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A fundamental task in modern cryptography is the joint computation of a classical deterministic
function which has two inputs, one from Alice and one from Bob, such that neither of the two can
learn more about the other’s input than what is implied by the value of the function (secure two-
party computation). In this work we show that any quantum protocol that outputs the result to
both parties (two-sided computation) and that is secure against a cheating Bob can be completely
broken by a cheating Alice. Whereas it is known that quantum protocols for this task cannot be
completely secure, our result implies that even partial security cannot be obtained. Our findings
stand in stark contrast to recent works on coin tossing, where interesting quantum mechanical
advantages can be obtained, and highlight the limits of cryptography within quantum mechanics.
With help of von Neumann’s minimax theorem we extend the result to the imperfect case, where
the quantum protocol may not work perfectly and may not be perfectly secure.

PACS numbers:

Traditionally, cryptography has been understood as
the art of “secret writing“, i.e., of sending messages se-
curely from one party to another. Today, the research
field cryptography comprises much more than encryp-
tion and studies all aspects of secure communication and
computation among players that do not trust each other.
Examples of such multi-party computations are the mil-
lionaire’s problem, electronic voting, auctions etc.

A wave of excitement was sparked when it was pro-
posed that quantum mechanics may offer the possibility
to distribute a perfectly secure key among distant par-
ties, thereby achieving a level of security unattainable
by classical means [1, 2]. The immediate question arose
whether other fundamental cryptographic tasks such as
oblivious transfer, bit commitment and coin tossing could
be implemented with the same level of security with help
of quantum mechanical effects. Unfortunately, this is not
the case as was illustrated with oblivious transfer and bit
commitment which are impossible within a quantum me-
chanical framework [3, 4]. Interestingly, however, a weak
version of a coin toss can be implemented by quantum
mechanical means [5]. In this Letter we study the task
of secure two-party computation. Here, two mistrustful
players, Alice and Bob, wish to compute the value of a
classical function f , which takes an input u from Alice
and v from Bob, in such a way that both learn the result
of the computation (two-sided classical computation) and
that no one can learn more about the other’s input, even
if they cheat during the execution of the protocol.

We prove two main results. Our first result (Theo-
rem 1) is that any protocol which is secure against a
cheating Bob can be completely broken by Alice. For-
mally, we design an attack by Alice which allows her to
compute the value of the function f for all of her inputs
(rather than only a single one, which would be required
from a secure protocol).

Our result strengthens the impossibility result for

two-sided two-party computation by Colbeck, where he
showed that Alice can always obtain more information
about Bob’s input than what is implied by the value of
the function [6]. In a similar way, we improve a result
by Salvail, Schaffner and Sotáková [7] showing that any
quantum protocol for a non-trivial primitive necessarily
leaks information to a dishonest player. Our result is
motivated by Lo’s impossibility result for the case where
only Alice obtains the result of the function (one-sided
computation) [8]. Lo’s approach is based on the idea
that Bob does not have any output, hence his quantum
state cannot depend on Alice’s input. Then, Bob has
learned nothing about Alice’s input and a cheating Alice
can therefore still change her input value (by purifying
the protocol) and thus cheat. In the two-sided case, this
approach to proving the insecurity of two-party computa-
tion fails as Bob knows the value of the function and has
thus some information about Alice’s input. In order to
overcome this problem we develop a new approach. We
start with a formal definition of security based on the
standard real/ideal-world paradigm from modern cryp-
tography. If a protocol is secure, this definition guaran-
tees the existence of a classical input on Bob’s side [17].
When Alice then purifies her protocol, she is able to ob-
tain a copy of this input and break the protocol in the
stated way.

Our second result (Theorem 2) shows that the above
conclusion is still valid if the protocol is not required to
be perfectly secure (nor perfectly correct). More pre-
cisely, if the protocol is secure up to a small error against
cheating Bob, then Alice is able to compute the value of
the function for all of her inputs with only a small er-
ror. It is important to note that the error is independent
of the number of inputs that both Alice and Bob have.
Thus our analysis dramatically improves Lo’s analysis in
the one-sided case to which it can also be applied. We
achieve this result by use of von Neumann’s minimax
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theorem together with a robust version of the previous
result.

The Letter is structured as follows. We first introduce
two-party computation and the relevant notions of secu-
rity. Then we derive a technical lemma and show how
it implies that perfectly secure two-party computation is
impossible. In a final step, we extend the analysis to the
case of imperfect protocols and give examples illustrating
our results and demonstrating that they are tight.

