a solution can be used to solve
a slightly different problem which we call the two point problem. Instead of a superposition of
two numbers with a fixed difference, our input consists of registers in a superposition of two n-
dimensional vectors with a fixed difference. Then, the idea is to create an input to the two point
problem in the following way. Start by creating a superposition of many lattice points and collapse
the state to just two lattice points whose difference is the shortest vector. Repeating this procedure
creates an input to the two point problem whose solution is the shortest vector.

Collapsing the state is performed by partitioning the space into cubes. Assume the partition
has the property that in each cube there are exactly two lattice points whose difference is the
shortest vector. Then, we compute the cube in which each point is located and measure the result.
The state collapses to a superposition of just the two points inside the cube we measured. The
important thing is to make sure that exactly two points are located in each cube. First, in order to
make sure that the cubes are not aligned with the lattice, we randomly translate them. The length
of the cubes is proportional to the length of the shortest vector. Although the exact length of the
shortest vector is unknown, we can try several estimates until we find the right value. Since the
lattice has a unique shortest vector, all other nonparallel vectors are considerably longer and do not
fit inside a cube. Therefore we know that the difference between any two points inside the same
cube is a multiple of the shortest vector. Still, this is not good enough since instead of two points
inside each box we are likely to have more points aligned along the shortest vector. Hence, we space
out the lattice: instead of creating a superposition of all the lattice points we create a superposition
of a subset of the points. The set of points created by this technique has the property that along
the direction of the shortest vector there are pairs of points whose difference is the shortest vector
and the distance between two such pairs is much larger than the shortest vector. As before, this
can be done without knowing the shortest vector by trying several possibilities.

The second part of the paper describes a solution to the DCP with failure parameter 1 which
uses a solution to the average case subset sum problem. Recall that we are given registers of
the form |0, x〉 + |1, (x + d) mod N〉 where x ∈ {0, . . . , N − 1} is arbitrary and we wish to find
d ∈ {0, . . . , N − 1}. Consider one such register. We begin by applying the Fourier transform to the
second part of the register (the one holding x and x+d) and then measuring it. If a is the value we
measured, the state collapses to a combination of the basis states |0〉 and |1〉 such that their phase
difference is 2π ad

N . If we were lucky enough to measure a = 1, then the phase difference is 2π d
N

and by measuring this phase difference we can obtain an estimation on d. This, however, happens

3

with exponentially small probability. Since the phase is modulo 2π, extracting the value d is much
harder when a is larger. Instead, we perform the same process on r registers and let a1, . . . , ar be
the values we measure. The resulting tensor state includes a combination of all 2r different 0, 1
sequences. The phase of each sequence can be described as follows. By ignoring a fixed phase, we
can assume that the phase of the sequence 00 . . . 0 is 0. Then, the phase of the sequence 100 . . . 0
is 2π a1d

N and in general, the phase of the sequence α1α2 . . . αr is 2π d
N multiplied by the sum of the

values ai for which αi = 1. This indicates that we should try to measure the phase difference of
two sequences whose sums differ by 1. However, although we can estimate the phase difference of
one qubit, estimating the phase difference of two arbitrary sequences is not possible.

We proceed by choosing r to be very close to logN . This creates a situation in which for almost
every t ∈ {0, . . . , N − 1} there is a subset whose sum modulo N is t and in addition, there are
not too many subsets that sum to the same t modulo N . Assume for simplicity that every t has
exactly one subset that sums to t modulo N . We calculate for each sequence the value ⌊ t

2⌋ where
t is its sum. After measuring the result, say s, we know that the state is a superposition of two
sequences: one that sums to 2s and one that sums to 2s + 1. Notice that since a1, . . . , ar are
uniformly chosen between {0, . . . , N −1} we can use them as an input to the subset sum algorithm.
The key observation here is that the subset sum algorithm provides the reverse mapping, i.e., from
a value t to a subset that sums to t. So, from s we can find the sequence α1 that sums to 2s and
the sequence α2 that sums to 2s + 1. Since we know that the state is a superposition of |α1〉 and
|α2〉 we can use a unitary transformation that transforms |α1〉 to |0〉 and |α2〉 to |1〉. Now, since the
two states differ in one qubit, we can easily measure the phase difference and obtain an estimate
on d. This almost completes the description of the DCP algorithm. The estimate on d is only
polynomially accurate but in order to find d we need exponential accuracy. Hence, we repeat the
same process with pairs whose difference is higher. So, instead of choosing pairs of difference 1 we
choose pairs of difference 2 to get an estimate on 2d, then 4 to get an estimate on 4d and so on1.

Outline

The next section contains some notations that are used in this paper. The two main sections of
this paper are independent. In Section 3 we prove Theorem 1.1 and Section 4 contains the proof
of Theorem 1.3.

2 Preliminaries

We denote the imaginary unit by ı and use the notation e(x) = e2πıx. Occasionally, we omit the
normalization of quantum states. We use the term n-ball to refer to the n-dimensional solid body
and the term sphere to refer to its surface. We denote the set {1, . . . , n} by [n]. All logarithms
are of base 2 unless otherwise specified. We use δij to denote the Kronecker delta, i.e., 1 if i = j
and 0 otherwise. A sequence ᾱ ∈ {0, 1}r is identified with the set {i | αi = 1}. Several constants
appear in our proofs. To make it easier to follow, we denote constants with a subscript that is
somewhat related to their meaning. Specifically, in Section 3, ccub is related to the cubes that
partition the space, cbal is related to the radius of the balls, and cunq appears in the guarantee of
the unique shortest vector. Also, in Section 4 we use cr in the definition of the parameter r, cs in
our assumptions on the subset sum subroutine and cm when we prove the existence of matchings.

The following is the formal definition of the DCP:

1This description is very similar to the method of exponentially accurate phase estimation used in Kitaev’s algo-
rithm [16]. Actually, our case is slightly more difficult because we cannot measure all the multiples 2i. Nevertheless,
we can measure enough multiples of the phase to guarantee exponential accuracy.

4

Definition 2.1 The input to the DCP with failure parameter f consists of poly(logN) registers.
Each register is with probability at least 1− 1

(log N)f
in the state 1√

2
(|0, x〉+ |1, (x + d) mod N〉) on

1+⌈logN⌉ qubits where x ∈ {0, . . . , N−1} is arbitrary and d is fixed. Otherwise, with probability at
most 1

(log N)f
, its state is |b, x〉 where b ∈ {0, 1} and x ∈ {0, . . . , N − 1} are arbitrary. We call such

a register a ‘bad’ register. We say that an algorithm solves the DCP if it outputs d with probability
poly(1

log N) and time poly(logN).

3 A Quantum Algorithm for unique-SVP

In this section we prove Theorem 1.1. We begin by showing a simple reduction from the two
point problem to the DCP in Section 3.1. We then prove a weaker version of Theorem 1.1 with
Θ(n1+2f) instead of Θ(n

1
2
+2f) in Section 3.2. We complete the proof of Theorem 1.1 in Section

3.3. Throughout this section, we use a failure parameter f > 0 in order to make our results more
general. The reader might find it easier to take f = 1.

3.1 The Two Point Problem

Definition 3.1 The input to the two point problem with failure parameter f consists of poly(n logM)
registers. Each register is with probability at least 1− 1

(n log(2M))f
in the state 1√

2
(|0, ā〉+ |1, ā′〉) on

1+n⌈logM⌉ qubits where ā, ā′ ∈ {0, . . . ,M − 1}n are arbitrary such that ā′− ā is fixed. Otherwise,
with probability at most 1

(n log(2M))f
, its state is |b, ā〉 where b ∈ {0, 1} and ā ∈ {0, . . . ,M − 1}n are

arbitrary. We say that an algorithm solves the two point problem if it outputs ā′− ā with probability
poly(1

n log M) and time poly(n logM).

