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We argue that complex systems science and the rules of quantum physics are intri-

cately related. We discuss a range of quantum phenomena, such as cryptography,

computation and quantum phases, and the rules responsible for their complexity.

We identify correlations as a central concept connecting quantum information and

complex systems science. We present two examples for the power of correlations:

using quantum resources to simulate the correlations of a stochastic process and to

implement a classically impossible computational task.

a)Electronic mail: j.anders@ucl.ac.uk
b)Electronic mail: k.wiesner@bristol.ac.uk

1

ar
X

iv
:1

11
0.

52
13

v1
  [

qu
an

t-
ph

] 
 2

4 
O

ct
 2

01
1

mailto:j.anders@ucl.ac.uk
mailto:k.wiesner@bristol.ac.uk


LEAD PARAGRAPH

A common notion of a complex system is many members acting together to produce an

orchestrated and structured ensemble. Hence, an important feature of a complex system is

that it contains a high amount of correlations. Typical examples are neurons in the brain,

molecules in a living cell, individual ants in a colony, people in a social network, and the

natural forces that together produce climate. Complexity in the regime where quantum

mechanics dictates the rules is of a different kind. It arises not because of the sheer number

of participants but because the underlying rules of logic change. The Heisenberg principle,

for instance, forbids the perfect knowledge of a particle’s position and momentum. In this

paper we survey how the rules of quantum mechanics lead to a number of unexpected

phenomena, such as unbreakably secure communication, quantum parallel computing, and

new states of matter, such as a superfluid. Similar to complexity science, in this wealth

of quantum phenomena correlations play a central role. The central role of correlations in

both quantum computation and complex systems has practical consequences: To capture

all correlations of a complex system in a compact description, it turns out, quantum physics

can be very useful.

I. INTRODUCTION

In complex systems it is often the sheer number of components which is considered to

be responsible for the emergence of “complexity”. However, there is another perspective to

how complexity can arise. When the underlying rules of the game change, new structures

and phenomena can arise. This is the situation encountered in quantum physics, where

quantum objects obey a logic very different from our intuition stemming from the classical

world. Quantum laws such as superposition, entanglement and Heisenberg’s uncertainty

principle imply configurations and relationships that go well beyond what is usually called

complexity. And they do so already with two constituent parts.

The aim of this paper is to inform researchers in complex systems about the intimate

relation between quantum information and complexity science. It is not intended as a

comprehensive review. Rather its aim is to communicate the aspects of the research on

quantum systems produced over the last two decades which is relevant to complex systems
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science. We give a selective account of a multitude of situations where quantum many-body

systems acquire a higher “complexity” than classical systems. We then draw the connection

between the two fields by focusing on the importance of correlations for both quantum

information and complex systems science. While in complex systems it is intricate (classical)

correlations between individual members that are responsible for coherent phenomena such

as structure formation and concerted behaviour, quantum complexity relies on quantum

correlations that arise as a result of quantum rules.

The paper is structured as follows. We will first give a brief overview over the relevant

quantum phenomena of superposition and entanglement. We will then present a selection

of phenomena showing overwhelming evidence that quantum mechanical correlations are re-

sponsible for new, classically unseen phenomena such as unbreakably secure communication,

quantum phases, and enhanced computational complexity. We then present two examples

that illustrate the relationship between computation, correlation and complexity. The first

example shows that structure, i.e. classical correlations, can be generated with fewer com-

putational resources when quantum resources are available. The second example discusses

how a limited computer can be enabled to calculate computational task beyond its own

capability by accessing quantum correlated resources. Finally we discuss the central role of

correlations in both quantum information and complex systems science.

II. LAWS OF QUANTUM PHYSICS

A. Superposition

The superposition principle lies at the heart of quantum mechanics (see for example1).

Formally, it is rooted in the linearity of the Hilbert space. Any quantum state can be

represented as a vector in Hilbert space. The superposition principle states that any sum

of such vectors is also an admissible quantum state. We use the standard bra, ket notation,

where a bra (〈v|) is a column vector and a ket (|v′〉) is a row vector. Hence, 〈v|v′〉 denotes

the inner product between v and v′. In other words, if the kets |ψi〉 are quantum states then

the superposition

|ψ〉 =
∑
i

ci|ψi〉 (1)
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is also a quantum state. The ci here are complex coefficients with the normalisation condition∑
i c
∗
i ci = 1. For a two-state system, any such superposed state is called a qubit and its

most general form is

|ψ〉 = cos(θ)|0〉+ eiφ sin(θ)|1〉 , (2)

where θ and φ are real numbers representing the complex coefficient c. It is important to

distinguish between such a coherent superposition and a purely classical probability distri-

bution over states of which a given system really only occupies one and we just don’t know

which. Such a classical probability distribution of quantum states |ψi〉 is formalised by a

density operator ρ whose form is independent of the basis of representation

ρ =
∑
i

pi|ψi〉〈ψi| , (3)

with pi ≥ 0 and
∑

i pi = 1. A so-called pure state is a trivial mixture of only one quantum

state ρ = |ψ〉〈ψ|. The von Neumann entropy of a density operator is defined as

S(ρ) = −tr(ρ log2 ρ) , (4)

where tr is the trace of the matrix. For any pure state S(ρ) = 0.