Security Definition. Alice and Bob are interested in
computing the outcome of a classical function f that
takes an input u from Alice and an input v from Bob.
Since Alice does not trust Bob, she wants to be sure that
the protocol does not allow him to extract more informa-
tion about her input than what is implied by the output
value of the function. The same should be true if Alice
is cheating and Bob is honest.

In cryptography, a good way to define security of a pro-
tocol has turned out to be the following. First we define
an ideal situation in which everything is computed per-
fectly and securely and call this the ideal functionality F .
We are then interested in a two-party protocol π that se-
curely implements this ideal functionality. The informal
definition of security is then straightforward: A proto-
col is called secure if it looks to the outside world just
as the ideal functionality it is supposed to implement.
Concretely, for every adversarial strategy, or real adver-
sary who does not necessarily follow the protocol and
outputs some state, we require an explanation of this be-
havior in the ideal world, i.e. there has to exist an ideal
adversary interacting only with the ideal functionality
but producing the same output as the real adversary. If
such a security guarantee based on this real/ideal-world
paradigm holds, it is intuitively clear that a secure pro-
tocol can be treated as a call to the ideal functionality
and hence, it is possible to construct and prove secure
more complicated protocols in a modular fashion. For
further information about the concept of composability in
cryptography, see [9] in the context of classical protocols
and [10–13] for developments in the context of quantum
protocols.

Rather than choosing the input themselves, it turns
out to be convenient to provide an input to all players
(honest or adversarial). Security will be considered with
respect to a purification of this input, a natural concept in
quantum information theory. Security then means that
for all inputs and for all real adversaries, there exists an
ideal adversary such that the output state of the real and
the ideal situation are indistinguishable. This notion of
security was introduced in [13] and is called statistical
security in the quantum stand-alone model [11] [18].

We follow the notation of [13] and denote by A and B
the real honest Alice and Bob and add a prime to denote
dishonest players A′,B′ and a hat for the ideal versions
Â, B̂. The corresponding protocol for honest Alice and
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FIG. 1: Illustration of the security definition against dishon-
est Bob. A protocol is secure if the real protocol (left) can
be simulated as an interaction with the ideal functionality F
(right).

a dishonest Bob is denoted by πA,B′ . Both honest and
dishonest players obtain an input, in Alice’s case u (in
register U) and in Bob’s case v (in register V ) drawn
from the joint distribution p(u, v). The output state of
the protocol, augmented by the reference R, takes the
form idR ⊗ πA,B′(ρUV R), where ρUV R is a purification of
the input

∑
u,v p(u, v)|u〉〈u|U ⊗ |v〉〈v|V .

The ideal functionality for two-party computation F
of a deterministic classical function f that takes in-
puts u from Alice and v from Bob and outputs f(u, v)
to Alice and Bob can be defined formally as the fol-
lowing completely positive trace preserving (CPTP)
map F : Ũ Ṽ → X̃Ỹ : F(|u〉〈u′|Ũ ⊗ |v〉〈v′|Ṽ ) =
δu,u′δv,v′ |f(u, v)〉〈f(u, v)|X̃ ⊗ |f(u, v)〉〈f(u, v)|Ỹ , where δ
denotes the Kronecker delta function. When an ideal
honest Â and an ideal adversary B̂′ interact with the
ideal functionality, we denote the ideal protocol by FÂ,B̂′ :

UV → XY ′. It is described in Figure 1 and takes the
form FÂ,B̂′ = [idX̃→X ⊗ Λ2

KỸ→Y ′ ] ◦ [FŨṼ→X̃Ỹ ⊗ idK ] ◦
[idU→Ũ ⊗ Λ1

V→Ṽ K
], where ◦ denotes sequential appli-

cation of CPTP maps. The CPTP maps Λ1
V→Ṽ K

and

Λ2
KỸ→Y ′ determine B̂′. Â, the counterpart of honest Al-

ice in the ideal world, forwards the input and output to
and from the functionality. In the following let ε ≥ 0.

Definition. A (two-party quantum) protocol π ε-
securely implements an ideal classical functionality F if
the following holds:
ε-correctness: For any distribution p(u, v) of the inputs

[idR⊗πA,B](ρUV R) ≈ε [idR ⊗FÂ,B̂](ρUV R),

where ρUV R is defined as above and the approxima-
tion is quantified in the purified distance C(ρ, σ) :=√

1− F (ρ, σ)2. F (ρ, σ) := tr
√√

ρσ
√
ρ is the fidelity.

ε-security against dishonest Bob: For any distribution
p(u, v) and for any real adversary B′, there exists an ideal

adversary B̂′ such that

[idR⊗πA,B′ ](ρUV R) ≈ε [idR ⊗FÂ,B̂′ ](ρUV R) .

