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Abstract. We present XMSS, the first signature scheme that is provably forward secure and efficient
when instantiated with two secure and efficient function families: one second-preimage resistant and
the other pseudorandom. The security requirements for XMSS are minimal, because the existence of
the two function families is known to be necessary for the existence of digital signature schemes. Also,
XMSS appears to be quantum-computer resistant as there are many cryptographic hash functions and
pseudorandom functions that are believed to resist quantum computer attacks. We present experimental
results that show that the performance of XMSS is comparable to RSA.
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1 Introduction

Digital signatures are among the most widely used cryptographic primitives. The signature schemes
currently used in practice are RSA, DSA, and ECDSA. Their security depends on the security of
certain trapdoor one-way functions which, in turn, relies on the hardness of factoring integers and
computing discrete logarithms, respectively. However, it is unclear whether those computational
problems remain hard in the future. In fact, it has been shown by Shor [Sho94] that quantum
computers can solve them in polynomial time. In view of the importance of digital signatures
new schemes must be found that are practical and resist quantum computer attacks. Another
desirable feature of such new signature schemes is forward security which means that after a key
compromise all previously generated signatures remain valid. This property is important, because
with the increasing use of mobile devices attacks may become more likely. In addition, forward
secure signature schemes allow to remove the need for timestamps in long-term scenarios and, as
shown in [KCLO6], can be used to implement robust public key infrastructures.

In this paper we present XMSS (eXtended Merkle Signature Scheme), the first signature scheme
that has all the properties described above. We show, that XMSS, when instantiated with two
function families H and F, is

provably forward secure in the standard model, provided H is second preimage resistant and F'
is pseudorandom,

efficient, provided that H and F are efficient. This claim is supported by experimental results
that show that the performance of XMSS and RSA are comparable.
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The first assertion shows that the security requirements for XMSS are minimal. This follows from
[Rom90], [RS04], [HILL99] and [GGMS86] where the existence of a secure signature scheme is proved
to imply the existence of a second preimage resistant hash function family and a pseudorandom
function family (see Section 3).

The second assertion shows that XMSS is practical and quantum-computer resistant as there
are many ways to construct very efficient (hash) function families that are believed to be second
preimage resistant or pseudorandom, respectively, even in the presence of quantum computers. For
example, cryptographic hash functions and block ciphers can be used to construct such families.
There are also constructions that are based on hard problems in algebra or coding theory. The
huge number of instantiations of XMSS guarantees the long-term availability of secure and efficient
signature schemes. We also show that one obtains a scheme with a smaller secret key and faster sig-
nature generation, if forward security is replaced by existential unforgeability under chosen message
attacks (EU-CMA).

The idea of hash-based signatures was introduced by Merkle [Mer90a]. The results in [BM96,
BDET11, BDK*07, BDS08, BDS09, BGD06, DOTV08, DSS05, Gar05, HM02, JLMS03, Szy04] im-
prove the Merkle idea in many respects by providing new algorithmic ideas and security proofs.
XMSS incorporates many of those ideas. There are three other signature schemes with minimal
security assumptions in the above sense: [Gol09, Rom90, DOTV08]. They are not forward secure.
Moreover, the schemes [Gol09] and [Rom90] are not practical and the security proof of MSS-
SPR [DOTVO08] does not cover the pseudo-random key generation which is necessary for the scheme
being efficient. In addition, compared to MSS-SPR, XMSS reduces the signature size by more than
25 % at the same level of security. This is very important as the signature size is considered the
main drawback of hash-based signatures.

The practical forward secure signature schemes are based on number theory [AMNO1, AR0O,
BM99, CK06, IR01, KR03, Son01]. In addition, there are two generic constructions [Kra00] and
[MMMO02]. They allow building forward secure signature schemes from any secure digital signature
scheme. However, they do not have minimal security requirements and do not appear to be practical,
because of their key size. We note that some of the techniques used for XMSScan be applied to the
construction from [MMMO02], to minimize its drawbacks.

All security proofs in this work are exact and in the standard model. This means, that we do
not make use of any idealized assumptions about the used primitives. The proofs yield the exact
relation between the security level of the used function families and the security of XMSS. This
allows to determine parameter sets for a given security level.

XMSS, as presented in this paper, signs fixed length messages. The scheme can easily be ex-
tended to sign messages of arbitrary length using TCR hash and sign as proposed in [DOTVO08].
This requires a target collision resistant hash function family. As target collision resistant hash
function families are known to exist if one-way functions exist [Rom90], this modification does not
affect the minimality of the security requirements.

An extended abstract of this work appeared as [BDH11]. This is the full version. In contrast
to [BDH11], this work includes the full security proofs, a detailed discussion of the security level
for a given parameter set, and new experimental runtimes.

The paper is organized as follows. In Section 2 we describe the construction of XMSS. Its
security and forward security is discussed in Sections 3 and 4. The efficiency of XMSS is shown in
Section 5. Section 6 presents our implementation and performance results.



2 The eXtended Merkle Signature Scheme XMSS

In this section we describe XMSS. Like the Merkle signature scheme [Mer90a] it uses a one-time
signature scheme (OTS) that can only sign one message with one key. To overcome the limitation to
one message per key, a binary hash tree is used to reduce the authenticity of many OTS verification
keys to one XMSS public key. To minimize storage requirements, pseudorandom generators (PRG)
are used. They generate the OTS signature keys as needed.

The parameters of XMSS are the following:

— n € N; the security parameter,

— w € Nyw > 1, the Winternitz parameter,

— m € N, the message length in bits,

— F,={frk:{0,1}" = {0,1}"|K € {0,1}"} a function family,

— H €N, the tree height, XMSS allows to generate 27 signatures per keypair,

— h, a hash function, chosen randomly with the uniform distribution from the family #,, = {hx :
{0,1}?" — {0,1}"|K € {0,1}"},

— x € {0,1}", chosen randomly with the uniform distribution. The string z is used to construct
the one-time verification keys.

Those parameters are publicly known.
We keep the following description of XMSS and its components short by including references
to more detailed descriptions. We write log for log,.

Winternitz OTS As OTS we use the Winternitz OTS (W-OTS) first mentioned in [Mer90a]. We use
a slightly modified version proposed in [BDET11]. For K,z € {0,1}", ¢ € N, and fx € F,, we define
f&(z) as follows. We set f%(z) = K and for e > 0 we define K’ = f& (x) and f&(z) = fr ().
In contrast to previous versions of W-OTS this is a (random) walk through the function family
instead of an iterated evaluation of a hash function. This modification allows to eliminate the need
for a collision resistant hash function family.

Also, define
0 = m . by = w +1, €=+ 0.
log(w) log(w)

The secret signature key of W-OTS consists of £ n-bit strings sk;, 1 < ¢ < ¢ chosen uniformly
at random. The public verification key is computed as

pk = (pk17"'7pkf) = ( s’lfj(l_l(m)P"’ ;f(;l(x))a

with f¥~! as defined above.

W-OTS signs messages of binary length m. They are processed in base w representation. They
are of the form M = (M; ... My,), M; € {0,...,w — 1}. The checksum C = Zflzl(w —1—M;) in
base w representation is appended to M. It is of length ¢5. The result is a sequence of ¢ base w
numbers, denoted by (b1, ...,b¢). The signature of M is

b
o =(01,..,00) = (3 (@), fl ().
It is verified by constructing (b; ..., by) using M and checking
1 1 ?
(o700 (@), o fi 71 70(@)) = (ks - - Pey).-

The sizes of signature, public, and secret key are £n. For more detailed information see [BDET11].



XMSS Tree The XMSS tree is a modification of the Merkle Hash Tree proposed in [DOTVO0S].
It utilizes the hash function h. The XMSS tree is a binary tree. Denote its height by H. It has
H + 1 levels. The leaves are on level 0. The root is on level H. The nodes on level j, 0 < j < H,
are denoted by NODE; j, 0 <i < 2H=7 The construction of the leaves is explained below. Level j,
0 < j < H, is constructed using a bitmask (b ;||b;) € {0,1}*" chosen uniformly at random. The
nodes are computed as

NODE; j = h((NODE; j—1 ® by,;)||(NODE2; 11,51 © brj))

for 0 < 7 < H. The usage of the bitmasks is the main difference to the other Merkle tree construc-
tions. It is borrowed from [BR97] and allows to replace the collision resistant hash function family.
Figure 1 shows the construction of the XMSS tree.