Lemma 3.2 If there exists an algorithm that solves the DCP with failure parameter f then there
is an algorithm that solves the two point problem with failure parameter f .

Proof: Consider the following mapping from {0, . . . ,M − 1}n to {0, . . . , (2M)n − 1}:

f(a1, . . . , an) = a1 + a2 · 2M + . . .+ an(2M)n−1.

Given an input to the two point problem, we create an input to the DCP by using the above
mapping on the last n⌈logM⌉ qubits of each register. Hence, each register is with probability at
least 1− 1

(n(log 2M))f
in state

1√
2
(|0, f(ā)〉+ |1, f(ā′)〉).

The difference f(ā′)−f(ā) is (a′1−a1)+(a′2−a2)·2M+. . .+(a′n−an)(2M)n−1 and is therefore fixed.
Otherwise, with probability at most 1

(n(log 2M))f
the register is in the state |b, f(ā)〉 for arbitrary

b, ā. This is a valid input to the DCP with N = (2M)n since the probability of a bad register is at
most 1

(n log(2M))f
= 1

(log N)f
.

Using the DCP algorithm with the above input we obtain the difference b1 + b2 · 2M + . . . +
bn(2M)n−1 where bi = a′i − ai. In order to extract the bi’s we add M +M · 2M +M(2M)2 + . . .+
M(2M)n−1. Extracting bi from (b1 +M)+ (b2 +M) ·2M + . . .+(bn +M)(2M)n−1 is possible since
each bi +M is an integer in the range 1 to 2M − 1. The solution to the two point problem is the
vector (b1, . . . , bn).

5

3.2 A Weaker Algorithm

We recall several facts about an LLL-reduced basis. Such a basis can be found for any lattice by
using a polynomial time algorithm [18]. Given a basis 〈b̄1, . . . , b̄n〉, let 〈b̄∗1, . . . , b̄∗n〉 be its Gram-
Schmidt orthogonalization. That is, b̄∗i is the component of b̄i orthogonal to the subspace spanned
by b̄1, . . . , b̄i−1. An LLL reduced basis 〈b̄1, . . . , b̄n〉 satisfies that ‖b̄∗i ‖ ≤

√
2‖b̄∗i+1‖ and that for

i > j, |〈b̄i, b̄∗j 〉| ≤ 1
2‖b̄∗j‖2. In addition, recall that mini ‖b̄∗i ‖ is a lower bound on the length of

the shortest vector. Since b̄∗1 = b̄1 and ‖b̄∗1‖ ≤ 2(i−1)/2‖b̄∗i ‖ we get that the vector b̄1 is at most
2(n−1)/2 times longer than the shortest vector. Consider the representation of the LLL basis in the

orthonormal basis 〈 b̄∗1
‖b̄∗1‖

, . . . , b̄∗n
‖b̄∗n‖
〉. The vector b̄i can be written as (bi1, bi2, . . . , bii, 0, . . . , 0). Notice

that bii = ‖b̄∗i ‖ and that |bij | ≤ 1
2‖b̄∗j‖ for every i > j. In the following, ū denotes the shortest

vector.

Lemma 3.3 Consider the representation of the shortest vector ū in the LLL-reduced lattice basis
ū =

∑n
i=1 uib̄i. Then, |ui| ≤ 22n for i ∈ [n].

Proof: Changing to the orthonormal basis, ū =
∑n

i=1 uib̄i =
∑n

i=1(
∑n

j=i ujbj,i)
b̄∗i

‖b̄∗i ‖
. In addition,

we know that ‖b̄∗i ‖ ≥ 2−(i−1)/2‖b̄∗1‖ ≥ 2−n‖ū‖. Hence, |∑n
j=i ujbj,i| ≤ 2n‖b̄∗i ‖ for every i ∈ [n]. By

taking i = n we get that |un| is at most 2n. We continue inductively and show that |uk| ≤ 22n−k.
Assume that the claim holds for uk+1, . . . , un. Then, |∑n

j=k+1 ujbj,k| ≤ 1
2 |

∑n
j=k+1 uj |‖b̄∗k‖ ≤

1
2(

∑n
j=k+1 22n−j)‖b̄∗k‖ ≤ 1

2 · 22n−k‖b̄∗k‖. By the triangle inequality, |ukbk,k| ≤ |
∑n

j=k+1 ujbj,k| +
|
∑n

j=k ujbj,k| ≤ (1
222n−k + 2n)‖b̄∗k‖ ≤ 22n−k‖b̄∗k‖ and the proof is completed.

Let p > n2+2f be any fixed prime. The following is the main lemma of this section:

Lemma 3.4 For any f > 0 let ū =
∑n

i=1 uib̄i be the shortest lattice vector in a (cunqn
1+2f)-unique

lattice where cunq > 0 is a constant. If there exists a solution to the two point problem with failure
parameter f then there exists a quantum algorithm that given this lattice and three integers l,m, i0
returns (u1, . . . , ui0−1,

ui0
−m

p , ui0+1, . . . , un) with probability 1/poly(n) if the following conditions
hold: ‖ū‖ ≤ l ≤ 2‖ū‖, ui0 ≡ m (mod p) and 1 ≤ m ≤ p− 1.

We first show how this lemma implies Theorem 1.1 with Θ(n1+2f) by describing the SVP
algorithm. According to Lemma 3.2 and the assumption of the theorem, there exists a solution to
the two point problem with failure parameter f. Hence, Lemma 3.4 implies that there exists an
algorithm that given the right values of l,m, i0 outputs (u1, . . . , ui0−1,

ui0
−m

p , ui0+1, . . . , un). The
value l is an estimate of the length of the shortest vector ū. Because the LLL algorithm gives a
2(n−1)/2-approximation to the length of the shortest vector, one of (n− 1)/2 different values of l is
as required. In addition, since ū is the shortest vector, ū/p cannot be a lattice vector and therefore
there exists an i0 such that ui0 6≡ 0 (mod p). Hence, there are only O(pn2) possible values for
l,m and i0. With each of these values the SVP algorithm calls the algorithm of Lemma 3.4 a
polynomial number of times. With high probability in one of these calls the algorithm returns the
vector (u1, . . . , ui0−1,

ui0
−m

p , ui0+1, . . . , un) from which ū can be extracted. The results of the other
calls can be easily discarded because they are either longer lattice vectors or non-lattice vectors.

Proof: (of Lemma 3.4) We start by applying the LLL algorithm to the unique lattice in order to
create a reduced basis. Denote the resulting basis by 〈b̄1, . . . , b̄n〉. Let 〈ē1, . . . , ēn〉 be the standard
orthonormal basis of R

n.

6

Let w1, . . . , wn be n real values in [0, 1) and let M = 24n. Assume without loss of generality
that i0 = 1. The function f is defined as f(t, ā) = (a1p + tm)b̄1 +

∑n
i=2 aib̄i where t ∈ {0, 1} and

ā = (a1, . . . , an) ∈ A = {0, . . . ,M − 1}n. It maps the elements of {0, 1} × A to lattice points.
In addition, consider a lattice vector v̄ represented in the orthonormal basis v̄ =

∑n
i=1 viēi. The

function g maps v̄ to the vector (⌊v1/(ccubn
1
2
+2f · l)−w1⌋, . . . , ⌊vn/(ccubn

1
2
+2f · l)−wn⌋) in Z

n where
the constant ccub > 0 will be specified later.