ε-security against dishonest Alice is defined analogously.

Since F is classical, we can augment it so that it
outputs ṽ in addition. More precisely, we can define
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Faug : Ũ Ṽ → X̃Ỹ Ṽ by Faug(|u〉〈u′|Ũ ⊗ |v〉〈v′|Ṽ ) :=
δu,u′δv,v′ |f(u, v)〉〈f(u, v)|X̃ ⊗|f(u, v)〉〈f(u, v)|Ỹ ⊗|v〉〈v|Ṽ .
which has the property that F = trṼ Faug . Formu-
lated for a concrete input state we define σRXṼ Y ′ :=
[idR ⊗ FA,B̂′,aug ](ρUV R) which satisfies σRXY ′ ≈ε ρRXY ′

for ρRXY ′ := [idR⊗πA,B′ ](ρUV R) if the protocol is secure
against cheating Bob. We call σRXṼ Y ′ a secure state for
input distribution p(u, v).

Main Results. The proof of our results builds upon the
following lemma which constructs a cheating strategy for
Alice that works on average over the input distribution
p(u, v) for a protocol that is ε-secure against Bob. Subse-
quently we will show how this result can be used to devise
a cheating strategy that works for all distributions at the
same time.

Lemma. If a protocol π for the evaluation of f
is ε-secure against Bob, then for all input distribu-
tions p(u, v) there is a cheating strategy for Alice such
that she obtains ṽ with some probability distribution
q(ṽ|u, v) satisfying

∑
u,v,ṽ p(u, v)q(ṽ|u, v)δf(u,v),f(u,ṽ) ≥

1 − 6ε . Furthermore, q(ṽ|u, v) is almost independent
of u; i.e., there exists a distribution q̃(ṽ|v) such that∑

u,v,ṽ p(u, v)|q(ṽ|u, v)− q̃(ṽ|v)| ≤ 6ε .

Proof. The proof consists of two parts. We first construct
a “cheating unitary” T for Alice and show in the second
step how Alice can use it to cheat successfully.

Let Alice and Bob play honestly but let them purify
their protocol with purifying registers X ′1 and Y ′1 respec-
tively. We assume without loss of generality that honest
parties measure their classical input and hence, X ′1 and
Y ′1 contain copies of u and v, respectively. We denote by
|Φ〉RXX′

1Y
′
1Y

the state of all registers at the end of the

protocol. Notice that tracing out X ′1 from |Φ〉RXX′
1Y

′
1Y

results in a state trX′
1
|Φ〉〈Φ|RXX′

1Y
′
1Y

= ρRXY ′
1Y

which

is exactly the final state when Alice played honestly and
Bob played dishonestly with the following strategy: He
plays the honest but purified strategy and outputs the
purification of the protocol (register Y ′1) and the output
values f(u, v) (register Y ). His combined dishonest reg-
ister is Y ′ = Y ′1Y . Since the protocol is ε-secure against
Bob by assumption, there exists a secure state σRXṼ Y ′

satisfying

σRXY ′ ≈ε ρRXY ′ . (1)

Let |Ψ〉RXPṼ Y ′ be a purification of σRXṼ Y ′ with purify-
ing register P . Note that |Ψ〉RXPṼ Y ′ is also a purification

of σRXY ′ , this time with purifying registers PṼ .
Recall that |Φ〉RXX′

1Y
′ purifies ρRXY ′ with purifying

register X ′1. By (1) and Uhlmann’s theorem [14] there
exists an isometry TX′

1→PṼ (with induced CPTP map

TX′
1→PṼ ) such that

(TX′
1→PṼ ⊗ 1RXY ′)|Φ〉RXX′

1Y
′ ≈ε |Ψ〉RXPṼ Y ′ . (2)

The approximation is measured in the purified distance
of the corresponding density matrices. This concludes
the construction of T ≡ TX′

1→PṼ .

We will now show how Alice can use the isometry
TX′

1→PṼ to cheat. Notice that tracing out Y ′1 from

|Φ〉RXX′
1Y Y ′

1
results exactly in the final state when Bob

played honestly and Alice played dishonestly with the fol-
lowing strategy: She plays the honest but purified strat-
egy and outputs the purification of the protocol (regis-
ter X ′1) and the output values f(u, v) (register X). She
then applies TX′

1→PṼ , measures register Ṽ in the com-

putational basis and obtains a value ṽ. It remains to
argue that Alice can compute f(u, v) with good proba-
bility based on the value ṽ that she has obtained from
measuring register Ṽ .