B. Entanglement

Entanglement is a key feature of quantum mechanics (for a review see42). It is the most

prominent kind of quantum correlation. However, there are many others such as discord5,

quantum conditional entropy6 and minimum entanglement potential7. Entanglement is a

property assigned to two or more subsystems. Assume that we have two subsystems S1

and S2 and a state vector |ψ〉 describing the whole system. We say that the subsystems

are entangled if |ψ〉 cannot be written as a tensor product of two states |ψ〉 = |φ1〉 ⊗ |φ2〉

where |φ1〉 and |φ2〉 are the states of the subsystems S1 and S2, respectively. As an example

consider what is commonly called a Bell state:

|ψB〉 =
1√
2

(|0〉1 ⊗ |0〉2 + |1〉1 ⊗ |1〉2) (5)

which is a superposition of two two-dimensional quantum states where the subscript denotes

the subsystem. |ψB〉 cannot be written as a tensor product of two separate states for the
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subsystems S1 and S2. Consequently it is not possible to derive the properties of |ψB〉 from

the sum of the properties of the individual subsystems. |ψB〉 contains correlations between

S1 and S2 which go beyond what is classically possible. This is expressed in the so-called

CHSH inequality19. Consider a Bell state which is physically separated and S1 is sent to

Alice and subsystem S2 is sent to Bob. Each can then choose one of two bases in which to

measure their subsystem in, A and a for Alice, and B and b for Bob. Each local measurement

has binary outcomes, either 0 or 1. A measure for the correlations of their shared system

before the measurement (i.e. of the correlations in |ψB〉) is given by

C = 2(psAB + psAb + psaB − psab − 1) (6)

where psij is the probability that both, Alice and Bob, will get the same outcome when they

measure i and j, respectively. The probabilities are normalised such that psij+pdij = 1, where

pdij is the probability that the outcomes of the local measurements are different. If Alice and

Bob had classical states, the amount of correlation between the measurement outcomes is

upper bounded by |Cclassical| ≤ 2. However, for quantum states there is a higher bound,

|Cquantum| ≤ 2
√

2. The Bell state reaches the maximum of correlations |Cquantum| = 2
√

2

known as the Tsirelson bound8.

C. Heisenberg Uncertainty Principle

Heisenberg stated his uncertainty principle originally as follows: If you make a measure-

ment of an objects’s momentum with precision ∆p you cannot at the same time determine

its position with a precision more accurately than ∆x = h
4π∆p

, where h is Planck’s constant.

Consider the well-known double-slit experiment. An electron is emitted by an electron

gun and sent through a wall with two parallel slits in it. Behind the wall there is a fluorescing

screen which detects the impact of the electron. After many repetitions of this experiment

the screen will show an interference pattern of electron impacts. This is just what is pre-

dicted by the superposition principle: The electron’s path consists of two superposed paths,

one which goes through the left and one which goes through the right slit. Now we move

the wall with a well-known speed perpendicular to the two slits. The impact of the electron

onto either the left slit or the right slit will change the momentum of the wall and hence,

without measuring the electron, just by measuring the change in momentum of the wall, we
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can determine which of the two paths the electron has actually taken. This contradicts the

superposition principle of two perfectly simultaneous realisations in one system. However,

this contradiction is solved when Heisenberg’s uncertainty principle is taken into account.

Since we cannot measure the momentum of the wall with perfect accuracy while also de-

termining its position with the same accuracy we cannot know exactly where the two slits

are. This is enough to smear out the interference pattern of the electrons. Hence, it is a

general rule of quantum mechanics that one cannot design equipment that determines which

of two alternatives in a superposition is realised without, at the same time, destroying the

superposition2.

III. QUANTUM COMPLEXITY

Given the rules of quantum physics we may expect new kinds of complexity at the atomic

level. Here we will give an overview of a range of phenomena where quantum resources lead

to the emergence of a higher complexity.