In the following, we describe a routine that creates one register in the input to the two
point problem that hides the difference (u1, . . . , ui0−1,

ui0
−m

p , ui0+1, . . . , un). We call the routine
poly(n logM) = poly(n) times in order to create a complete input to the two point problem. We
then call the two point algorithm and output its result. This completes the proof of the lemma
since with probability 1/poly(n logM) = 1/poly(n) our output is correct.

The routine starts by choosing w1, . . . , wn uniformly from [0, 1). We create the state

1√
2Mn

∑

t∈{0,1},ā∈A
|t, ā〉.

Then, we compute the function F = g◦f and measure the result, say r1, . . . , rn. The state collapses
to (normalization omitted)

∑

t ∈ {0, 1} ā ∈ A
F (t, ā) = (r1, . . . , rn)

|t, ā〉|r1, . . . , rn〉.

This completes the description of the routine. Its correctness is shown in the next two claims.

Claim 3.5 For every r̄ ∈ Z
n, there is at most one element of the form (0, ā) and at most one

element of the form (1, ā′) that get mapped to r̄ by F . Moreover, if both (0, ā) and (1, ā′) get
mapped to r̄ then ā′ − ā is the vector (u1−m

p , u2, . . . , um).

Proof: Consider two different lattice points in the image of f , v̄ = f(t, ā) and v̄′ = f(t′, ā′), that get
mapped to r̄ by g. Let v̄ =

∑n
i=1 viēi and v̄′ =

∑n
i=1 v

′
iēi be their representation in the orthonormal

basis. If v̄′− v̄ is not a multiple of the shortest vector, then ‖v̄′− v̄‖ > cunqn
1+2f‖ū‖ ≥ 1

2cunqn
1+2f · l.

Therefore, there exists a coordinate i ∈ [n] such that |v′i − vi| ≥ 1
2cunqn

1
2
+2f · l and for cunq > 2ccub

this implies g(v̄) 6= g(v̄′) no matter how w1, . . . , wn are chosen. Hence, v̄′ − v̄ = k · ū for some
integer k 6= 0. By considering the first coordinate of v̄′ − v̄ in the lattice basis we get that
(a′1p + t′m) − (a1p + tm) ≡ k · m (mod p). This implies that k ≡ t′ − t (mod p). If t = t′

then k ≡ 0 (mod p) which implies that |k| ≥ p. Thus, ‖v̄′ − v̄‖ ≥ p‖ū‖ > ccubn
1+2f · l and again,

g(v̄) 6= g(v̄′). This proves the first part of the claim. For the second part, let t = 0 and t′ = 1.
Then, k ≡ 1 (mod p). As before, this can only happen when k = 1 and hence the second part of
the claim holds.

Hence, it is enough to show that the probability that this register is bad is low enough. The
probability of measuring |r1, . . . , rn〉 equals 1

2Mn · |{(t, ā) | F (t, ā) = (r1, . . . , rn)}|. Notice that this
probability is the same as the probability that F (t, ā) = (r1, . . . , rn) for randomly chosen t and ā.
Hence, we consider a randomly chosen t and ā. If t = 0, let ā′ = (a1 + u1−m

p , a2 + u2, . . . , an + un)

and if t = 1 let ā′ = (a1 − u1−m
p , a2 − u2, . . . , an − un).

Claim 3.6 With probability at least 1 − 1
(n log(2M))f

, for randomly chosen t and ā, ā′ is in A and

F (1− t, ā′) = F (t, ā).

7

Proof: We assume that t = 0, the proof for t = 1 is similar. According to Lemma 3.3, |ui| < 22n.
Hence, unless there exists an i for which ai < 22n or ai > M − 22n, ā′ is guaranteed to be in A.
This happens with probability at most n22n+1/M because ā is a random element of A.

Notice that f(1, ā′) − f(0, ā) = ū. Since w1, . . . , wn are randomly chosen, the probability that
F (1− t, ā′) and F (t, ā) differ on the i’th coordinate is at most

|〈ū, ēi〉|
ccubn

1
2
+2f · l

≤ |〈ū, ēi〉|
ccubn

1
2
+2f · ‖ū‖

.

By the union bound, the probability that F (1− t, ā′) 6= F (t, ā) is at most
∑

i |〈ū, ēi〉|
ccubn

1
2
+2f · ‖ū‖

≤ 1

ccubn2f

where we used the fact that the l1 norm of a vector is at most
√
n times its l2 norm.

The sum of the two error probabilities n22n+1

M + 1
ccubn2f is at most 1

(n log(2M))f
for ccub large enough.

This concludes the proof of Lemma 3.4.

3.3 An Improved Algorithm

In this section we complete the proof of Theorem 1.1. The algorithm we describe has many
similarities with the one in the previous section. The main difference is that it is based on n-
dimensional balls instead of cubes. The idea is to construct a ball of the right radius around lattice
points and to show that if two lattice points are close then the two balls have a large intersection
while for any two far lattice points the balls do not intersect. For technical reasons, we will assume
in this section that the lattice is a subset of Z

n. Any lattice with rational points can be scaled so
that it is a subset of Z

n. We begin with some technical claims:

Claim 3.7 For any R > 0, let Bn be the ball of radius R centered around the origin in R
n and let

B′
n = Bn + d̄ for some vector d̄ be a shifted ball. Then, the relative n-dimensional volume of their

intersection is at least 1−O(
√
n‖d̄‖/R), i.e.,

vol(Bn ∩B′
n)

vol(Bn)
≥ 1−O(

√
n‖d̄‖/R).

Proof: Consider a point x̄ ∈ R
n such that 〈x̄, d̄〉/‖d̄‖ ≥ ‖d̄‖/2, i.e., a point which is closer to the

center of B′
n than to the center of Bn. Notice that x̄ ∈ Bn implies x̄ ∈ B′

n. In other words, the cap
Cn of Bn given by all such points x̄ is contained in Bn ∩ B′

n. By using a symmetric argument for
points x̄ ∈ R

n such that 〈x̄, d̄〉/‖d̄‖ < ‖d̄‖/2 we get,

vol(Bn ∩B′
n) = 2 · vol(Cn).

We can lower bound the volume of Cn by half the volume of Bn minus the volume of an n-
dimensional cylinder of radius R and height ‖d̄‖/2:

vol(Cn) ≥ 1

2
vol(Bn)− ‖d̄‖

2
vol(Bn−1)

whereBn−1 is the n−1-ball of radiusR. We complete the proof by using the estimate vol(Bn−1)/vol(Bn) =
O(
√
n/R),

vol(Cn)/vol(Bn) ≥ 1

2
−O(

√
n‖d̄‖/R).

8

In the algorithm we will actually represent the balls using points of a fine grid. Therefore, we
would like to say that the above claim still holds if we consider the number of grid points inside
Bn, B′

n and Bn ∩ B′
n instead of their volumes. The following claim is more than enough for our

needs:

Claim 3.8 (Special case of Proposition 8.7 in [20]) Let L be an integer and consider the scaled
integer grid 1

LZ
n. Then, for any convex body Q that contains a ball of radius r ≥ 1

Ln
1.5,

∣

∣

∣

∣

∣

| 1LZ
n ∩Q|

Lnvol(Q)
− 1

∣

∣

∣

∣

∣

<
2n1.5

rL
.

Corollary 3.9 Let L = 2n and consider the scaled integer grid 1
LZ

n. For any R ≥ 1, let Bn be
the ball of radius R centered around the origin in R

n and let B′
n = Bn + d̄ for some vector d̄ such

that R/poly(n) ≤ ‖d̄‖ ≤ R. Then, the relative number of grid points in their intersection is at least
1−O(

√
n‖d̄‖/R), i.e.,

| 1LZ
n ∩Bn ∩B′

n|
| 1LZn ∩Bn|

≥ 1−O(
√
n‖d̄‖/R).