Fig. 1. The XMSS tree construction

We explain the computation of the leaves of the XMSS tree. The XMSS tree is used to authen-
ticate 27 W-OTS verification keys, each of which is used to construct one leaf of the XMSS tree.
The construction of the keys is explained at the end of this section. In the construction of a leaf
another XMSS tree is used. It is called L-tree. The first £ leaves of an L-tree are the ¢ bit strings
(pkg, - - -, pky) from the corresponding verification key. As ¢ might not be a power of 2 there are not
sufficiently many leaves. Therefore the construction is modified. A node that has no right sibling
is lifted to a higher level of the L-tree until it becomes the right sibling of another node. In this
construction, the same hash function as above but new bitmasks are used. The bitmasks are the
same for each of those trees. As L-trees have height [log /], additional [log ¢] bitmasks are required.
The XMSS public key PK contains all bitmasks and the root of the XMSS tree.

To sign the ith message, the ith W-OTS key pair is used. The signature SIG = (i,0, AUTH)
contains the index 7, the W-OTS signature o, and the authentication path for the leaf NODEg ;. It is
the sequence AUTH = (AUTH), ..., AUTHy_1) of the siblings of all nodes on the path from NODE;
to the root. Figure 2 shows the authentication path for leaf i. To compute the authentication path
we use the tree traversal algorithm from [BDS08] as it allows for optimal balanced runtimes using
very little memory.

To verify the signature SIG = (i, 0, AUTH), the string (by,...,bs) is computed as described in
the W-OTS signature generation. Then the ith verification key is computed using the formula

(pky, ..., pky) = ( ;”lflfbl (),..., ;”[14’@ (x)).



Fig. 2. The authentication path for leaf i

The corresponding leaf NODEq; of the XMSS tree is constructed using the L-tree. This leaf and
the authentication path are used to compute the path (py,...,py) to the root of the XMSS tree,
where pgp = NODE(; and

o h((pj,1 D bl,j)H(AUTijl D br,j))a if LZ/QJJ =0 mod?2
Pj h((AUTHj_l D bl,j)”(pj—l D bnj)), if LZ‘/QJJ =1 mod 2

for 0 < j < H. If py is equal to the root of the XMSS tree in the public key, the signature is
accepted. Otherwise, it is rejected.

Signature Key Generation Now we describe the XMSS signature key generation for the EU-CMA-
secure XMSS. In Section 4 we show how to change this construction to obtain the forward secure
XMSS. The W-OTS secret signature keys are computed using a seed SEED € {0, 1}", the pseudo-
random function family F,,, and the pseudorandom generator GEN which for A € N, € {0,1}"
yields

GENx (1) = fu(DI[ - [[fu(N).
For i € {1,...,2} the i-th W-OTS signature key is

sk; < GENy(fsgep(7)).

The XMSS secret key contains SEED and the index of the last signature ¢. The bit length of the
XMSS public key is (2(H + [log £]) + 1)n, an XMSS signature has length (¢ + H)n, and the length
of the XMSS secret signature key is < 2n.

Tree Chaining So far, the key generation of this construction takes more time then that of other
practical signature schemes. As key generation is an offline task, this might be acceptable. If it is
inacceptable, it is possible to use the so called tree chaining technique, introduced in [BGD106] and
improved in [BDK'07]. This technique allows a trade off between signature size and the runtime
of the key generation algorithm. The basic idea of this technique is to use many levels of hash
based signature schemes. While the schemes on the lowest level are used to sign the messages, the
schemes on higher levels are used to certify the trees on the level below. As it is straight forward
to apply this technique to XMSS, we will not discuss it in this work to keep the analysis simple.
For a detailed description we refer the reader to [BDS09].



3 Standard Security

In this section we show that XMSS is provably secure in the standard model and discuss the
minimality of the assumptions we use. We first provide the needed preliminaries. We keep the
notations of Section 2.

3.1 Preliminaries I

We write m = poly(n) to denote that m is a function, polynomial in n. We call a function €(n) :
N — [0, 1] negligible and write e(n) = negl(n) if for any ¢ € N,c¢ > 0 there exists a n. € N s.th.

e(n) < n=¢ for all n > n.. We write z & X if 2 is chosen from X uniformly at random. In our
proofs we measure algorithmic runtimes as the number of evaluations of functions from F;, and H,.

Signature Schemes XMSS is a stateful signature scheme. This is not covered by the standard
definition of digital signature schemes. To capture this formally we follow the definition from [BM99]
of key evolving signature schemes. In a key evolving signature scheme, the lifetime of a keypair is
divided into several time periods, say 1. While the public key pk is fixed, the scheme operates on T’
different secret keys skq, . ..,skpr_1, one per time period. A key evolving signature scheme contains
a key update algorithm that is called at the end of each time period and updates the secret key. The
end of a time period might be determined by time, i.e. a period is one day, or something else, like
the maximum number of signatures a secret key can be used for. This is the case for XMSS, where
a period ends after signing one message and the key update algorithm is automatically called after
each signature creation. In contrast to an ordinary signature scheme, the key generation algorithm
of a key evolving signature scheme takes as an additional input the maximal number of periods T’
and outputs the public key pk and the first secret key skg. Using a key evolving signature scheme,
a signature (o,7) on a message, contains the index i of the period of the used secret key. The
validation of a signature (o,7) only succeeds, if the signature is a valid signature for time period i
under public key pk. We summarize this in the following more formal definition.

Definition 1 (Key Evolving Signature Scheme). A key evolving signature scheme is a quadru-
ple of algorithms KEs = (Kg, KUpd, Sign, Vf). It is parameterized by a security parameter n € N
and the number of time periods T € N,T = poly (n) and operates on the following finite sets with
description length polynomial in n: The secret key space KS = KSo X ... x KSr_1 consisting of T
sets, the public key space KCP, the message space M, and the signature space Y. The runtime of
the algorithms is polynomial in n and the algorithms are defined as follows:

Kg(1™,T): The key generation algorithm is a probabilistic algorithm that on input of the security
parameter n € N in unary, and the number of time periods T, outputs an initial private signing
key skg € KSo and a public verification key pk € KCP.

KUpd(sk,i): The key update algorithm is a possibly probabilistic algorithm that on input of an
index i € N and a secret signing key sk € KS, outputs the private signing key sk’ € KS; 11 for
the next time period if i <T — 1 and sk € KS;. If 1 > T — 1 it outputs the empty string. In all
other cases it returns fail.

Sign(sk, M,i): The signature algorithm is a possibly probabilistic algorithm that on input of a
signature key sk € KS, a message M € M, and an indezx i € N outputs the signature (o,i) € X
of the message M if i < T and sk € KS;. It returns fail, otherwise.



Vf(pk, M, (0,1)): The verification algorithm is a deterministic algorithm that on input of a public
key pk € KP, a message M € M, and a signature (0,i) € X outputs 1 iff (0,i) is a valid
signature on M under public key pk for time period i and 0 otherwise.

Now, let KUpd(sko)® = KUpd(...KUpd(sko,0)...,i — 1) denote the computation of the key for
time period i starting from skg. The following condition must hold: For all M € M, (pk,skg) <
Kg(1™,T), and i < T: Vf(M, (Sign(M, KUpd(sko)?), ), pk) = 1.

A digital signature scheme (Ds$) is a key evolving signature scheme with only one period and a key
update algorithm that always returns the empty string. XMSS is a key evolving signature scheme
with T = 2¥ for H € N. The XMSS key update algorithm consists of increasing the index i in the
secret key and running the BDS algorithm, to prepare the next authentication path. This is done
after every signature.