A. Quantum cryptography

Cryptography is the science of encoding and transmitting a secret message in such a way

that it is very hard for an eavesdropper to break the code and learn the message. This

problem can be reduced to transmitting a secret key, such as a sequence of random binary

numbers with which a binary message is encrypted by adding the two, e.g. random key

= 0011001, message to be encoded = 1110000 and cipher = 1101001. The randomness of

the key then guarantees the security of the encoded message. However, this still means

that a secret key has to be shared in the first place between two communicating parties,

traditionally called Alice and Bob. Today many cryptographic techniques that achieve this,

so called key distribution schemes, rely on mathematical functions that behave like a trap-

door: it is easy to get in, but hard to get out. An example is the public key RSA scheme

that relies on the difficulty of factoring. Here the easy direction of the trap door is the

simplicity of multiplying two (rather large) prime numbers. The difficulty lies in the reverse

direction - finding the two unknown prime factors of a large number. In fact there is no

known classical algorithm that can factor in any reasonable time (polynomial time), and
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the factoring problem lies in a computational complexity class (NP) that is conjectured to

contain problems that require exponential time to solve9,10. However, the bottom line is that

the security of RSA, and all classical algorithms that use mathematical trap door functions,

relies solely on the assumption that reversing the trap door is computationally hard, i.e. it

takes exponentially long to solve.

This is why the excitement was big when in 1984 Brassard, a computer scientist, and

Bennett, a physicist, realised that quantum physics allows the sharing of a provably secure

key11. They developed the first quantum key distribution scheme, the BB84 protocol, in

which the sender, Alice, prepares her key in a qubit. For this she chooses one of two bases

at random, the computational basis {|0〉, |1〉} or the superposed x-basis {|+〉 = |0〉+|1〉√
2
, |−〉 =

|0〉−|1〉√
2
}. She then sends the qubit to her communication partner, Bob, who will measure

in the same two bases, also at random. In the classical world an intercepting eavesdropper

wanting to learn the key would take a copy of the transmitted information and then attempt

to decrypt the message. Copying an unknown qubit, however, is not permitted. This is

known as the no-cloning principle, a theorem that results from Heisenberg’s uncertainty

principle. So an eavesdropper is faced with the task of intercepting the actual message

carrier, attempt to decrypt it, and pass the resulting qubit - or a totally new qubit - on to

Bob. To successfully decrypt the eavesdropper has to guess in which basis, the computational

or the superposition basis, Alice used to encode the qubit in. This has two effects. Firstly

a measurement in the “correct” basis will reveal perfectly which state was encoded, while

measuring in the “wrong basis” results in no information for the eavesdropper. This is

because the x-basis corresponds to equal probabilites to find |0〉 or |1〉, and vice versa. The

second effect is that when the eavesdropper measures in the “wrong” basis the state changes.

This is another consequence of the Heisenberg uncertainty principle and it is this second

feature which makes BB84 unbreakably secure. More precisely, the communicating parties

are able to monitor how much an eavesdropper could have learnt by sifting for only those

bits where they happened to use the same basis. They can then identify if and how much

the information sent was tinkered with. This knowledge allows Alice and Bob to ensure that

the amount of leaked information to the eavesdropper about their key is arbitrarily small

(through a classical scheme, called privacy amplification). To summarise, BB84 achieves

a feat no classical cryptographic scheme can dream of - a provably secure key distribution

protocol. This security relies solely on the laws of quantum physics, in particular, the
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superposition principle and Heisenberg’s uncertainty principle? .

B. Quantum computing

It was a quirk of (quantum) history, that in 1994 Shor, a mathematician, showed that

factoring, the mathematical function safeguarding the widely used RSA protocol, can be

solved in polynomial time on a quantum computer15. Shor’s algorithm not only made it

clear that the security of governments, banks and private persons was at a very real risk if a

quantum computer was built, it also implied that the complexity of computational problems

could change significantly when quantum rules come into play. To clarify what constitutes

a quantum computer, the straightforward way is to think of a classical computer with some

input bits and a series of gates, such as XOR, NOT and AND, that are applied to produce

the output of the computation. This setup can be “quantised”, i.e. instead of the classical

states, 0 or 1, the input for a quantum computer is the superposition state of Eq. (2). A

reversible gate set, consisting, for instance, of Pauli gates, Hadamard, and CNOT gates12,

can then coherently manipulate the superposition states. This intrinsic parallel capability

can be identified as the fundamental reason for the quantum computer to lead to the immense

speed up over (known) classical algorithms. Simply speaking, instead of one computation,

starting with say a single input 0, the quantum computer runs two computations, with both

inputs 0 and 1, in parallel.