Proof: We first note that Bn, B′
n and Bn ∩ B′

n all contain the ball of radius R/2 ≥ 1/2 centered
around d̄/2. Using Claim 3.8 we obtain that the number of grid points in these bodies approximates

their volume up to a multiplicative error of 2n1.5

L/2 = 2−Ω(n). We complete the proof by using Claim
3.7.

Let D(·, ·) denote the trace distance between two quantum states [21]. It is known that the
trace distance represents the maximum probability of distinguishing between the two states using
quantum measurements. We need the following simple bound on the trace distance:

Claim 3.10 For all k > 0 and density matrices σ1, . . . , σk, σ
′
1, . . . , σ

′
k,

D(σ1 ⊗ . . . ⊗ σk, σ
′
1 ⊗ . . .⊗ σ′k) ≤

k
∑

i=1

D(σi, σ
′
i)

Proof: Using the triangle inequality,

D(σ1 ⊗ . . .⊗ σk, σ
′
1 ⊗ . . .⊗ σ′k) ≤ D(σ1 ⊗ . . .⊗ σk, σ

′
1 ⊗ σ2 ⊗ . . .⊗ σk) +

D(σ′1 ⊗ σ2 ⊗ . . .⊗ σk, σ
′
1 ⊗ σ′2 ⊗ σ3 ⊗ . . .⊗ σk) + . . .

D(σ′1 ⊗ . . .⊗ σ′k−1 ⊗ σk, σ
′
1 ⊗ . . .⊗ σ′k)

= D(σ1, σ
′
1) +D(σ2, σ

′
2) + . . .+D(σk, σ

′
k).

In addition, we will need the following lemma:

Lemma 3.11 For any 1 ≤ R ≤ 2poly(n), let

|η〉 =
1

√

| 1LZn ∩Bn|

∑

x̄∈ 1
L

Zn∩Bn

|x̄〉

be the uniform superposition on grid points inside a ball of radius R around the origin where L = 2n.
Then, for any c > 0, a state |η̃〉 whose trace distance from |η〉 is at most 1/nc can be efficiently
computed.

9

Proof: In order to bound the trace distance, we will use the fact that for any two pure states
|ψ1〉, |ψ2〉,

D(|ψ1〉, |ψ2〉) =
√

1− |〈ψ1|ψ2〉|2 ≤ ‖|ψ1〉 − |ψ2〉‖2. (1)

The first equality appears in [21] and the inequality follows by a simple calculation.
Consider the (continuous) uniform probability distribution q over Bn. Then one can define its

discretization q′ to the grid 1
LZ

n as

q′(x̄) =

∫

x̄+[0,1/L]n
q(ȳ)dȳ

for x̄ ∈ 1
LZ

n. In other words, q′(x̄) is proportional to the volume of the intersection of Bn with the
cube x̄+ [0, 1/L]n. Notice that for points x̄ such that x̄+ [0, 1/L]n is completely contained in Bn,
q′(x̄) = 1/(Lnvol(Bn)). We claim that the state

|η′〉 =
∑

x̄∈ 1
L

Zn

√

q′(x̄)|x̄〉

is exponentially close to |η〉. Intuitively, this holds since the two differs only on points which are
very close to the boundary of the ball, namely, of distance

√
n/L from the boundary. The number

of such points is negligible compared to the number of points in the interior of the ball. More
formally, define

|η′′〉 =

√

Lnvol(Bn)

| 1LZn ∩Bn|
|η′〉.

Using Equation 1,

D(|η〉, |η′〉) ≤ ‖|η′〉 − |η〉‖2 ≤ ‖|η′〉 − |η′′〉‖2 + ‖|η′′〉 − |η〉‖2.

The first term is at most 2−Ω(n) according to Claim 3.8. For the second term, notice that the
amplitudes of |η′′〉 and |η〉 are the same except possibly on points x̄ of distance

√
n/L from the

boundary. Using Claim 3.8 again we get that the fraction of such points is closely approximated
by one minus the ratio of volumes of the ball of radius R −√n/L and the ball of radius R. This
ratio of volumes is (1−√n/(RL))n ≥ (1−√n/L)n ≥ 1− n1.5/L = 1− 2−Ω(n).

In the following we show how to approximate the state |η′〉. This idea is essentially due to Grover
and Rudolph [9]. Let m ∈ Z be large enough so that Bn is contained in the cube [−2m, 2m]n. Using
our assumption on R, m < nc1 for some c1 ≥ 1. We represent x̄ usingK = n(m+1+logL) < 2n1+c1

qubits, i.e., a block of m+ 1 + logL qubits for each dimension. Hence, we can write |η′〉 as

|η′〉 =
∑

x1,...,xK∈{0,1}

√

q′(x1, . . . , xK)|x1, . . . , xK〉.

We now show an equivalent way of writing |η′〉. Let us extend the definition of q′ in the
following way: for any k ≤ K and any x1, . . . , xk ∈ {0, 1} define q′(x1, . . . , xk) as the sum of
q′(x1, . . . , xk, xk+1, . . . , xK) over all sequences xk+1, . . . , xK ∈ {0, 1}. Notice that q′(x1, . . . , xk)
corresponds to the volume of the intersection of Bn with a certain cuboid (also known as a rect-
angular parallelepiped). For example, q′(0) = q′(1) = 1

2 since they represent the intersection of
Bn with two halves of the cube [−2m, 2m]n. Using the definition s(x1) = q′(x1) and for k > 1,
s(x1, . . . , xk) = q′(x1, . . . , xk)/q

′(x1, . . . , xk−1) we see that

|η′〉 =
∑

x1∈{0,1}

√

s(x1)
∑

x2∈{0,1}

√

s(x1, x2) . . .
∑

xK∈{0,1}

√

s(x1, . . . , xK)|x1, . . . , xK〉.

10

The algorithm starts with all K qubits in the state |0〉 and sets one qubit at a time. The first
qubit is rotated to the state 1√

2
(|0〉 + |1〉). Assume we are now in the k’th step after setting the

state of qubits 1, . . . , k−1. We use the fact that there exists a classical algorithm for approximating
the volume of a convex body up to any 1/poly(n) error (see [15] and references therein). The body
should be provided by a “well-guaranteed weak membership oracle”, i.e., a sphere containing the
body, a sphere contained in the body, both of non-zero radius and an oracle that given a point
decides if it is inside the body or not. It is easy to construct such two spheres and an oracle
for a body given by the intersection of a ball with a cuboid. Hence, we can compute two values
s̃(x1, . . . , xk−1, 0) and s̃(x1, . . . , xk−1, 1) such that

s̃(x1, . . . , xk−1, 0) + s̃(x1, . . . , xk−1, 1) = 1

and
∣

∣

∣

∣

s̃(x1, . . . , xk−1, i)

s(x1, . . . , xk−1, i)
− 1

∣

∣

∣

∣

< n−c2

for i = 0, 1 and some constant c2 which will be chosen later. Then, we rotate the i’th qubit to
the state

√

s̃(x1, . . . , xk−1, 0)|0〉 +
√

s̃(x1, . . . , xk−1, 1)|1〉. This completes the description of the
procedure.

Notice that the amplitude of each basis state |x1, . . . , xK〉 in the resulting state |η̃〉 is given by

K
∏

k=1

√

s̃(x1, . . . , xk) ≥ (1− n−c2)K
K
∏

k=1

√

s(x1, . . . , xk).

Hence the inner product 〈η̃|η′〉 is at least

(1− n−c2)K
∑

x1,...,xK∈{0,1}

K
∏

k=1

s(x1, . . . , xk) = (1− n−c2)K
∑

x1,...,xK∈{0,1}
q′(x1, . . . , xK)

= (1− n−c2)K ≥ 1−K · n−c2 ≥ 1− 2n1+c1−c2.