The usual security model for digital signature schemes is existential unforgeability under adap-
tive chosen message attacks (EU-CMA) introduced in [GMRS&8]. We translate it to the setting of
key evolving signature schemes, using the following experiment. KEs(1™,T') denotes a key evolving
signature scheme with security parameter n and number of periods 7. The experiment has two
phases. During the chosen message attack phase (cma), the adversary is allowed to collect signa-
tures on messages of her choice like in the EU-CMA model. In contrast to the EU-CMA model,
the adversary might do this up to T times, once for each time period. The adversary algorithm A is
given oracle access to an instance of a signature oracle Sign initialized with secret key sk; and index
1, denoted by ASign(ski,i) - Afterwards, in the forgery phase (forge), the adversary has to come up
with an existential forgery like in the EU-CMA model. The state variable allows the adversary to
keep a state and the OUT variable allows the adversary to switch from the cma to the forge phase.

Experiment Expﬁggglr\f%) (A)

i < 0, state <— null, out < null, (sko, pk) < Kg(1",7T)
While 7 < T And out # halt
(out, state) « ASiEn(skii) (17 cma, pk, state)
i+ sk; KUpd(Skz;l,Z')
(M*,0*,i*) < A(1", forge, state)
If Vf(pk, M*, (0*,7*)) = 1 And Sign was not queried for a signature on M* Return 1
Return 0

For the success probability of an adversary A in the above experiment we write
Succ®™ M (KEs(1™,T); A) = Pr [Expﬁggﬁl}[{%)(A) = 1] :

When we talk about the runtime of an adversary A in the above experiment, it refers to the sum of
runtimes over all executions of A in the experiment. Now we can define EU-CMA for key evolving
signature schemes.

Definition 2 (EU-CMA). Let n,q € N, t = poly(n), KES a key evolving signature scheme.
Fiz T € N. We call KEs EU-CMA -secure, if InSec™ ™* (Kes(1",T);t,q), the mazimum success
probability of all possibly probabilistic adversaries A, running in time < t, making at most q queries
to each instance of Sign in the above experiment, is negligible in n:

InSec™ ™M (Kes(1™,T);t, q) = mBX{SuCCEU‘CMA (KEs(1™,7); A)} = negl(n) .

For a Dss this translates to the initial notion. An OTS is a Dss that is EU-CMA secure for ¢ = 1.



Function Families In the following let n € N, m, k = poly (n) , H, = {hx : {0,1}"" — {0,1}"|K €
{0,1}*} a function family. We first define the success probability of an adversary A against second
preimage resistance (SPR). Informally the adversary receives a second preimage challenge, consisting
of a random preimage and a random function key, and has to come up with a collision for this
preimage under the function identified by the key. More formally:

Succs™® (Hp; A) =Pr [ K < {0, 1}, M 2= {0,1}™, M’ « A(K, M) :
(M # M') A (hg(M) = hg(M'))] (1)

Using this we define second preimage resistance of a function family.

Definition 3 (spr). Let t = poly(n), H, as above. We call H,, second preimage resistant, if
InSec®™® (Hy;t), the mazimum success probability of all possibly probabilistic adversaries A, running
i time < t, is negligible in n:

InSec®™ (Hy; t) =l mBX{SuccSPR (Hn; A} = negl(n) .

The second notion we use is pseudorandomness of a function family (PRF). In the definition of the
success probability of an adversary against pseudorandomness, the adversary gets black-box access
to an oracle Box. Box is either initialized with a function from H,, or a function from the set G(m,n)
of all functions with domain {0, 1}™ and range {0, 1}". The goal of the adversary is to distinguish
both cases:

Succ™ (Hp; A) = |Pr[Box S, ABO) = 1]

—Pr[Box 2= G(m,n) : ABXO) = 1]|. (2)

Now we can define pseudorandomness for a function family.

Definition 4 (prf). Let ¢ € N,t = poly(n), H,, as above. We call H,, a pseudorandom function
family, if InSec™" (H,;t, q), the mazimum success probability of all possibly probabilistic adversaries
A, running in time < t, making at most q queries to Box, is negligible in n:

InSec™ (Hn;t,q) = Jrn/imx{SuccPRF (Hn;A)} = negl(n) .

Key Collisions In [BDET11] the authors define a key collision of a function family F,, as a pair of
distinet keys (K, K') such that fx(M) = fg/(M) holds for one or more messages M € {0,1}™.
They denote the upper bound on the maximum number of keys that collide on one input value
by k, i.e. kK = 1 says that there exist no key collisions for F),. For more information and a formal
definition we refer the reader to [BDET11].

Pseudorandom Generators Pseudorandom generators (PRG) are functions that stretch a random
input to a longer pseudorandom output. We follow the notion of [BY03]: Let n € N, b = poly (n),
b>n, Gy :{0,1}" — {0,1}* and A an adversary that given a b-bit string returns a bit. The notion
is defined using the two following experiments, one where the adversary gets a random string as
input and another one where the input of A is an output of the PRG:



Experiment Expfi©~!(A) Experiment Expti“"(A)

z ¢ 0,1} ¢ ¢ G(2) c<d 10,1}
g < A(c) g < Alc)
Return g Return g

The success probability of an adversary A against the security of PRG G is defined as the ability
of the adversary to distinguish both experiments:

Succ™ (Gp; A) = |Pr [Exp ™ (A) = 1] — Pr [Expi®~(A) = 1]].
Now we define secure pseudorandom generators.

Definition 5 (prg). Letn € N, t = poly(n), G,, as above. We call G,, a secure pseudorandom gen-
erator, if InSec”™™ (Gy,;t), the mazimum success probability of all possibly probabilistic adversaries
A, running in time < t, is negligible in n:

InSec™ (Gp; t) = mgx{SuccPRG (Gn;A)} = negl(n).

3.2 XMSS is Existentially Unforgeable under Chosen Message Attacks

Now, we prove XMSS secure in the standard model and discuss some implications of this result.
We prove the following Theorem:

Theorem 1. If H, is a second preimage resistant hash function family and F,, a pseudorandom
function family, then XMSS is existentially unforgeable under chosen message attacks.

Before we give the proof of Theorem 1, we want to highlight one implication of this result: The
security assumptions of XMSS are minimal. From [Rom90] it is known that the minimal security
assumption for complexity based cryptography, namely the existence of a one-way function, is
the necessary condition for the existence of a secure digital signature scheme. Also in [Rom90] the
construction of a target collision resistant hash function family from a one-way function is presented.
Since target collision resistant hash function families are second preimage resistant (see [RS04]),
this implies that second preimage resistant hash function families can be constructed from secure
digital signature schemes. In [HILL99] the construction of a pseudorandom generator from a one-way
function is presented. In [GGMS86] pseudorandom function families are obtained from pseudorandom
generators. It follows that secure signature schemes yield pseudorandom function families. Those
constructions imply that there exists a secure instance of XMSS if there exists any secure digital
signature scheme and therefore complexity based cryptography at all. This implies that the security
requirements for XMSS are minimal. The relations between the primitives are also displayed in
Figure 3.

Now we give the proof of Theorem 1. The proof uses another view on the construction of XMSS.
Look at XMSS the following way: XMSS uses W-OTS with pseudorandom key generation. The ¢n-
bit W-OTS secret keys are generated using GEN and an n-bit (pseudo-)random input. This variant
of W-OTS is used with the XMSS-Tree construction to obtain a many-time signature scheme. The
2H n-bit inputs for the key generation are again generated using GEN and a random n-bit string. In
our proof we iteratively show that each of these constructions is secure, with the last construction
being XMSS.



Fig. 3. Existential relations between primitives. An arrow with a solid line from A to B says, that B can be constructed
from A. A dashed line from A to B says, that a primitiv that fulfills A also fulfills B.
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Proof (of Theorem 1). First we look at the key generation algorithm Kg in more detail. Kg uses the
PRG GENyx (1) = fu(0)|] ... || fu(A = 1) from the last Section. The W-OTS secret key is generated
using GENy(u) where i in turn is the ith n-bit string of the output of GENyx (SEED) and SEED is the
XMSS secret key. We show that GEN}, is a secure PRG if the used function family is pseudorandom.