However, there are other, equivalent, models of quantum computation where other quan-

tum effects lie behind the change of computational complexity. Known models include

adiabatic quantum computation and topological quantum computation13,14. One radically

different way of performing a quantum computation, and one that lacks a classical analogy,

is measurement-based quantum computation (MBQC)16. Here computation relies on the

use of a computational resource state, a highly entangled multi-qubit state. Many resource

states can be represented by graphs. The graph vertices symbolise qubits and the graph

edges indicate that entangling CNOT operations were applied to the connected vertices. A

computation in MBQC is achieved by applying a sequence of adaptive measurements on

individual qubits. Due to the underlying correlations between the qubits this allows infor-

mation to be processed. The adaptiveness of measurements further guarantees that even

though measurements are inherently random the overall output of the computation is de-
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terministic. The “resource” for the exponential speed up of the MBQC model of quantum

computation lies in the presence of entanglement in the resource state.

It is clear that (still theoretical) quantum computers allow an exponential speed up

over (known) classical algorithms of solving certain computational problems. The reason

for this increase in computational complexity can be traced to quantum rules, such as

superposition and especially entanglement, in different computational models. However, it

remains unresolved whether the exponential speed up is a truly quantum feature in the sense

that there exists no classical algorithm that could achieve a solution exponentially quickly10.

In contrast, we will present a computational situation in subsection IV B where quantum

devices lead to not just a speed up but a provable increase of the actual ability to compute

a certain task.

C. Quantum phases

Standard phase transitions appear when the temperature of a material, such as water, is

varied across a critical value. Thermal fluctuations in the material then cause the formation

of a new phase, such as ice. However, in classical systems, when absolute zero temperature

is reached all thermal fluctuations are frozen out and the material is fixed in its state even

when other parameters are changed, such as the pressure. In contrast, a quantum system

shows fluctuations even at zero temperature as a consequence of Heisenberg’s uncertainty

principle. Now these quantum fluctuations can drive phase transitions, between quantum

phases, even at zero temperature. One example is the quantum phase transition from a

superfluid to a Mott insulator, first observed in the lab in 200218. A three-dimensional optical

lattice is created with local trapping potentials of depth U at each of the M lattice points.

N quantum particles, i.e. Rubidium atoms, are then loaded into the lattice and allowed

to hop between neighbouring sites with a probability proportional to J . An important

quantum characteristic is here that the atoms are Bosons, that is, they follow Bose-Einstein

statistics instead of classical Boltzmannian statistics. Again this is a consequence of the non-

commutativity of quantum mechanics and thus related to Heisenberg’s uncertainty principle.

In the limit of weak interaction U >> J , the trapped atomic gas is in the Mott insulator
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phase, with its quantum state being given by

|ψMI〉 ∝
M⊗
j=1

(
a†j

)n
|0〉. (7)

Here |0〉 is the vacuum state of the lattice on which n = N/M creation operators, (a†j)
n are

applied, each filling a Boson in the individual lattice site, j. Since the atoms are pin-pointed

to their lattice sites and do not move, they can not help a current to flow, and the material is

an insulator. However, when the trapping potential is reduced and crosses a critical value, a

new phase is formed. For J >> U the gas of atoms behaves as a superfluid. This is because

the atoms are shared coherently, in superposition, across the whole lattice, as expressed in

the superfluid state

|ψSF 〉 ∝

(
M∑
j=1

a†j√
M

)N

|0〉, (8)

where each single Boson is coherently spread, in superposition, over the whole lattice,
a†1+a†2+...+a†M√

M
. The superfluid phase is a genuinely quantum phase with exceptional char-

acteristics, in particular, it flows without any friction. Quantum rules thus open up a

plethora of qualitatively new arrangements of materials that would be impossible in a clas-

sical world. For a wide range of important physical phases it is now clear that quantum

entanglement plays a central role. One example is the formation of a truly quantum phase,

the Bose-Einstein condensate, another is the BCS theory of superconductivity24,25.

D. Quantum effects in biology and thermodynamics

Quantum mechanics is crucial for our understanding of the stability of atoms, the peri-

odic table of chemical elements, and determining how molecules are formed. However, when

it comes to macroscopic organisms, such as cats and humans, our reasonable assumption is

that all quantum effects vanish at this scale, due to decoherence26. Yet exactly where the

crossover is where quantum mechanics ceases to be relevant is a topic of intense debate. Ex-

citingly, biological structures, such as the helical structure of DNA, and biological functions

such as photosynthesis and the navigation mechanism that allows birds to find their way

using the earth magnetic field have all been linked to quantum effects27–29. In photosyn-

thesis, for example, energy in form of photons from the sun is captured by chromophores

in bacteria or the leaves of plants. These photons are converted into electronic excitations
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on a molecular level and are transported to a so-called reaction centre. Curiously, this

transport happens with a much higher efficiency than what classical models predict. Now

quantum transport models are being applied to this process and show good agreement28.