Using Equation 1,
D(|η′〉, |η̃〉) =

√

1− |〈η̃|η′〉|2 < n−c

for a large enough c2.

Let p > n2+2f be any fixed prime. The following is the main lemma of this section. It essentially
replaces Lemma 3.4 and hence implies Theorem 1.1.

Lemma 3.12 For any f > 0 let ū =
∑n

i=1 uib̄i be the shortest lattice vector in a (cunqn
1
2
+2f)-unique

lattice where cunq > 0 is a constant. If there exists a solution to the two point problem with failure
parameter f then there exists a quantum algorithm that given this lattice and three integers l,m, i0
returns (u1, . . . , ui0−1,

ui0
−m

p , ui0+1, . . . , un) with probability 1/poly(n) if the following conditions
hold: ‖ū‖ ≤ l ≤ 2‖ū‖, ui0 ≡ m (mod p) and 1 ≤ m ≤ p− 1.

Proof: As before, let 〈b̄1, . . . , b̄n〉 be an LLL reduced basis, let M = 24n and assume that i0 = 1.
We also define f(t, ā) as before. Assume that the number of registers needed by the two point
algorithm is at most nc1 for some constant c1 > 0.

The algorithm starts by calling the routine of Claim 3.11 nc1 times with accuracy parameter
n−c2 and R = cbaln

1
2
+2f · l for some constants c2, cbal > 0. The state we obtain is

|η̃1〉 ⊗ . . .⊗ |η̃nc1 〉 (2)

11

where each |η̃i〉 has a trace distance of at most n−c2 from |η〉. According to Claim 3.10, the above
tensor product has a trace distance of at most nc1−c2 from |η〉⊗nc1

. In the following we show that
the algorithm succeeds with probability at least n−c3 for some c3 > 0 given the state |η〉⊗nc1

.
This would complete the proof since given the state in Equation 2, the algorithm succeeds with
probability at least n−c3 − nc1−c2 > 1

2n
−c3 for large enough c2.

We describe a routine that given the state |η〉 creates one register in the input to the two point
problem. In order to produce a complete input to the two point problem, the algorithm calls this
routine nc1 times, each time with a new |η〉 register. It then calls the two point algorithm and
outputs the result. As required, the success probability is 1/poly(n logM) = n−c3 for some c3 > 0.

Given |η〉, the routine creates the state

1√
2Mn

∑

t∈{0,1},ā∈A
|t, ā〉 ⊗ |η〉,

or equivalently,
∑

t∈{0,1},ā∈A,x̄∈ 1
L

Zn∩Bn

|t, ā, x̄〉

where Bn is the ball of radius R around the origin and L = 2n. We add the value f(t, ā) to the last
register,

∑

t∈{0,1},ā∈A,x̄∈ 1
L

Zn∩Bn

|t, ā, f(t, ā) + x̄〉.

Finally, we measure the last register and if x̄′ denotes the result, the state collapses to

∑

t∈{0,1},ā∈A|x̄′∈f(t,ā)+ 1
L

Zn∩Bn

|t, ā, x̄′〉.

Claim 3.13 For every x̄′, there is at most one element of the form (0, ā) and at most one element
of the form (1, ā′) such that x̄′ ∈ f(t, ā)+ 1

LZ
n∩Bn. Moreover, if there are two such elements (0, ā)

and (1, ā′) then ā′ − ā is the vector (u1−m
p , u2, . . . , um).

Proof: Consider two different lattice points in the image of f , v̄ = f(t, ā) and v̄′ = f(t′, ā′), such that

x̄′ is both in v̄+ 1
LZ

n∩Bn and v̄′+ 1
LZ

n∩Bn. This implies that ‖v̄− v̄′‖ ≤ cbaln
1
2
+2f · l ≤ 2cbaln

1
2
+2f ·

‖ū‖. For cunq > 2cbal this means that v̄′− v̄ = k · ū for some integer k 6= 0. As before, by considering
the first coordinate of v̄′− v̄ in the lattice basis we get that (a′1p+t′m)−(a1p+tm) ≡ k ·m (mod p).
Hence, k ≡ t′− t (mod p). If t = t′ then k ≡ 0 (mod p) and therefore |k| ≥ p which contradicts the
above upper bound on the distance between v̄ and v̄′. This proves the first part of the claim. For
the second part, let t = 0 and t′ = 1. Then, k ≡ 1 (mod p). As before, this can only happen when
k = 1 and hence the second part of the claim holds.

Notice that the probability of measuring x̄′ is the same as that obtained by first choosing random
t and ā and then choosing a random point in f(t, ā) + 1

LZ
n ∩Bn. Let us define for any t and ā the

vector ā′ as before.

Claim 3.14 With probability at least 1 − 1
(n log(2M))f

, for randomly chosen t and ā and a random

point x̄′ in f(t, ā) + 1
LZ

n ∩Bn, ā′ is in A and x̄′ is also in f(1− t, ā′) + 1
LZ

n ∩Bn.

12

Proof: According to Lemma 3.3, |ui| < 22n. Hence, unless there exists an i for which ai < 22n

or ai > M − 22n, ā′ is guaranteed to be in A. This happens with probability at most n22n+1/M
because ā is a random element of A.

Fix ā, ā′ ∈ A. We would like to show that if x̄′ is chosen uniformly from f(t, ā)+ 1
LZ

n∩Bn then
with high probability it is also in f(1−t, ā′)+ 1

LZ
n∩Bn. By translating both sets by −f(t, ā) we get

the equivalent statement that if x̄′ is chosen uniformly from 1
LZ

n ∩Bn then with high probability
it is also in (f(1− t, ā′)− f(t, ā)) + 1

LZ
n ∩Bn. Since we assumed that our lattice is a subset of Z

n,
f(1−t, ā′)−f(t, ā) ∈ Z

n and the latter set equals 1
LZ

n∩(f(1−t, ā′)−f(t, ā)+Bn). Using Corollary
3.9 and the fact that ‖f(1 − t, ā′) − f(t, ā)‖ = ‖ū‖ ≤ l, we get that the required probability is at
least

1−O(
√
nl/R) = 1−O(

√
nl/(cbaln

1
2
+2f · l)) = 1−O(1/(cbaln

2f)).

The sum of the two error probabilities n22n+1

M + O(1/(cbaln
2f)) is at most 1

(n log(2M))f
for cbal

large enough.

This concludes the proof of Lemma 3.12.

4 The Dihedral Coset Problem

We begin this section with a description of the average case subset sum problem. We describe our
assumptions on the subroutine that solves it and prove some properties of such a subroutine. In
the second subsection we present an algorithm that solves the DCP with calls to an average case
subset sum subroutine.

4.1 Subset Sum

The subset sum problem is defined as follows. An input is a sequence of numbers A = (a1, . . . , ar)
and two numbers t,N . The output is a subset B ⊆ [r] such that

∑

i∈B ai ≡ t (mod N). Let a legal
input be an input for which there exists a subset B with

∑

i∈B ai ≡ t (mod N). For a constant
cr > 0, we fix r to be logN + cr since we will only be interested in such instances. First we show
that there are many legal inputs:

Lemma 4.1 For randomly chosen a1, . . . , ar, t in {0, . . . , N − 1}, the probability that there is no
B ⊆ [r] such that

∑

i∈B ai ≡ t (mod N) is at most 1
2 .