Claim 2. Letn,A € N, € {0,1}", F, = {fx : {0,1}" — {0,1}"|K € {0,1}"} be a pseudorandom
function family with insecurity function InSec™ (Fy,;t,q). Then GEN, : {0,1}" — {0,1}*",

GENx () = fu(O)] - - [[fu(A = 1)

is a PRG with insecurity function
InSec™ (GEN; t) = InSec™ (Fy,; (t + A\), A).

Proof (of Claim 2). For the sake of contradiction assume there exists an adversary A distinguishing
the output of GEN) from a uniformly random An bit string. Then we can build an oracle machine
MA that given access to A distinguishes F), from G(n,n). M” queries Box for the outputs for
0,...,A—1 and hands the concatenation of the results to A. Then M*” simply forwards A’s output.
M* succeeds with the same probability as A. O

Now we show, that one can replace the random input of the key generation algorithm, by a
pseudorandom one. So if we look at W-OTS using GENy(u) to generate the secret key from one
n-bit string and assume that p is chosen uniformly at random for the moment, then the following
claim tells us, that this is almost as secure as using #n random bits. Furthermore it tells us, that we
can use 7 random bits and GENy# to generate the 2/n bits for the 27 W-OTS key pairs of XMSS.

Claim 3. Letn,n/,q,t,T € N, G, : {0,1}"* — {0,1}* be a PRG that stretches n-bit random input
to An-bit pseudo-random output with insecurity function InSec™¢ (Gy;t) and let KEs = (Kg, KUpd,
Sign, Vf) be a key evolving signature scheme with insecurity function InSecPU-CMA (KES(l”/, T);t, q)

that needs An bits of random input for key generation. Further, let KEs* = (Kg*, KUpd*, Sign, Vf)
be the variant of KES that uses Gy, to generate the An bits required for key generation. Then KES*
is a key evolving signature scheme with insecurity function

InSecPU-CMA (KES*(l”/,T);t, q) = InSec™ (Gp;t') + InSecPU-CMA (KES(I”,,T);t, q) ,

where t' =t + tkgr + Ttkupd* + qtsign + tvs.
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The proof for the above claim is based on the idea, that we can use any adversary against the scheme
with pseudorandom key generation to attack the original scheme, as the format of the inputs is the
same. In case of the original scheme we obtain an upper bound on the success probability of an
adversary using the upper bound from the assumption for the success probability of any adversary
against the original scheme. Hence, if an adversary has a higher success probability against the
scheme with pseudorandom key generation than against the original scheme, we can use such an
adversary to distinguish between a bit string produced by the PRG and a random bit string. We
use the bit string to generate a key pair for the signature scheme and run the adversary on this
key pair. If the adversary succeeds, it is more likely that the bit string was produced by the PRG,
than that it was chosen at random.

Proof (of Claim 8). We want to find a bound on the success probability of any adversary A that runs
within time ¢, making at most ¢ queries to each instance of Sign, i.e. we want to limit the insecurity

function InSecPU-CMA (KES*(I”/, T);t, q). Given such an adversary, we can build a oracle machine

M* distinguishing the output of G,, from random An-bit strings as described in algorithm 1.

We construct M* in the following way. On input of a challenge ¢ € {0, 1}*", M computes a key
pair (pk, sko) for KES* using ¢ instead of the output of G,,. Next M* calls AS€"=M (17 cma, pk, state)
for each time period 7 < T or until A indicates to switch to the forge phase. If A queries the oracle
Sign for a signature during time period i, M” computes the signature using sk;. M* answers up to
q queries per time period. If A returns a valid forgery M” returns 1 and 0 otherwise. M” runs in
time ¢ + tkg + T'tsign + tvf.

Algorithm 1 MA

Input: Security parameter n and challenge ¢ € {0, 1}*"
Output: g € {0,1}

1. compute (pk,sk) < Kg(l"/,T) using c as the randomness of Kg*
2. out < null, state <— null, ¢ < 0O;
3. While % < T And out # halt

(a) run (out,state) « ASE"=Y (1" cma, pk, state)

(b) If A queries Sign in time period ¢ Then answer up to ¢ queries using sk;
4. If (M*,0%,i") < A(1", forge, state) is a valid forgery Then Return g =1
5. Else Return g =0

Now we calculate the success probability of M. If MA is in Exp’g f_l, ¢ is a pseudorandom

output of G,,. Hence, A succeeds with probability SuccPV-¢MA <KES*(1”/, T); A) by definition and
we get

Pr [Exp’gf_l(MA) = 1} = SuccFU-CMA (KES*(l”I,T);A>

If MA is in Exp?9 % . ¢ is chosen uniformly at random. In this case A succeeds with probabilit
P, y p y

< InSecPU-CMA (KES(l”/,T);t,q). Otherwise A would be a forger for KES that running in time

t succeeds with probability greater than InSecFU-CMA (KES(l”,, T);t, q), which would contradict
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the assumption. So we get
Pr [Explgf_o(MA) = 1} < InSecPU-CMA (KES(l"I,T);t,q) )
Altogether this leads to

InSec™ (Gp;t + tkg + T'tsign + tvf) > Succ™¢ (Gn; MA)
= |Pr [Exofg? (M%) = 1] = Pr [Exply? (%) = 1]
> SuccPU-CMA (KES*(l"/,T); A) — InSecPU-CMA (KES(l”/,T);t, q)
and therefore
SuccFU-CMA (KES*(I"I, T); A)

< InSec”™ (Gp; t + tkg + Ttsign + tve) + InSecPU-CMA (KES(l”/, T);t, q) .

As this holds for any adversary A running in time < ¢, making at most ¢ queries to each instance
of Sign we get

InSecEU-CMA (KES*(I”/,T); ¢, q> < InSec™ (Ghn; t + tkg + Ttsign + tvs)
+ InSecPU-CMA (KES(I"I , T t, q)
O

In [BDE"11] it is shown that the insecurity function for the EU-CMA-security of W-OTS is

N
(x = o)

where t' =t + tsign + tkg + tvf and k denotes the upper bound on the number of key collisions in
F,.

In [DOTVO08] the authors give an exact security proof for the XMSS-Tree construction, combined
with any OTS. Using W-OTS as OTS, we obtain the following insecurity function for the EU-CMA-
security of the XMSS-Tree construction:

InSecEV-MA (W.OTS(1", T = 1);t,q = 1) < (FPw?k®? ) - InSec™ (Fpn;t',q = 2)

InSecPV-CMA (XMSS—Tree(l”, T=2")tq= 1)
< 2 max {(QH gl _ 1) InSecS™ (Hy;t') , 27 - InSec®V-MA (W-OTS(1", T = 1);t',q = 1)}

with ¢/ =t + 2 - tgign + tvs + kg

Now we can combine all this to conclude the proof. We use Claim 3 with the insecurity functions
of W-OTS and GENy. This gives us the insecurity function for W-OTS with pseudorandom key
generation. We insert this in the insecurity function for XMSS-Tree. Finally we apply Claim 3 again,
this time using the obtained insecurity function for XMSS-Tree with W-OTS with pseudorandom
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key generation and GENyx. Altogether this leads to
InSec™ M* (XMSS(1", T = 27);t,q = 1)
< InSec™* (Fn; ' +27),q = QH)
(2H+log€ -1)- InSecSFR (Hn;t'),
oH (InSeCPRF (Fro; (' +0),g=10)

+ 2 - max (3)
+ (w1t (LJL)) - InSec™ (F,; ('), q = 2))
k 27N
where ¢/ =t +2H . tsign + tvf + tkg. This concludes the proof. O

3.3 Security Level of XMSS

Given equation 3, which is an exact version of Theorem 1, we can compute the security level in the
sense of [Len04]. This allows a comparison of the security of XMSS with the security of a symmetric
primitive like a block cipher for given security parameters. Following [Len04], we say that XMSS has
security level b if a successful attack on the scheme can be expected to require approximately 20~1
evaluations of functions from F), and #H,. We can compute the security level, finding a lower bound
for ¢ such that 1/2 < InSec®YV"“MA (XMSS :t, ¢ = 1). According to the proof of Theorem 1, XMSS
can only be attacked by attacking the second preimage resistance of H,, or the pseudorandomness
of F,. Following the reasoning in [Len04], we only take into account generic attacks on H,, and F,.