The ability of organisms to make use of absorbed sun light would then rely on the ability

of a quantum excitation to be shared between different parts of the cell, in superposition,

just like in the quantum superfluid phase. But it is not just biology at the microscopic scale

where quantum effects bring a new twist. Even on macroscopic scales, where statistical

mechanics and thermodynamics describe the behaviour, quantum mechanics could lead to

qualitatively different phenomena. Even the laws of thermodynamics have been questioned

and modified30 when applied to quantum systems. Revising thermodynamics in the light

of the development of quantum mechanics over the last century is an emerging field where

some questions on the foundations of statistical mechanics have already been resolved31.

IV. COMPLEXITY AND COMPUTATION

Choosing correlations as the starting point the following two examples illustrate the

intricate relationship between complexity and computation. The first example is concerned

with the number of bits needed to fully characterise the structure of a given system, i.e. all

its correlations. It turns out that this requires fewer qubits than classical bits.

A key question in the field of computational complexity is what tasks a given system

can perform. The second example is concerned with a particular computational task and

illustrates that quantum correlations are necessary to solve it under certain constraints.

A. Generating correlations more efficiently with quantum resources

A stochastic process is a toy model of a complex system. Being discrete and one-

dimensional, it is well suited to analyse the formation of structure, a key feature of a complex

system. Stochastic processes have been used to study structure formation in for example

self-organisation, protein dynamics, neural dynamics37–39).

For our purposes, a stochastic process is a probability distribution Pr(
←
X;

→
X) over a bi-

infinite sequence of random variables X. A random variable X is a probability distribution

Pr(X = x) over an alphabet x ∈ X , the letters in the alphabet are the possible observa-
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tions. We assume stationarity, i.e. Pr(X
tn−1

t0 = xn) = Pr(X
tn−1+k

t0+k
= xn).

→
X denotes the

observations of the process after some reference time t0 and
←
X are the observations up to

t0. Structure is simply the sum of all correlations in such a sequence of observations.

The resources required to generate a stochastic process – that is to realise the probability

distribution Pr(
←
X;

→
X) – are measured by the minimal size of a representation storing all the

information about the correlations33,34. Such a representation needs to distinguish between

differing sequences of observations only if their conditional future observations statistically

differ. This yields an equivalence relation ∼ between all past observations, such that
←
x∼←x

′

iff Pr(
→
X |

←
X=

←
x) = Pr(

→
X |

←
X=

←
x
′
). Grouping together equivalent observations into equiv-

alence classes si ≡ ε(
←
x) = {←x

′
:
←
x∼←x

′
} we obtain a provably minimal representation of the

correlations as a list of the equivalence classes S, and a transition function between them

T xij = Pr(X = x,S = sj|S = si)
34? . The entropy of the probability distribution over these

states is a measure of the resources required to generate the stochastic process:

Cµ ≡ H(S) = −
∑
i

Pr(si) log Pr(si) . (9)

Cµ is called the statistical complexity and is measured in bits33.

To break the classical limit of Cµ, we construct the following quantum finite-state repre-

sentation. The basis set of the quantum states are constructed from the classical states Si
and the letters in the alphabet x. Hence, a measurement of such a state will yield a new

state and an output symbol. This way, the original stochastic process is generated through

successive measurements35:

|ψj〉 =
∑
Si∈S

∑
x∈X

√
T xij|Si〉|x〉 . (10)

The resulting mixed state ρ =
∑

j Pr(Sj)|ψj〉〈ψj| has an entropy of

Cq ≡ S(ρ) = −trρ log ρ , (11)

Cq is measured in qubits. It was shown that Cq ≤ Cµ, and in most cases Cq is strictly

less than Cµ
35. In other words, to generate the same amount of correlations requires fewer

quantum resources than classical resources. The relevant resources are the classical and

quantum states, respectively, which are the equivalent to the number of bits and quantum

bits, respectively, which need to be stored by some computational device. If, for example,
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Cµ is just above 2 bits and Cq just under 2 qubits it means that the classical implementation

requires 3 bits where the quantum implementation only requires 2 qubits, as we will see in

the example in Section IV A.

We illustrate this with the following example of a stochastic process. Consider an infinite

sequence of concatenated blocks of three symbols where the first two are random and the

third symbol is the logical AND of the first two (see Table II). Later on we will add a

stochastic element. The alphabet is X = {0, 1}. There are five equivalence classes for this

process, labeled A−E and represented as circles or states in Fig. 1. The T xij label the edges

between the states (setting p = 1 for now). We can compute the state probabilities from the

left eigenvector of the transition matrix
∑

x∈X [T xij] and obtain for the statistical complexity

Cµ = 2.19 bits. Hence, the generation of these correlations requires classical resources of at

least 2.19 bits.