Proof: Fix a value of t. Define a random variable Xb̄ for every b̄ ∈ {0, 1}r , b̄ 6= 0r as 1 if
∑

i biai ≡
t (mod N) and 0 otherwise. Since for every b̄ the sum

∑

i biai has any value modulo N with the
same probability, the expectation of Xb̄ is 1

N and its variance is 1
N − 1

N2 <
1
N . Hence,

E[
∑

b̄

Xb̄] =
∑

b̄

E[Xb̄] =
2r − 1

N

Given two different sequences b̄, b̄′ ∈ {0, 1}r we show that Xb̄ and Xb̄′ are independent. Let i be
such that bi 6= b′i and assume without loss of generality that bi = 1, b′i = 0 and i = 1. Then,

Pra1,...,ar [Xb̄ = 1 ∧ Xb̄′ = 1] = Ea2,...,ar [Pra1 [Xb̄ = 1 ∧ Xb̄′ = 1]]

= Ea2,...,ar [1/N · δXb̄′ ,1]

= Pra1,...,ar [Xb̄ = 1]Pra1,...,ar [Xb̄′ = 1]

13

where the second equality holds because Xb̄′ does not depend on a1 and Xb̄ is 1 with probability
1/N for any a2, . . . , ar. A similar argument holds for other values of Xb̄ and Xb̄′ . Therefore, the
random variables are pairwise independent and by the Chebyshev bound,

Pr[
∑

b̄

Xb̄ <
1

2
· 2

r − 1

N
] ≤ 4 · N

2r − 1
≤ 8

2cr
.

In particular, the probability of
∑

b̄Xb̄ = 0, that is, the probability that there is no B such that
∑

i∈B ai ≡ t (mod N) is at most 8
2cr = 1

2 for cr = 4.

We assume that we are given a subroutine that answers a 1
logcs N fraction of the legal subset

sum inputs with parameter N where cs > 0 is any constant. As can be seen from the previous
lemma, this implies that the subroutine answers a non-negligible fraction of all inputs (and not
just the legal inputs). In addition, we assume that the subroutine is deterministic. We denote by
S(A, t) the result of the subroutine S on the input A = (a1, . . . , ar), t and we omit N . This result
can either be a set or an error. Let S(A) denote the set of t’s for which the subroutine returns a
set and not an error, i.e., S(A) = {t | S(A, t) 6= error}.

Corollary 4.2 For randomly chosen a1, . . . , ar in {0, . . . , N−1}, PrA[|S(A)| ≥ N
4 logcs N] = Ω(1

logcs N)
where A = (a1, . . . , ar).

Proof: Since S(A, t) 6= error only when (A, t) is a legal input,

PrA,t[S(A, t) 6= error] = PrA,t[S(A, t) 6= error ∧ (A, t) is legal]

= PrA,t[S(A, t) 6= error | (A, t) is legal] · PrA,t[(A, t) is legal] ≥ 1

2 logcs N
.

In addition,

PrA,t[S(A, t) 6= error] = EA[
|S(A)|
N

]

≤ PrA[|S(A)| ≥ N

4 logcs N
] + PrA[|S(A)| < N

4 logcs N
] · 1

4 logcs N

≤ PrA[|S(A)| ≥ N

4 logcs N
] +

1

4 logcs N
.

By combining the two inequalities we obtain the corollary.

Lemma 4.3 Let T ⊆ {0, . . . , N − 1} be a set such that |T | > N
s for a certain s. Then, for any

q < N
8s there exists q′ ∈ {q, 2q, . . . , sq} such that the number of pairs t, t+ q′ that are both in T is

Ω(N
s3).

Proof: Define the partition of T into sets T0, . . . , Tq−1 as

Tk = {i | i ∈ T, i ≡ k (mod q)}.

At least q
2s of the sets are of size at least N

2sq since their union is T and q
2s

N
q + N

2s < |T |. Let Ti be
such a set and for t ∈ Ti consider the values t+q, t+2q, . . . , t+4sq. Therefore, the number of t ∈ Ti

such that none of these values is in Ti is less than N
4sq because |{i | 0 ≤ i < N, i ≡ k (mod q)}| = N

q .

Therefore, more than |Ti|− N
4sq ≥ N

4sq of the elements t ∈ Ti are such that one of t+q, t+2q, . . . , t+4sq

is also in Ti. Summing over all sets Ti such that |Ti| ≥ N
2sq , there are at least N

4sq ·
q
2s = N

8s2 elements

t ∈ T for which one of t+ q, t+2q, . . . , t+4sq is also in T . Thus, there exists a q′ ∈ {q, 2q, . . . , 4sq}
such that the number of t ∈ T for which t+ q′ ∈ T is at least N

32s3 .

14

Definition 4.4 A partial function f : {0, . . . , N − 1} → {0, . . . , N − 1} is called a matching if for
all i such that f(i) is defined, f(i) 6= i and f(f(i)) = i. A matching is a q-matching if for all i
such that f(i) is defined, |f(i)− i| = q. We define an equal partition of the domain of a matching
f by A1(f) = {i | f(i) defined ∧ f(i) > i} and A2(f) = {i | f(i) defined ∧ f(i) < i}. The
intersection of a matching f and a set T ⊆ {0, . . . , N − 1} is the set {i | i ∈ T ∧ f(i) ∈ T}.

For any q we define the following q-matchings:

f1
q (t) =







t+ q t mod 2q < q, t+ q < N,
t− q t mod 2q ≥ q, t− q ≥ 0,
undefined otherwise.

f2
q (t) =







t− q t mod 2q < q, t− q ≥ 0,
t+ q t mod 2q ≥ q, t+ q < N,
undefined otherwise.

Lemma 4.5 There exists a constant cm such that for any integer q < N
logcm N there exists a matching

f among the 2 logcm N matchings f1
q , f

1
2q, . . . , f

1
logcm Nq, f

2
q , f

2
2q, . . . , f

2
logcm Nq such that with probability

at least 1
logcm N on the choice of A, the intersection of f and S(A) is N

logcm N . We call such an f a
good matching.

Proof: According to Corollary 4.2, 1
4 logcs N of the possible values of A satisfy |S(A)| > N

4 logcs N . For

such A, Lemma 4.3 with s = 4 logcs N implies that there exists a value q′ ∈ {q, 2q, . . . , 4 logcs N · q}
such that the number of pairs t, t + q′ that are both in S(A) is Ω(N

log3cs N
). Therefore, for such A

and q′, the size of the intersection of one of the matchings f1
q′ , f

2
q′ and S(A) is Ω(N

log3cs N
). This

implies that one of the 8 logcs N matchings considered must have an intersection of size Ω(N
log3cs N

)

with at least 1
32 log2cs N

of the possible values of A. We conclude the proof by choosing cm > 3cs.

4.2 The Quantum Algorithm

We begin with the following simple claim:

Claim 4.6 For any two basis states |a〉 and |b〉, a 6= b, there exists a routine such that given the
state |a〉+ e(φ)|b〉 outputs the state |0〉 + e(φ)|1〉.

Proof: Consider the function f defined as f(a) = 0, f(0) = a, f(b) = 1, f(1) = b and f(i) = i
otherwise. It is reversible and can therefore be implemented as a quantum routine.

We now describe the main routine in the DCP algorithm.

Lemma 4.7 There exist routines R1, R2 such that given a q-matching f and an input for the DCP
with failure parameter 1, they either output a bit or they fail. Conditioned on non-failure, the
probability of the bit being 1 is 1

2 − 1
2 cos(2πq d

N) for R1 and 1
2 + 1

2 sin(2πq d
N) for R2. Moreover, if

f is a good matching, the success probability is Ω(1
logcm N).

Proof: The routines begin by performing a Fourier transform on the last logN qubits of each input
register. Consider one register. Assuming it is a good register, the resulting state is

1√
2N

N−1
∑

i=0

e(ix/N)|0, i〉+ 1√
2N

N−1
∑

i=0

e(i(x + d)/N)|1, i〉 =

1√
2N

N−1
∑

i=0

e(ix/N)(|0〉 + e(id/N)|1〉)|i〉.