For the insecurity of #(n) under generic attacks we assume InSec™™ (H(n);t) = o which
corresponds to a brute force search for second preimages. For the insecurity of F;, under generic
attacks we assume that the best attack is a brute force key retrieval attack. In [BDET11] the
authors show, that if we assume F), to be a PRF with security level n we get InSec™" (F,;t,q) =
W . (% — 2%) for the insecurity function and x < 2 for the number of key collisions. Now, let
t" = t' —t. We compute the lower bound on ¢. The following bound holds under the condition
that t"2wt2loglw o gn=H—=4 _ 9l Thig condition holds for most reasonable choices of parameters,
including those proposed in Section 6. Otherwise, given a specific choice of parameters it is easy to
compute the security level from scratch.

1

3 < InSecPU-CMA (XMSS ;t,q = 1)

t+t" 4 2H <1 1>

Kk 2"

(2H+10g€ _ 1) . t_;i//,

+ 2 - max 2H<t+t”+e (l_i)+(€2w2/{w—1 1;))‘ Lt (1_1))

on—logr \ g mn - on—logr \ g n

— on—logk

1_
K

<t—|—t”+2H t+t"+¢ t+t

— omn on—H-1 on—H—w—2log fw—1
t + t/,

— 9(n—H—w—2log fw—2)

+ 2—(n—H) + 2—(n—H—1—€)

Now, using the above condition we obtain

t < 2n7H747w72 log(fw)

Therefore, the security level for XMSS is b > n — H — 3 —w — 2log({w).
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4 Forward Security

Given the above result we can go even further. In [And97] Anderson introduced the idea of forward
security for signature schemes (FSSIG) which was later formalized in [BM99]. It says that even
after a key compromise all signatures created before remain valid. Obviously, this notion is only
meaningful for key evolving signature schemes that change their secret key over time. From an
attack based point of view this translates to: If an attacker learns the current secret key sk;, she is
still unable to forge a signature under a secret key sk;, j < ¢. This is a desirable property, especially
in the context of long term secure signatures, as it allows to remove the need for timestamps and
an online trusted third party.

In this section we show that XMSS is forward secure if we slightly modify the key generation
process based on an idea from [Kra00]. Before we describe the modification and state our second
Theorem, we provide the used definitions.

4.1 Preliminaries I1

We stick to the notions and definitions from the last sections. In the following we define stateful
pseudorandom generators and the notion of forward security for these generators, but before we
define forward secure signature schemes.

Forward Secure Signature Schemes The notion of forward security is a security notion for key
evolving signature schemes as defined in the last section. We follow the definition of [BM99]. Again,
we define the notion using an experiment which is given below. This experiment differs only slightly
from the one used to define EU-CM A-security for key evolving signature schemes. The difference
is that the adversary is allowed to break in. This means that during the cma phase, the adversary
is allowed to indicate to the experiment that she wants to break in, setting the out variable to
breakin. In this case, the experiment switches from the cma phase to the forge phase and the
adversary is given the secret key sk;_; of the current time period (Please note that the last two
statements in the while loop are increasing the index 7 and updating the secret key. Hence the last
key used during the cma phase has now index i — 1). As an existential forgery for the current or an
upcoming time period would be trivial, the adversary has to come up with an existential forgery
for a past time period.

Experiment EXPESEE(I%,T) (A)

i < 0, state < null, (sko, pk) « Kg(1™,T)

While ¢ < T And out # breakin
(out, state) « ASiEn(skii) (17 cma, pk, state)
i—|—+, sk; KUpd(Skz;l,Z')

(M*,0*,i*) < A(1", forge, state,sk;_1)

If Vf(pk, M*, (o*,i*)) = 1, Sign(sk;+, -,7*) was not queried for a signature on M*
And * <i—1Return 1

Return 0

For the success probability of an adversary A in the above experiment we write
Suce™¥¢ (Krs(1",T); A) = Pr [Expiiaiin 1 (A) = 1
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When we talk about the runtime of an adversary A in the above experiment, it refers to the sum
of runtimes over all executions of A in the experiment. Now we can define FSSIG for key evolving
signature schemes.

Definition 6 (FSSIG). Let n,q € N, t = poly(n), KES a key evolving signature scheme. Fix
T € N. We call KEs(1™,T) FSSIG-secure, if InSec™'“ (KEs(1",T);t,q), the mazimum success
probability of all possibly probabilistic adversaries A, running in time < t, making at most q queries
to each instance of Sign in the above experiment, is negligible in n:

de

InSec™' (KEs(1",T);t,q) = mgux{SuchSSIG (Kes(1™,T); A)} = negl(n) .
Note, that forward security defined as above implies EU-CM A-security.

Forward Secure Pseudorandom Bit Generators Informally, a forward secure PRG is a stateful PRG
that starts from a random initial state. Given a state, it outputs a new state and some output bits.
Even if an adversary manages to learn the secret state of a forward secure PRG, she is unable to
distinguish the former outputs from random bit strings. More formally, a stateful PRG is a function
Gy : {0,1}" — {0,1}" x {0, 1}?, for n,b € N, b = poly(n), that on input of a state STATE; of length
n outputs a new state STATE; 1 and b output bits. Forward security for a stateful PRG that is used
to produce no more than 7 outputs is defined using the two following experiments Expésfrg “LA)
and Expésfrgfo(A) which are based on the ones from [BY03]. In both experiments the adversary
A is allowed to collect up to m bit strings during the find phase. In the first experiment these bit
strings are outputs of G,, in the second experiment these bit strings are chosen at random. The
adversary can keep a history using the variable h. The adversary can switch to the guess phase
setting d = guess. In the guess phase, the adversary gets the current state of G, and has to output

one bit, indicating if the bit strings were random or generated by Gy:

Experiment Expésfrgfl(A) Experiment Expéip "970(A)
STATEq & {0,1}" STATEq & {0,1}"
14 0;h,d < null 1< 0;h,d < null
Repeat Repeat
11+ 1 11+ 1
(OUT;, STATE;) <— G,,(STATE;_1) (OUT;, STATE;) < G,,(STATE;_1)
(d,h) <~ A(1", £ind, OUT;, h) ouT; < {0,1}°
Until (d = guess) Or (i = n) (d, ) S A(1", £ind, OUT;, h)
g L A(1", guess, STATE;, h) Until (d = guess) Or (i = n)
Return g g S A(1™, guess, STATE;, h)
Return g

The success probability of an adversary A is denoted by
Succ™™ ¢ (GEN; A) = ‘Pr [Expé‘?m_l(Dis) = 1} —Pr [Expé‘?m_o(Dis) = 1] ) :

When we talk about the runtime of an adversary A in the above experiment, it refers to the sum
of runtimes over all executions of A in the experiment as in the case of forward secure signature
schemes. Now we can define forward security for a stateful PRG.
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Definition 7 (FSSIG). Let n,n € N, t = poly(n), G, a stateful PRG as defined above. We call
G, FSPRG-secure, if InSec™" ¢ (G,,;t), the maximum success probability of all possibly probabilistic
adversaries A, running in time < t, in the experiment above, is negligible in n:

InSec™"™ ¢ (Gp; t) = mA‘iX{SUCCFSPRG (Gn;A)} = negl(n).

4.2 XMSS is Forward Secure

In the following we describe the modifications needed to make XMSS forward secure. Then we
state our second theorem and prove it. To make XMSS forward secure we use a forward secure
PRG FsGen when generating the seeds for the W-OTS secret keys. Starting from a random input
SEED = STATEq of length n, FsGen uses F;, and the previous state STATE;_1 to generate n bits of
pseudorandom output OUT; and a new state STATE; of length n:

FsGen(STATE;_1) = (STATE;||OUT;) = (fsrare,_, (0)|]fsrare,_, (1))

The generation of the W-OTS secret keys from the seeds still utilizes GENy. The secret key of the
resulting forward secure XMSS contains the current state STATE; instead of SEED. In contrast to
the construction from Section 2, the seeds for the W-OTS signature keys are not easily accessible
from STATE; using one evaluation of F,. To compute the authentication path, the tree traversal
algorithm needs to compute several W-OTS keys before they are needed. This is very expensive
using FsGen. This problem is already addressed in [BDS08]. We use their solution that requires to
store 2H states of FsGen. This results in a secret signature key size of 2Hn.
For the modified XMSS from above we proof the following security theorem.