LetMRṼ X be the CPTP map that measures registers

R,X and Ṽ in the computational basis. Tracing over
PY ′ and applying MRṼ X on both sides of (2), we find

[MRXṼ ⊗ trPY ′ ]([TX′
1→PṼ ⊗ idRXY ′ ](|Φ〉〈Φ|RXX′

1Y
′))

≈ε [MRXṼ trPY ′ ](|Ψ〉〈Ψ|RXPṼ Y ′) (3)

by the monotonicity of the purified distance under CPTP
maps. The right hand side of (3) equals∑
u,v,ṽ

p(u, v)q̃(ṽ|v)|uv〉〈uv|R ⊗ |ṽ〉〈ṽ|Ṽ ⊗ |f(u, ṽ)〉〈f(u, ṽ)|X .

for some probability distribution q̃(ṽ|v) that is condi-
tioned only on Bob’s input v, since |Ψ〉RXPṼ Y ′ is a pu-
rification of the secure state σRXṼ Y ′ . The left hand side
of (3) equals∑

u,v,ṽ,x

p(u, v)q(ṽ|u, v)|uv〉〈uv|R ⊗ |ṽ〉〈ṽ|Ṽ

⊗ r(x|u, v, ṽ)|x〉〈x|X (4)

for some conditional probability distributions q̃(ṽ|u, v)
and r(x|u, v, ṽ). Due to the correctness of the protocol,
(4) is ε-close to the state∑
u,v,ṽ

p(u, v)q̄(ṽ|u, v)|uv〉〈uv|R⊗|ṽ〉〈ṽ|Ṽ⊗|f(u, v)〉〈f(u, v)|X

(5)
for some conditional probability distribution q̄(ṽ|u, v).
Noting that the ε-closeness of (4) and (5) implies that
p(·, ·)q(·|·, ·) and p(·, ·)q̄(·|·, ·) (when interpreted as quan-
tum states) are ε-close in purified distance, we can re-
place p(·, ·)q̄(·|·, ·) in (5) by p(·, ·)q(·|·, ·) increasing the
purified distance to the left hand side of (3) only to 2ε.
Putting things together, (3) implies∑

u,v,ṽ

p(u, v)q(ṽ|u, v)|uv〉〈uv|R ⊗ |ṽ〉〈ṽ|Ṽ

⊗ |f(u, v)〉〈f(u, v)|X ≈3ε

∑
u,v,ṽ

p(u, v)q̃(ṽ|v)

× |uv〉〈uv|R ⊗ |ṽ〉〈ṽ|Ṽ ⊗ |f(u, ṽ)〉〈f(u, ṽ)|X . (6)
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Sandwiching both sides with tr[Z·], where Z =∑
u,v,ṽ |uv〉〈uv|R ⊗ |ṽ〉〈ṽ|Ṽ ⊗ |f(u, ṽ)〉〈f(u, ṽ)|X we find

the first claim since the purified distance does not in-
crease under trace-non-increasing completely positive
maps such as tr[Z·], and since the purified distance of
two distributions upper bounds their total variation dis-
tance. The second claim follows similarly by tracing out
register X from (6).

Theorem 1. If a protocol π for the evaluation of f is
perfectly secure (i.e. ε = 0) against Bob, then Alice can
completely break the protocol, i.e. if Bob has input v, she
can compute f(u, v) for all u.

Proof. Letting p(u, v) = 1
|U ||V | and ε = 0 in the Lemma

results in the statement that if Alice has input u0, then
she will obtain ṽ from the distribution q(ṽ|u0, v) which
equals q̃(ṽ|v). But since also q(ṽ|u, v) = q̃(ṽ|v) for all u,
we have 1

|U ||V |
∑

u,v,ṽ q(ṽ|u0, v)δf(u,v),f(u,ṽ) = 1. In other

words, all ṽ that occur (i.e. that have q̃(ṽ|v) > 0) satisfy
for all u, f(u, v) = f(u, ṽ). Alice can therefore compute
the function for all u.

Theorem 2. If a protocol π for the evaluation of
f is ε-secure against Bob, then there is a cheating
strategy for Alice (where she uses input u0 while Bob
has input v) which gives her ṽ distributed according
to some distribution Q(ṽ|u0, v) such that for all u:∑

ṽ Q(ṽ|u0, v)δf(u,v),f(u,ṽ) ≥ 1− 28ε.