FIG. 1. Equivalence classes for the AND process. States represent equivalence classes, edges are

labeled with transition probabilities and output symbols (T xij). Going from state to state according

to the probabilities on the edges will generate the AND process. p (1 − p) is the probability of

outputting the result of a logical AND (NAND) on the last two output bits.

Constructing the quantum states using Eq. 10 we obtain the following set of states

Computing the quantum and classical complexity for the process we obtain Cµ = 2.19

bits and Cq = 2.13 qubits. So, the amount of quantum resources required to simulate

this stochastic process is slightly lower than classically. Now, we introduce an element of

stochasticity into the logical operation. The probability of computing AND will now be p

and the probability of computing NAND will be 1 − p. This is equivalent to a noisy AND

gate. The T xij change accordingly, see Fig. 1. Two of the quantum states change to the
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|ψ1〉 = 1√
2
(|B〉 ⊗ |0〉+ |D〉 ⊗ |1〉)

|ψ2〉 = 1√
2
(|C〉 ⊗ |0〉+ |C〉 ⊗ |1〉)

|ψ3〉 = |A〉 ⊗ |0〉

|ψ4〉 = 1√
2
(|C〉 ⊗ |0〉+ |E〉 ⊗ |1〉)

|ψ5〉 = |A〉 ⊗ |1〉

following states

|ψ3〉 =
√
p|A〉 ⊗ |0〉+

√
1− p|A〉 ⊗ |1〉

|ψ5〉 =
√
p|A〉 ⊗ |1〉+

√
1− p|A〉 ⊗ |0〉

Computing Cµ and Cq anew we notice that the Cµ is independent of p. In other words,

although we are generating a process with fewer correlations we still need the same amount

of classical resources (only for p = 1/2 Cq = Cµ = 0). Cq, however, drops steadily as p

increases from 0 to 1/2. So, indeed, the fewer correlations we want to generate the fewer

resources we require. Cµ and Cq are plotted in Fig. 2.

FIG. 2. Cµ and Cq for the AND process. (For p = 1/2 both are zero.)

The reason that Cq changes as a function of p is the ability of quantum states to be in

a superposition of varying degree. For increasing p the distinction between states |ψ3〉 and

|ψ5〉 becomes less and less relevant and we can put them closer and closer to each other in

Hilbert space. Classically we can’t do this. There is no analogue to a quantum superposition

in classical physics.
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There are processes for which there is no difference in the number of required bits and

qubits, Cµ = Cq. In35 it was shown that this is the case if and only if the generation

using the equivalence classes is reversible in the following sense: Given the current state

and observation the previous state is determined36. Indeed, if we choose the XOR logical

operation (see Table I) instead of the AND operation we find that Cµ = Cq for any p and no

gain with quantum resources is possible. We will see a similar (ir)reversibility in the next

example.

Recently, evidence started emerging that some biological processes contain a quantum

component. Most prominent are suggestions that photosynthesis is such an example40,41.

There are still many open questions. The above framework provides tools for analysing clas-

sical and a quantum aspects of information processing in a stochastic process from a rather

general starting point – a data sequence only. Although the example is constructed from

logic gates it illustrates the advantage of quantum over classical resources for a stochastic

process. The following will illustrate the other side of the same coin: What role do quantum

correlations play for the power of simple classical and quantum logic operations.

B. Raising the computational complexity using quantum correlations

In Section III B we saw that quantum computation promises algorithms that solve a range

of problems exponentially faster than known classical algorithms. However, since no proof

excludes the possibility of an equally fast classical algorithm the quantum speed up remains a

(likely) conjecture? . In contrast we will now discuss an example where quantum correlations

provide truly new computational power, not just a speed up, to solve an otherwise impossible

task.

Suppose we are given two classical bits of information, the inputs a, b ∈ {0, 1} and a

very limited (and therefore totally old fashioned) pocket calculator. This pocket calculator

can only do the following operations: output a constant, output the input, and output the

binary sum, the XOR, of two inputs, see Tab. I. Now our task is to calculate the product of

the two inputs, a⊗ b, also known as the AND gate, see Tab. II, with the help of our pocket

computer. We notice that binary addition is a balanced or linear Boolean function, which

is invertible when one of the inputs is kept as an output. In contrast, the product is an

unbalanced, or non-linear, Boolean function and hence not invertible. It is easy to prove that
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a b a⊕ b

0 0 0

0 1 1

1 0 1

1 1 0

TABLE I. Truth table for the binary sum (⊕), also called XOR gate. (Its reversible version with

outputs a and a⊕ b is known as the CNOT gate.)

a b a⊗ b

0 0 0

0 1 0

1 0 0

1 1 1

TABLE II. Truth table for product (⊗), also called AND gate.

any combination of balanced functions can never result in an unbalanced function. We thus

conclude it is impossible for our pocket computer to perform the required multiplication.