Theorem 4. If H, is a second preimage resistant hash function family and F,, a pseudorandom
function family, then XMSS with the modified key generation described above is a forward secure
digital signature scheme.

Informally the proof works the following way. First we state that FsGen is a forward secure PRG
using a result from [BY03]. In a second step, we show that for arbitrary but fixed H, XMSS is
forward secure if the seeds for the W-OTS secret keys are generated using FsGen. The idea behind
the proof is very close to the one of Claim 3. But this time it is more complicated to upper bound
the success probability in the case of random bit strings.

Proof (of Theorem 4). First we revisit a result from [BY03] about the security of FsGen. There the
authors show that if F}, is a pseudorandom function family with insecurity function InSec"™" (Fy,;t, q),
then FsGen is a forward secure PRG with insecurity function

InSec™™¢ (FsGen; t) = 27 - InSec™" (F,; (t + 2n),2) .

The proof makes use of a hybrid argument and can be found in [BY03].
Now we show that XMSS is forward secure, if the seeds for the W-OTS secret keys are generated
using FsGen.

Claim 5. Let n,n’,H € N, FsGen as described above. Let XMSS' be the version of XMSS where
the 28 n/-bit seeds for the W-OTS key generation are chosen uniformly at random with insecurity

function InSecPU-CMA (XMSS’(I”,,QH);t,q = 1). Further, let XMSS* be the modified version of
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XMSS that uses FsGen to generate the 28 n-bit seeds required for W-OTS key generation. Then
XMSS* is a forward secure signature scheme with insecurity function

InSecFSSIG (XMSS*(W, of.t g = 1) < 27 . InSec™*RC (FsGen; ')

—|—IHSGCEU_CMA <XMSSI(1TL/, 2H), t7 q= 1)

t' =t 4 tkgr + Ttcupd* + qtsign + tvs.

Proof (of claim). We want to limit the success probability of any adversary A that tries to break
the forward security of XMSS*. More specifically, we want to find an upper bound for the insecurity

function InSec"SSIG XMSS*(I"I, 28yt q = 1). Therefore we assume A runs within time ¢, making

at most 1 query to each instance of Sign. Given such an adversary, we can build an oracle machine
M* distinguishing the output of FsGen from truly random outputs, given black box access to A.

We construct M the following way. M* chooses a value a S {1,...,2"} uniformly at random.
During the find phase of the fsprg experiment, M” collects o outputs OuTy,...,OUT, before
switching to the guess phase. In the guess phase M*” is given STATE,. Now, M” uses FsGen and
STATE, to compute another 2 —a outputs OUT4, 1, ..., OUTyx. Then M” uses OUTy, ..., OUTyn
instead of the output of FsGen to generate a XMSS public key pk. Note, that to generate the W-OTS
key pair for time period i, OUT;1; is used. Next M* calls ASig":M(ln, cma, pk, state) for each time
period i < a until A indicates to break in. If A queries M” as the oracle Sign during period i, M*
computes the queried signature using OUT;11 to generate the corresponding W-OTS secret key. If
A indicates to break in during a time period i # « — 1 or does not indicate to break in in time
period i = a — 1, M* returns 0. If A indicates that she wants to break in at time period i = o — 1,
MA runs A in the forge phase with input sk; = (STATE,, OUT,). This is all secret information
that exists in time period i = o — 1. If A returns a valid forgery for a time period j < i, then M*
returns 1 and 0 otherwise. Altogether MA runs in time < ¢’ =t + tkg + 2Ht5;gn + tvs.

Now we calculate the success probability of M” in distinguishing the output of FsGen from
uniformly random outputs. The probability that A wants to break in in time period ¢ = o —
1 is at least 277 as a is chosen uniformly at random. Now, if M” is run in Exp,’;cjg;ﬁ_l(MA),
the Out;, 1 < i < 2H are pseudorandom outputs of FsGen. Hence A succeeds with probability

SuccFSSIG (XMSS*(I"/, 21y, A) per definition. As M” returns 1 if A is successful we get
Pr [Expﬁjg’;ﬁ‘l(MA) - 1} = 9~ H . §yccFSSIC (XMSS*(W’, 9H), A) .

If MA is in Expggzlﬁfo(M A), the OuT;, 1 <4 < a are chosen uniformly at random. The remaining
OuTy, a+1 < i < 2H are pseudorandom outputs of FsGen. Again, the probability that A wants to
break in in time period i = o — 1 is at least 27 as « is chosen uniformly at random. And again
MA returns 1 if A succeeds. We will need an upper bound for the probability that M” returns 1, so
we have to limit A’s success probability for the case that A breaks in in time period i = o — 1. We
will show that in this case, A succeeds with probability < InSecPU-CMA <XMSS/(1"I, 2yt q = 1).

For the moment assume this is true. Then we get
Pr [Expfetis " (M*) = 1] <277 nSec®CMA (XMSS'(17,27); 9 = 1)
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Putting all of this together, we get

InSec™" ¢ (FsGen; t')
> Succ™Re (FsGen; MA>

= |Pr [Expfezs ™ (™) = 1] - Pr [Expf29~0(M™) = 1] |
> 27H . QuecfSSIG (XMSS*(l”/, 2H);A> —27H . InSecPU-CMA (XMSS’(I"/, 2.t q = 1)
and therefore
SucclSSIG (XMSS*(l”/, 2. A)
< 2 . InSec™"*¢ (FsGen;t') + InSecPU-CMA (XMSS’(l"/, 2yt q = 1) :

As this holds for all A running in time < ¢, making at most ¢ = 1 queries to each instance of Sign
we get

InSec™51G (XMSS*(l”/, 2.t q = 1)

< 2M . InSec™"¢ (FsGen; t') + InSec™V-CMA (Xl\/[SS’(l”l7 2yt q = 1> .

This is the claimed result. But we still have to show that if M” is in Exp,{jélﬂ_o (M*), the success
probability of A, conditioned on the event that M” correctly guesses the time period A wants to
break in, denoted by €a, is limited by

en < InSecEU-CMA <XMSS’(1”’, 2M)it,q=1).

We do this, showing how to build an oracle machine M", that behaves exactly like MA, from
A’s point of view. In contrast to M?, M” uses A either to forge a signature for W-OTS with
pseudorandom key generation (W-OTS*) or to find a second preimage for a random function h
from H,,. We describe MA.

MA receives as input a second preimage challenge, consisting of a preimage x. and a function
key K identifying a function h from H, as well as a W-OTS* public key pk,. Furthermore MA

gets access to the corresponding signing oracle for pk,. Like MA, MA chooses a <i {1,... ,2H}

uniformly at random. Additionally, M™ chooses I} L {0, — 1} uniformly at random. Next MA
generates 2/ W-OTS* key pairs. This is done in a way simulating the EprFc:g:_;ﬁfo(M A) case: For
the first a key pairs M™ uses a random seed. Then M uses FsGen to compute STATE, using a
random seed and uses FsGen starting from STATE, to generate the seeds for the remaining key
pairs. Afterwards MA replaces the key pair on position 8 by pk.. As < a and pk, corresponds
to a W-OTS* key pair where the seed is chosen at random, the first « W-OTS* key pairs are now
generated using random seeds and the remaining W-OTS* key pairs are generated using FsGen,
exactly as in the case of MA.

Next, M” computes the XMSS-Tree starting from the bit strings of the W-OTS™* public keys,
using h € H,,. During the XMSS-Tree computation, M” chooses a random node from the set of all
ancestor nodes of the bit strings of the first & W-OTS* public keys. Then M chooses the bit masks
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for the level of this node such that for this node, the input to A is x.. Then M” uses the resulting
XMSS public key and starts to interact with A exactly the same way as M does. Especially MA
aborts if A does not break in in time period i = & — 1. M” can answer all signature queries using
the generated secret keys or the signing oracle for pk, in time period ¢ = 8.