Proof. The argument is inspired by [15]. Consider a
finite ε-net D of distributions p ≡ p(u, v) in the to-
tal variation distance; and to each such distribution
the corresponding cheating unitary T constructed in the
proof of the Lemma. We can assume that T deter-
mines p uniquely, as we could include the value p into
T . Let q(ṽ|u, v, T ) and q̃(ṽ|v, T ) be the distributions
from the Lemma. Define the payoff function g(u, v, T ) :=∑

ṽ q(ṽ|u, v, T )δf(u,v),f(u,ṽ)−
∑

ṽ |q(ṽ|u, v, T )− q̃(ṽ|v, T )|
and consider the value

min
p′

max
T

∑
u,v

p′(u, v)g(u, v, T ) (7)

where the minimisation extends over all distributions p′

but the maximum is only taken over unitaries T corre-
sponding to p’s from D. We rewrite and bound (7) as

min
p∈D

min
p′≈εp

max
T

∑
u,v

p′(u, v)g(u, v, T )

≥ min
p∈D

max
T

∑
u,v

p(u, v)g(u, v, T )− 2ε

since replacing p′ by p incurs only an overall change in the
value by 2ε (since −1 ≤ g(u, v, T ) ≤ 1). By the Lemma,
the right hand side is larger than 1− 12ε− 2ε = 1− 14ε.

Von Neumann’s minimax theorem shows that (7)
equals maxp(T ) minu,v

∑
T p(T )g(u, v, T ) and by the

above discussion, this value is larger than 1 − 14ε. This
shows that there is a probabilistic strategy p(T ) and
ε1 + ε2 ≤ 14ε such that for all u, v,

∑
ṽ

Q(ṽ|u, v)δf(u,v),f(u,ṽ) ≥ 1− ε1 (8)

and
∑

ṽ |Q(ṽ|u, v) − Q̃(ṽ|v)| ≤ ∑
ṽ,T p(T )|q(ṽ|u, v, T ) −

q̃(ṽ|v, T )| ≤ ε2, where Q(ṽ|u, v) :=
∑

T p(T )q(ṽ|u, v, T )

and Q̃(ṽ|v) :=
∑

T p(T )q̃(ṽ|v, T ). This implies that
for all u, v,

∑
ṽ |Q(ṽ|u0, v) − Q(ṽ|u, v)| ≤ 2ε2 . Com-

bining this inequality with (8), we find for all u, v,∑
ṽ Q(ṽ|u0, v)δf(u,v),f(u,ṽ) ≥ 1− ε1 − 2ε2 ≥ 1− 28ε .

In conclusion we have shown that classical two-party
computation is not possible at all within quantum me-
chanics. We therefore significantly strengthen previous
impossibility results and improve the understanding of
the concept of security in quantum physics.

One might wonder whether Theorem 2 can be
strengthened to obtain, with probability 1 − O(ε), a ṽ
such that for all u : f(u, v) = f(u, ṽ). It turns out
that this depends on the function f : when f is equal-
ity (EQ(x, y) = 1 iff x = y) and inner-product modulo-2
(IP(x, y) =

∑
i xi · yi mod 2), the stronger conclusion

is possible. However for disjointness (DISJ(x, y) = 0 iff
∃i : xi = yi = 1) such a strengthening is not possible
showing that our result is tight in general.

For EQ, we reason as follows. Set u = v in
Theorem 2. Alice is able to sample a ṽ such
that

∑
ṽ Q(ṽ|u0, v)δEQ(v,v),EQ(v,ṽ) ≥ 1 − 28ε. Since

δEQ(v,v),EQ(v,ṽ) = 1 iff v = ṽ, Q(v|u0, v) ≥ 1 − 28ε.
When f is IP, we pick u uniform at random and obtain:∑

ṽ Q(ṽ|u0, v)(2−n
∑

u δIP(u,v),IP(u,ṽ)) ≥ 1 − 28ε. Using

that 2−n
∑

u δIP(u,v),IP(u,ṽ) = 1 if ṽ = v, and 1
2 if ṽ 6= v,

we have that Q(v|u0, v) + 1
2 (1 − Q(v|u0, v)) ≥ 1 − 28ε,

which implies that Q(v|u0, v) ≥ 1−56ε. Interestingly, for
DISJ such an argument is not possible. Assume that we
have a protocol that is ε-secure against Bob. Bob could
now run the protocol normally on strings y with Ham-
ming weight |y| ≤ n/2, but on inputs y with |y| > n/2
he could flip, at random,

√
n of y’s bits that are 1. It

is not hard to see that this new protocol is still ε-secure
and ε+O( 1√

n
)-correct. The loss in the correctness is due

to the fact, that on high-Hamming-weight strings, the
protocol may, with a small probability, not be correct.
On the other hand, on high-Hamming-weight inputs, the
protocol can not transmit/leak the complete input v to
Alice, simply because Bob does not use it.
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