From the discussion of quantum cryptography, computation and phases we took the

insight that quantum correlations can lead to a substantial qualitative change. Inspired by

these examples one may wonder if the impossible task would become feasible by allowing

our pocket computer to access correlated sites. To answer this let us consider two sites,

as depicted in the left panel in Fig. 3, that may share correlations between them, either

classical or quantum. The type of shared correlations is not specified here as we want to

determine what sort of correlations we require to solve the computational task. We use the

pocket computer to send inputs to the correlated sites and receive outputs, as depicted in

Fig. 3. For two sites, the best option is to input the two bits we want to multiply, a and b,

each to one of the two sites. As a consequence of the sites’ previously shared correlations

the returned outputs, m1 and m2, may now be correlated too. The possibility that emerges

here is that the correlations of the outputs could be such that their binary sum is just the

required product of the inputs, m1⊕m2 = a⊗ b. Importantly, this sum is computable with

the pocket computer. So all we need is to find the correct correlations between the sites
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that produce the required correlated outputs. This can be analysed in terms of the average

probability of success of this strategy,

Pav.succ. =
1

4

∑
a,b∈{0,1}

psucc(m1 ⊕m2 = a⊗ b), (12)

where psucc(m1 ⊕ m2 = a ⊗ b) is the probability that the outputs m1 and m2 add to give

the product for a specific pair of inputs a and b. The average success probability can be

rearranged32 to bring it into the form of the CHSH correlation measure introduced in Eq. (6),

Pav.succ. =
ps00 + ps01 + ps10 − ps11 + 1

4
(13)

=
C

8
+

1

2
(14)

where psab are the probabilities that given their two respective inputs, a and b, the two

sites output the same bits, i.e. m1 = m2, and C quantifies the CHSH correlations between

the two sites. The maximum success of calculating a ⊗ b thus directly depends on the

upper bound of correlations between the two sites. As discussed in section II, classical

correlations are bounded by |Cclassical| ≤ 2 and therefore P classical
av.succ. ≤ 1+2

4
= 75%. This is a

trivial result since 75% is just the success rate of adopting a constant 0 output to predict

the multiplication of two arbitrary inputs a, b, see Tab. II. However, when the two sites are

quantum correlated the maximum probability grows beyond the trivial benchmark of 75%,

up to P quantum
av.succ. ≈ 85% for the maximally entangled Bell state, Eq. (5), with |Cquantum| =

√
2 2. Moreover, it can be shown that with three sites the success probability for a ⊗ b

can be brought to 100% while classical states can never achieve 100%3. The quantum state

with the required correlations is the three-party Greenberger-Horne-Zeilinger (GHZ) state20,

FIG. 3. Left panel: Two sites (circles) with shared correlations (zig-zag line) receive the inputs a

and b and output m1 and m2, respectively. Right panel: Three correlated sites, receiving inputs

a, b and a⊕ b, respectively.
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|ψGHZ〉 = |010213〉+|111203〉√
2

, a famous entangled state21. To make the result explicit, the inputs

a, b and a ⊕ b will determine measurements on the three sites of the state, see right panel

in Fig. 3. Two different measurement bases are used depending on the input bit. For input

0 the measurement basis is the x-basis {|+〉, |−〉} while for input 1 the measurement basis

is the y-basis {| + i〉 = |0〉+i|1〉√
2
, | − i〉 = |0〉−i|1〉√

2
}. The output bits are 0 for a “+” outcome

and 1 for a “−” outcome. In conclusion, we have found that a limited XOR computer

can be boosted to compute incomputable functions, such as AND, when given access to

quantum correlations. While the exponential speed up of quantum computers over classical

computers remains a conjecture, the increase in computability due to quantum correlations

is a provable fact clearly exposing the computational advantage of quantum correlations

over classical ones.

C. Discussion of complexity and correlations

In both examples we consider the logical operations AND and XOR. Figure 4 summarises

the commonalities. In Section IV B we saw that under certain constraints the implementa-

tion of the AND gate can only be done error free if one has access to quantum correlations.

The implementation of the XOR gate, on the other hand, is unaffected by access to quan-

tum resources. The reason for this lies in the linear vs non-linear character of the XOR

and AND operation, respectively, an intriguing subject unfortunately outside of the scope

of this article. The example in Section IV A gave a complimentary perspective on the power

of correlations. Here, it was the simulation of correlations which could be done with fewer

computational resources when quantum physics was used. Here, too, this advantage was

only present for a process involving the AND logical operation and not for the XOR oper-

ation. This is for the same reasons as above, the non-linearity of the AND operation leads

to this gain in efficiency.