If A returns a valid forgery (M’, (j,0’, AUTH')) for time period j < a — 1, M? computes the
W-OTS* public key pk;- using the signature o’. Now there are two mutual exclusive cases:

(Case 1) If pk = pk;, o’ is an existential forgery for W-OTS*. So if j = 3 M* returns (M, o),
otherwise M” aborts.

(Case 2) If pk; # pk;, by the pigeon hole principle, there must be one node on the paths from
pk; and pk; to the root, where the paths collide the first time. As this node is an output of h and
the inputs are different, M” found a collision. If one of the inputs is z., M? returns the second
preimage. Otherwise MA aborts. MA runs in time ¢ =t + 27 . tsign + tvs + tkg-

Now we compute the success probability of MA. Per assumption A breaks in in time period
i = a—1. From A’s point of view, M” behaves exactly as M”. Hence A returns a valid forgery with
probability €. In case 1, MA succeeds with probability Pr[j = 8] = é But the success probability
of M” for this case is also upper bound by its success probability against the EU-CM A-security
of W-OTS*, which is bound by InSecPV-MA (W-OTS(1", T = 1);¢/,q = 1). Now we analyze case
2. We write Ancestors, for the set of all ancestor nodes of the bit strings of the first a W-OTS*
public keys. Then MA succeeds with probability m. But the success probability of MA in
case 2 is also upper bound by the second preimage resistance of H,,, InSec*"® (H,,;t’'). One of both
cases appears with probability at least % Summing up we get

, EU-CMA (v nom ey
eAsz-maX{<a+1) InSec (W-OTS(1",T = 1): ¢, q 1),}

|Ancestors,| - InSec™™ (H,,; ')

The right part of the equation takes its maximum value for a = 2. Comparing this with the result
from [DOTVO0S8] given in the proof of Theorem 1 we see that the right part of the equation for

a = 2 is exactly InSecPU-CMA (XMSS’(l"I, 28yt q = 1) . This concludes the claim. O

Combining this with the above result for FsGen leads that the maximum success probability over
all adversaries running in time < ¢, making at most 1 query to each instance of Sign, in attacking
the forward security of XMSS* , InSec"**'¢ (XMSS*;¢,¢q = 1), is bounded by
InSec™'¢ (XMSS*;t,q = 1)
< 22H+1  InSecPRF (Fn; (' +2),q=2)
(2f+losl _ 1) . InSec®™ (H,;t'),

+ 2-max 2H (InSeCPRF (Fn; (t/ + f)’ q= 6)

—|—(£2U)2:‘£w71 (lji)> . InSecPRF (FnS (t/), q= 2))
Kk 27

t=t+21. tsign + tvf + tkg. This concludes the proof. O
Note that, following the calculation in Section 3 the security level of the forward secure XMSS is
b>min{n—2H —2,n— H —2—w—2log(fw)} — 1

as 1011g as t//2w+2logéw < 2n7H74 _ 2671 _ 27H.

19



5 Efficiency

In this Section we discuss the efficiency of XMSS. We will show that XMSS and its forward secure
variant are efficient if H,, is an efficient second preimage resistant hash function family and F,, an
efficient pseudorandom function family. Efficient here refers to the runtimes and space requirements
for sufficiently secure parameters. We show this, showing that for fixed height, message length, and
Winternitz parameter, the runtimes of the algorithms of XMSS are within a small constant factor of
the runtimes needed to evaluate elements of the function families. Similarly, we show for the space
requirements, that for fixed height, message length, and Winternitz parameter, they are within a
small constant factor of the output length of the function families. As the forward secure variant
of XMSS is slightly less performant and requires more space, we do the analysis for the forward
secure variant. In Section 6 we will propose parameters that are secure according to [LV01] and
present experimental results that support the efficiency of XMSS.

The tree traversal algorithm used to compute the nodes of the authentication path has a huge
influence on the runtime of the signature algorithm as well as on the storage requirements for the
state. Therefore this is an important choice. We propose the BDS algorithm [BDS08] as it allows for
optimal balanced runtimes using very little memory. The BDS algorithm allows for a time-memory
trade-off controlled by the variable K. For the BDS algorithm it has been shown in [BDS09] that
for H, K > 2, H— K is even, it requires (5H + L%J —bK -2+ 2K) -n bits for the state, including
the secret key. Further it requires at most (H — K)/2 + 1 leaf computations in the XMSS tree,
3(H — K —1)/2+1 evaluations of H,,, and H — K calls to FsGen per signature. A leaf computation
consists of evaluating FsGen once, evaluating GEN, once, computing the W-OTS public key, and
computing the L-tree. The H — K extra calls to FsGen are used to compute upcoming states
of FsGen. There is no need to compute the output bits, because only the next state is required.
Therefore this requires only H — K evaluations of a functions from Fj,.

The runtime of all three algorithms of XMSS is dominated by the number #callr of calls to F),
and the number #cally of calls to H,. We ignore the negligible computational overhead for adding
the bitmasks, control flow and computing the base w representation of the message. Using a simple
counting argument we obtain the following result:

For one call to the XMSS signature algorithm, the number of calls to H,, and F}, is bounded by

(+3 | w4
#callq.[g%-(H—K)+€—§, Seally < T

(H—-K)+tw+2.

For one call to the XMSS signature verification algorithm, the number of calls to H,, and F;, is
bounded by
#cally < H A+, Fcallp < lw.

For one call to the XMSS key generation algorithm, the number of calls to H,, and F;, is bounded
by
Heally <28 (04 1), Hcallp <27 (24 0w +1)).

The space requirements for the internal state of Sign and Kg (including the secret key) are
determined by the space requirements of the tree traversal algorithm plus the space requirements
for the current state of FsGen and the index. Vf needs no internal state. Hence, the space used by
XMSS, using the BDS algorithm, is at most (5H + L%J — 5K — 242K 4 1) -n + 32 bits, assuming
the index is stored using a 32bit integer variable. 2(H — K)n + n of these bits have to be kept
secret. For the remaining bits there is no secrecy requirement.
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6 Implementation

We implemented XMSS to evaluate its practical performance. The implementation was done in C,
using the AES and SHA2 implementation of OpenSSL!. The implementation is straightforward,
except for the construction of H,, and F},. We implemented constructions based on hash functions
and block ciphers for both.

First we discuss the hash function based constructions. Our implementation supports the use of
any hash function from the OpenSSL library that uses the Merkle-Darmgard (M-D) construction
[Mer90b]2. The family F, is constructed as follows. Given a hash function Hash with block length
b and output size n that uses the M-D construction, we construct the function family F,, as

fx(M) = Hash(Pad(K)|[Pad(M)),

for key K € {0,1}", message M € {0,1}" and Pad(x) = (z||10°~1#=1) for |z| < b.

We show that this is a pseudorandom function family if Hash is a good cryptographic hash
function. In [BCK96a] it is assumed, that the compression function of a good M-D hash function
is a pseudorandom function family if it is keyed using the input. In [BCK96b], it is assumed, that
the compression function of a good M-D hash function is a pseudorandom function family if keyed
on the chaining input. Further it is shown, that a fixed input length M-D hash function, keyed
using the initialization vector (IV), is a pseudorandom function family for fixed length inputs.
In our construction the internal compression function of hash is evaluated twice: First on the
IV and the padded key, second on the resulting chaining value and the padded message. Due to
the pseudorandomness of the compression function when keyed on the message input, the first
evaluation works as a pseudorandom key generation. As we have a fixed message length, the second
iteration is a pseudorandom function family keyed using the IV input.

For H,, we use Hash without modifications, as we only need a randomly chosen element of H,,
and not the whole family. Here, we follow the standard assumption for the security of keyless hash
functions. It assumes that a keyless hash function is an element of a family of hash functions, chosen
uniformly at random.