15

We measure the last logN qubits and let a ∈ {0, . . . , N − 1} be the result. The state collapses to

1√
2
e(ax/N)(|0〉 + e(ad/N)|1〉)|a〉.

If it is a bad register, it is in the state |b, x〉 where both b and x are arbitrary. After the Fourier
transform the state is 1√

N

∑N−1
i=0 e(ix/N)|b, i〉 and after measuring a in the last logN qubits, the

state is e(ax/N)|b, a〉. Notice that in both cases any value a in {0, . . . , N − 1} has an equal
probability of being measured.

We choose the number of input registers to be r. Let A = (a1, . . . , ar) be the sequence of values
measured in the above process. Notice that this sequence is uniform and hence can be used as
an input to the average case subset sum algorithm. In the following, we assume that s of the r
registers are bad. Later we will claim that with good probability, none of the registers is bad. Yet,
we have to show that even if one of the registers is bad, the routine does not return erroneous
results. Without loss of generality, assume that the first s registers are bad. The resulting state is:

s
⊗

i=1

[e(aixi/N)|bi, ai〉]
r

⊗

i=s+1

[
1√
2
e(aixi/N)(|0〉 + e(aid/N)|1〉)|ai〉].

Or, by omitting the multiplication by the fixed phase and the r · ⌈logN⌉ fixed qubits,

s
⊗

i=1

[|bi〉]
r

⊗

i=s+1

[
1√
2
(|0〉 + e(aid/N)|1〉)].

Denote these r qubits by ᾱ = (α1, . . . , αr).
We add r + 1 new qubits, β̄ = (β1, . . . , βr) and γ. Let tᾱ denote the sum

∑r
i=1 αiai. Next, we

perform the following operations:

if S(A, tᾱ) 6= ᾱ ∨ S(A, f(tᾱ)) = error
then exit

if tᾱ ∈ A1(f)

then

{

β̄ ← ᾱ
γ ← 1

else if tᾱ ∈ A2(f)

then

{

β̄ ← S(A, f(tᾱ))
γ ← 1

else exit

In order to describe the state after the above procedure, we define the following subsets of
{0, 1}r :

M = {ᾱ ∈ {0, 1}r | α1 = b1, . . . , αs = bs}
L = {ᾱ ∈M | tᾱ ∈ A1(f) ∧ S(A, tᾱ) = ᾱ ∧ S(A, f(tᾱ)) 6= error}
R = {ᾱ ∈M | tᾱ ∈ A2(f) ∧ S(A, tᾱ) = ᾱ ∧ S(A, f(tᾱ)) 6= error}

Using the order |ᾱ, β̄, γ〉, the resulting state is:

1√
2r−s

(
∑

ᾱ∈M−L−R

e(〈ᾱ, ā〉 d
N

)|ᾱ, 0̄, 0〉+

16

∑

ᾱ∈L

e(〈ᾱ, ā〉 d
N

)|ᾱ, ᾱ, 1〉+
∑

ᾱ∈R

e(〈ᾱ, ā〉 d
N

)|ᾱ, S(A, f(tᾱ)), 1〉)

=
1√
2r−s

(
∑

ᾱ∈M−L−R

e(〈ᾱ, ā〉 d
N

)|ᾱ, 0̄, 0〉+

∑

ᾱ∈L

(e(〈ᾱ, ā〉 d
N

)|ᾱ, ᾱ, 1〉+ e(〈S(A, f(tᾱ)), ā〉 d
N

)|S(A, f(tᾱ)), ᾱ, 1〉))

=
1√
2r−s

(
∑

ᾱ∈M−L−R

e(〈ᾱ, ā〉 d
N

)|ᾱ, 0̄, 0〉+

∑

ᾱ∈L

e(〈ᾱ, ā〉 d
N

)(|ᾱ〉+ e(q · d
N

)|S(A, f(tᾱ))〉)|ᾱ, 1〉)

Now we measure β̄ and γ. If γ = 0, the routine failed. Otherwise, the state of ᾱ is (omitting
the fixed β̄ and γ):

1√
2
(|β̄〉+ e(q · d

N
)|S(A, f(tβ̄))〉).

Notice that since β̄ is known and S(A, f(tβ̄)) can be easily found by calling S, we can transform
this state to the state

1√
2
(|0〉 + e(q · d

N
)|1〉)

by using Claim 4.6. By omitting some qubits, we can assume that this is a state on one qubit. By
using the Hadamard transform the state becomes

1

2
((1 + e(q

d

N
))|0〉 + (1− e(q d

N
))|1〉).

We measure the qubit and the probability of measuring 1 is

1

4
|1− e(q d

N
)|2 =

1

4
(2− 2 cos(2πq

d

N
)) =

1

2
− 1

2
cos(2πq

d

N
).

This completes the description of R1. The routine R2 applies the transform
(

1 0
0 ı

)

before the Hadamard transform and thus the state becomes

1

2
((1 + e(1/4 + q

d

N
))|0〉 + (1− e(1/4 + q

d

N
))|1〉)

and the probability of measuring 1 becomes 1
2 − 1

2 cos(π/2 + 2πq d
N) = 1

2 + 1
2 sin(2πq d

N).
From the previous description, it is clear that the probability of measuring 1 conditioned on

a non-failure is correct. Thus, it remains to prove that when f is a good matching the failure
probability is low. The success probability equals the probability of measuring γ = 1 which is
|L ∪ R|/2r−s. Assume that none of the r registers is bad. Then, |L ∪ R|/2r−s = |L ∪ R|/2r and
L∪R becomes {ᾱ ∈ {0, 1}r | tᾱ ∈ A1(f)∪A2(f) ∧ S(A, tᾱ) = ᾱ ∧ S(A, f(tᾱ)) 6= error}. Notice
that the size of this set equals |{t | t ∈ S(A) ∧ f(t) ∈ S(A)}| which, according to the definition of
a good matching, is at least N

logcm N . Therefore the probability of success conditioned on all of the

registers being good is |L ∪ R|/2r = 1
2cr logcm N = Ω(1

logcm N). This concludes the proof since with

probability at least (1− 1
log N)r = (1− 1

log N)log N+cr = Ω(1) none of the registers is bad.

17

Claim 4.8 Given an approximation x of sinφ and an approximation y of cosφ with additive error
ǫ, we can find φ mod 2π up to an additive error of O(ǫ).

Proof: Assume y ≥ 0 and let z = x
1+y . A simple calculation shows that z is an estimate of sinφ

1+cos φ
up to an additive error of at most 4ǫ. The estimate on φ is 2 arctan z. Since the absolute value of
the differential of arctan is at most 1, this is an estimate of 2 arctan(sinφ

1+cos φ) = φ with an additive

error of at most 8ǫ. When y < 0 we compute an estimate of 2arccot(sin φ
1−cos φ) = φ.

Lemma 4.9 There exists a routine R3 such that with probability exponentially close to 1, given
any q < N

logcm N finds a value q′ ∈ {q, . . . , logcm N · q} and an estimate x such that x ∈ [q′d −
N

logcm+1 N
, q′d+ N

logcm+1 N
] (mod N).

Proof: Assume we are given a q′-matching f . We call routines R1 and R2 log3cm+4N times. If the
number of successful calls to one of the routines is less than log2cm+3N , we fail. Otherwise, let
x ∈ [0, 1] be the average of the successful calls to R1 and y ∈ [0, 1] be the average of the successful
calls to R2. According to the Chernoff bound,

Pr[|x− (
1

2
− 1

2
cos(2πq′

d

N
))| > 1

ce logcm+1N
] < 2e−2 log2cm+3 N/(ce

2 log2cm+2 N)

which is exponentially low in logN for any constant ce > 0. A similar bound holds for y. Hence, we
can assume that x′ = 1− 2x and y′ = 2y − 1 are approximations of cos(2πq′ d

N) and of sin(2πq′ d
N)

respectively up to an additive error of 2
ce logcm+1 N

. According to Claim 4.8, this translates to an

estimate of q′ d
N mod 1 with an additive error of 1

logcm+1 N
for ce large enough.