V. DISCUSSION

We have seen that quantum physics offers a wide range of new phenomena, including

unbreakably secure cryptography, exponentially fast computations, the superfluid phase,

and even fast exciton transport in photosynthesis. In the field of complex systems such
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description of stochastic 
process with ✰ using 

classical or quantum states

computation of ✰ gate 
using classical or quantum 

correlated states

AND
bits required: 

quantum Cq =1.85
classical   Cμ = 2.19

probability of success:
quantum 100%
classical    75%

XOR
bits required: 

quantum Cq = 2.00
classical Cμ = 2.00

probability of success:
quantum 100%
classical  100%

✰gate

task

FIG. 4. A summary of the two examples. Left column: The stochastic process involving the

AND logical operation is more efficiently simulated using quantum resources. Right column: The

computational task of an AND logical gate can only be performed with 100% accuracy using

quantum correlations (under certain constraints). For details see text.

qualitatively new properties that emerge out of the constituent parts and their interactions

are considered a feature of complexity. The striking effect of quantum resources in all of

the above examples is that they assist in increasing the complexity. A high amount of

correlations between constituent parts is also a feature of a complex system, and often used

to quantify its complexity. In the field of quantum information entanglement, a well-defined

and particularly striking type of (quantum) correlations, has turned out to be of central

importance for exactly that reason. It effectively measures the complexity of quantum

systems and processes. However, entanglement is not the only indicator of complexity,

weaker quantum correlations exist, such as discord, quantum relative entropy and minimum

entanglement potential5–7. They have in common that they are all purely quantum features

and their presence can enhance quantum computations4.

In the light of the above we believe that complex systems science, despite the different

physics, can learn from the central role quantum correlations play for such ‘emergent’ phe-

nomena. Taking correlations as our starting point we have exemplified that two originally

separate meanings of the term complexity can be united. On the one hand one speaks of

complexity in a complex system which represents the amount of structure, among other
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things. On the other hand we speak of computational complexity as a measure of difficulty

of solving a computational task. The examples illustrated that the use of the word complex-

ity in both cases is not a coincidence but rather a signature of the commonalities between

the two research areas. Both are concerned with the power of correlations.

Acknowledgements JA acknowledges funding from the Royal Society. KW acknowl-

edges funding through EPSRC grant EP/E501214/1 and the Santa Fe Institute for their

hospitality during the workshop.

REFERENCES

1M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cam-

bridge University Press, 2000.

2R. P. Feynman, R. B. Leighton, and M. Sands, Lectures on Physics: Quantum Mechanics

v. 3, 1st ed. Addison Wesley, 1971.

3J. Anders, D. E. Browne, Phys. Rev. Lett. 102, 050502 (2009).

4Z. Merali, Nature 474, 24 (2011).

5H. Ollivier and W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).

6M. Horodecki, J. Oppenheim and A. Winter, Nature 436, 673 (2005)

7M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Horodecki, A. Winter, Phys. Rev.

Lett. 106, 220403 (2011).

8B. S. Tsirelson, Lett. Math. Phys. 4, 93 (1980).

9Factoring is a function problem and actually in the complexity class FNP,

http://en.wikipedia.org/wiki/Integer_factorization , a sister of the more fa-

mous NP10.

10The computational complexity class NP has appeared in the popular media recently,

http://www.newscientist.com/article/dn19287-p

--np-its-bad-news-for-the-power-of-computing.html, both, because of its central

importance for computer science and quantum computing, and because of its prize money

of 1 Million USD, http://www.claymath.org/millennium/P_vs_NP/.

11C. H. Bennett and G. Brassard, in Proceedings of IEEE Intern. Conf. on Computer Systems

and Signal Processing (1984), Volume: 11, IEEE Press , 175 (1984).

12C. H. Bennett, IBM Journal of Research and Development 17, 525 (1973).

20



13E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, arXiv:quant-ph/0001106v1 (2000).

14First proposed by A. Kitaev; S. Das Sarma, M. Freedman and C. Nayak, Phys. Rev. Lett.

94, 166802 (2005).

15P. W. Shor, SIAM J.SCI.STATIST.COMPUT. 26, 1484 (1997). arXiv:quant-ph/9508027v2

(1995).

16R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001); R. Raussendorf, D. E.

Browne, and H. J. Briegel, Phys. Rev. A 68, 022312 (2003); H. J. Briegel, D. E. Browne,

W. Dür, R. Raussendorf and M. Van den Nest, Nature Physics 5, 19 (2009).

17J. Anders, M. Hajdusek, D. Markham, V. Vedral, Foundations of Physics 38, 506 (2008).

18M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, I. Bloch, Nature 415, 39 (2002).
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