Next we present the constructions using a block cipher E(K, M) with block and key length
n bit. This is of special interest in case of AES, because many smartcard crypto co-processors
and also most of todays Intel processors provide hardware acceleration for AES. For F,, we use E
without modification as a standard assumption states that a good block cipher can be modeled as
pseudorandom permutation. H,, is constructed as hx (M) = Co for M = M;||My, with

Ci=E¢q_,(Mj))®oM;, Co=K, 0<i<2

in M-D mode. In [BRS02] the authors give a black box proof for the security of this construction. We
do not use M-D strengthening, as our domain has fixed size. Table 1 shows our experimental results
for XMSS on a computer with an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz, 8GB RAM, and
Infineon AES-NI?. The displayed results are for the forward secure construction. The construction
with standard security has slightly faster runtimes and the secret keys are 2(H — K) -n bits smaller.
The key pairs can be used to sign about 1,000 (H = 10), 65,000 (H = 16) or one million messages
(H = 20). To show the effect of this limitation in practice, we give an example. If a key pair is used

! http://www.openssl.org/

2 To obtain a secure instantiation, one must only use hash functions that are still assumed to be secure.
3 http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
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Table 1. XMSS performance for m = 256 on a computer with an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz and
8GB RAM. b denotes the bit security. For the chosen parameters, the bit security is the same for forward security
and EU-CMA security. AES-NI and AES are used with 128 bit keys. We used standard SHA2 with 256 bit digests.

Timings (ms) Sizes (byte)

Function | H | K | w | Keygen Sign Verify|Secret key Public key Signature| b
SHA2 |10| 4 | 4 868 3.47 0.43 1,604 1,188 4,580 |220
SHA2 |10| 4 |16| 1,522 6.38 0.75 1,604 1,124 2,468 206
SHA2 |10| 4 |64 | 3,925 16.67 1.97 1,604 1,060 1,764 |156
SHA2 |10| 4 |108| 5,839 24.85 2.94 1,604 1,060 1,604 |110
SHA2 [16| 4 | 4 | 54,180 5.96 0.44 2,660 1,572 4,772 |214
SHA2 |16| 4 |16 | 95,876 10.70 0.75 2,660 1,508 2,660 |200
SHA2 (16| 4 |64 | 247,494 27.83 1.95 2,660 1,444 1,956 |150
SHA2 |16| 4 |108| 369,741 41.58 2.91 2,660 1,444 1,796 |104
SHA2 |20| 8 | 4 | 879,010 6.09 0.45 | 10,404 1,828 4,900 |210
SHA2 |20 8 |16 [1,531,497 10.90 0.76 10,404 1,764 2,788 196
SHA2 |20]| 8 |64 3,991,598 28.54 1.98 | 10,404 1,700 2,084 (146
SHA2 (20| 8 |108(5,982,298  42.43 2.93 | 10,404 1,700 1,924 (100
SHA2 (20| 4 | 4 | 868,647 7.62 0.44 3,364 1,828 4,900 |210
SHA2 |20| 4 |16 |1,534,748 13.71 0.76 3,364 1,764 2,788 (196
SHA2 |20| 4 |64 (4,012,157 35.60 1.97 | 3,364 1,700 2,084 (146
SHA2 |20 4 [108]5,941,291  53.15 2.93 | 3,364 1,700 1,924 |100

AES-NI 10| 4 | 4 55 0.24 0.07 804 596 2,292 |92

AES-NI 10| 4 |16 7 0.33 0.06 804 564 1,236 | 78

AES-NI (16| 4 | 4 3505 0.41 0.07 1,332 788 2,388 |86

AES-NI |16| 4 |16 | 4915 0.56 0.06 1,332 756 1,332 |72

AES-NI [20| 8 | 4 | 56526 0.42 0.07 5,204 916 2,452 | 82

AES-NI 20| 8 |16 | 78728 0.57 0.06 5,204 884 1,396 |68

AES-NI 20| 4 | 4 | 56066 0.52 0.07 1,684 916 2,452 |82

AES-NI 20| 4 |16 | 79196 0.71 0.06 1,684 884 1,396 |68
AES 104 |4 129 0.49 0.11 804 596 2,292 |92
AES 10| 4 |16 168 0.72 0.11 804 564 1,236 | 78
AES 164 | 4 7500 0.84 0.11 1,332 788 2,388 |86
AES 16| 4 |16 | 10832 1.21 0.11 1,332 756 1,332 |72
AES 20| 8 | 4 | 120433 0.85 0.11 5,204 916 2,452 | 82
AES |20| 8 |16| 171674 1.22 0.11 5,204 884 1,396 |68
AES 20 4 | 4 | 119736 1.06 0.11 1,684 916 2,452 |82
AES |20| 4 |16 | 172851 1.53 0.11 1,684 884 1,396 |68

RSA 2048 - 3.08 0.09 < 512 < 512 <256 |87
DSA 2048 - 0.89 1.06 | <512 < 512 < 256 |87
MSS-SPR (n=128, H=20) 232 960 8,512 |98
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for one year, it can be used to sign about 3, 179, or 2872 messages a day, for H = 10, H = 16,
and H = 20, respectively. The last column of the table shows the bit security of the configuration.
Following the heuristic of Lenstra and Verheul [LVO01] the configurations with bit security 82 are
secure until 2015. The configurations with bit security 100 and more are at least secure until 2039.
Please note that these numbers are based on the provable security and not on the runtimes of
possible attacks, which is the common practice. This would result in better values. For this reason
we included also settings where the bit security is smaller than 80 bits. According to [LV01], RSA
as well as DSA are assumed to be secure until 2022, using a 2048-bit key. The timings for RSA and
DSA where taken using the OpenSSL speed command. As this does not provide timings for key
generation, we had to leave this field blank.

The results show that XMSS is comparable to existing signature schemes. Only the key genera-
tion takes more time. As mentioned in Section 2 it is possible to mitigate this using the tree chaining
technique. But even without tree chaining, key generation takes less then 100 minutes for H = 20
and w = 108. As key generation is an offline task, that needs no user interaction, this might not be
a problem in most cases. Moreover the results show the different trade-offs. Using a larger w, the
signature size shrinks, while the runtimes increase. Unfortunately, also the bit security decreases
for bigger w. Using a larger K, the runtimes of signature generation and verification decrease, while
the secret key increases. The choice of K has no influence on the bit security.

The results also show the influence of n by comparing AES (n = 128) and SHA2 (n = 256). On
the one hand, AES is obviously much faster than SHA2. On the other hand, keys and signatures
using SHA2 are about twice the size of those for AES. The only drawback of using AES is the
significant decrease in the bit security. Last but not least, the use of AES is interesting, because
many new CPUs come with hardware acceleration for AES. Our results show, that using AES-NI
results in a speed up of 50 %.

The results for AES also show that most of the time is used for W-OTS. Looking at the signature
verification times, there is no recognizable change, even if the height is doubled. Something else
that might seem confusing is that in case of AES-NI verification for w = 16 is faster than for w = 4.
For w = 16, £ is reduced from 133 to 67, while w is quadrupeled. So on average, twice the number
of evaluations of AES is needed to compute the W-OTS verification key. On the other hand, the
number of nodes in the L-tree is halved and as hashing requires two evaluations of AES this reduces
the final runtime.

The last row of table 1 shows the signature and key size for MSS-SPR [DOTV08]. To make the
results from [DOTV08] comparable, we computed the signature and public key size for message
length m = 256 bit, using their formulas. [DOTVO08| does not provide runtimes, therefore we
had to leave these fields blank. Comparing XMSS using SHA-256 and w = 108 with MSS-SPR,
shows that even for a slightly higher bit security we achieve a signature size of less than 25 %
of the signature size of MSS-SPR. Moreover, the secret key of MSS-SPR is bigger. Although the
authors of [DOTVO08] mention the possibility to generate the secret key using a pseudorandom
generator, this is not covered by their security proof. For the provided values a secret key of size
2H . mn is assumed. Anyhow, a secret key size compareable to that of XMSS is possible using the
pseudorandom key generation described in this work.
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