By repeating the above procedure with all the matchings that appear in Lemma 4.5, we are
guaranteed to find a good matching. According to Lemma 4.7, a call to routine R1 or to routine
R2 with a good matching succeeds with probability at least cg

1
logcm N for a certain cg > 0. The

probability that none of logcm+1N calls to the subroutine succeeds is (1− cg 1
logcm N)log

cm+1 N which
is exponentially small. Thus, for one of the matchings, with probability exponentially close to 1 we
have log2cm+3N successful calls to routines R1 and R2 and routine R3 is successful.

We conclude the proof of Theorem 1.3 with a description of the algorithm for finding d. We
begin by using routine R3 with the value 1 to obtain an estimate x1 and a value q̂ ≤ logcm N
such that x1 ∈ [d′ − N

logcm+1 N
, d′ + N

logcm+1 N
] (mod N) where d′ denotes (dq̂ mod N). In the

following we find d′ exactly by calling R3 with multiples of q̂. The algorithm works in stages.
In stage i we have an estimate xi and a value qi. The invariant we maintain is xi ∈ [qid

′ −
N

logcm+1 N
, qid

′ + N
logcm+1 N

] (mod qiN) . We begin with x1 as above and q1 = 1. Assume that the

invariant holds in stage i. We use routine R3 with the value 2qiq̂ to obtain an estimate x with a
value q′ ∈ {2qiq̂, 4qiq̂, . . . 2 logcm N ·qiq̂} such that x ∈ [qi+1d

′− N
logcm+1 N

, qi+1d
′+ N

logcm+1 N
] (mod N)

where qi+1 = q′/q̂. Notice that our previous estimate xi satisfies
qi+1

qi
xi ∈ [qi+1d

′ − 2N
log N , qi+1d

′ +
2N

log N] (mod qi+1N). Since this range is much smaller than N , we can combine the estimate x on

(qi+1d
′ mod N) and the estimate qi+1

qi
xi on (qi+1d

′ mod qi+1N) to obtain xi+1 such that xi+1 ∈
[qi+1d

′− N
logcm+1 N

, qi+1d
′ + N

logcm+1 N
] (mod qi+1N). The last stage is when qi ≥ 4N

logcm+1 N
. Then, d′

can be found by rounding xi

qi
to the nearest integer. Given d′ there are at most q̂ ≤ logcm N possible

values for q. Since this is only a polynomial number of options we can output one randomly.

18

5 Acknowledgements

I would like to thank Dorit Aharonov, Noga Alon, Andris Ambainis, Irit Dinur, Sean Hallgren,
Alexei Kitaev, Hartmut Klauck, Ashwin Nayak, Cliff Smyth and Avi Wigderson for many helpful
discussions and comments.

References

[1] M. Ajtai. Generating hard instances of lattice problems. In Proc. 28th ACM
Symp. on Theory of Computing, pages 99–108, 1996. Available from ECCC at
http://www.uni-trier.de/eccc/.

[2] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence.
In Proc. 29th ACM Symp. on Theory of Computing, pages 284–293, 1997. Available from
ECCC at http://www.uni-trier.de/eccc/.

[3] J-Y. Cai. A new transference theorem and applications to Ajtai’s connection factor. Electronic
Colloquium on Computational Complexity (ECCC), 5, 1998.

[4] J-Y. Cai and A. Nerurkar. An improved worst-case to average-case connection for lattice
problems. In Proc. 38th IEEE Symp. on Found. of Comp. Science, pages 468–477, 1997.

[5] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proc. Roy.
Soc. London Ser. A, 439(1907):553–558, 1992.

[6] M. Ettinger and P. Høyer. On quantum algorithms for noncommutative hidden subgroups.
Adv. in Appl. Math., 25(3):239–251, 2000.

[7] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen. Hidden translation and orbit coset
in quantum computing. In Proc. 35th ACM Symp. on Theory of Computing, 2003.

[8] M. Grigni, L. J. Schulman, M. Vazirani, and U. V. Vazirani. Quantum mechanical algorithms
for the nonabelian hidden subgroup problem. In Proc. 33rd ACM Symp. on Theory of Com-
puting, pages 68–74, 2001.

[9] L. Grover and T. Rudolph. Creating superpositions that correspond to efficiently integrable
probability distributions. In quant-ph/0208112, http://xxx.lanl.gov, 2002.

[10] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proc. 28th ACM
Symp. on Theory of Computing, pages 212–219, 1996.

[11] S. Hallgren. Polynomial-time quantum algorithms for Pell’s equation and the principal ideal
problem. In Proc. 34th ACM Symp. on Theory of Computing, pages 653–658, 2002.

[12] S. Hallgren, A. Russell, and A. Ta-Shma. Normal subgroup reconstruction and quantum
computation using group representations. In Proc. 32nd ACM Symp. on Theory of Computing,
pages 627–635, 2000.

[13] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset
sum. J. Cryptology, 9(4):199–216, 1996.

[14] K. Johannes, S. Uwe, and T. Jacobo. The graph isomorphism problem: its structural complex-
ity. Birkhäuser Boston Inc., 1993.

19

http://www.uni-trier.de/eccc/
http://www.uni-trier.de/eccc/
http://arXiv.org/abs/quant-ph/0208112
http://xxx.lanl.gov

[15] R. Kannan, L. Lovász, and M. Simonovits. Random walks and an O∗(n5) volume algorithm
for convex bodies. Random Structures Algorithms, 11(1):1–50, 1997.

[16] A. Y. Kitaev. Quantum measurements and the abelian stabilizer problem. In
quant-ph/9511026, http://xxx.lanl.gov, 1995.

[17] G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup
problem. In quant-ph/0302112, http://xxx.lanl.gov, 2003.

[18] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coeffi-
cients. Math. Ann., 261(4):515–534, 1982.

[19] D. Micciancio. Improved cryptographic hash functions with worst-case/average-case connec-
tion. In Proc. 34th ACM Symp. on Theory of Computing, 2002.

[20] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective,
volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, Boston, Massachusetts, March 2002.

[21] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information. Cambridge
University Press, Cambridge, 2000.

[22] O. Regev. New lattice based cryptographic constructions. In Proc. 35th ACM Symp. on Theory
of Computing, San Diego, CA, June 2003.

[23] M. Rötteler and T. Beth. Polynomial-time solution to the hidden subgroup problem for a class
of non-abelian groups. In quant-ph/9812070, http://xxx.lanl.gov, 1998.

[24] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

[25] D. R. Simon. On the power of quantum computation. SIAM J. Comput., 26(5):1474–1483,
1997.

[26] W. van Dam, S. Hallgren, and I. Lawrence. Quantum algorithms for hidden coset problems.
In Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, 2003.

20

http://arXiv.org/abs/quant-ph/9511026
http://xxx.lanl.gov
http://arXiv.org/abs/quant-ph/0302112
http://xxx.lanl.gov
http://arXiv.org/abs/quant-ph/9812070
http://xxx.lanl.gov

	Introduction
	Preliminaries
	A Quantum Algorithm for unique-SVP
	The Two Point Problem
	A Weaker Algorithm
	An Improved Algorithm

	The Dihedral Coset Problem
	Subset Sum
	The Quantum Algorithm

	Acknowledgements

