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Abstract

A concept named induced trapdoor one-way quantum transformation (OWQT)
has been introduced, and a theoretical framework of public-key encryption
(PKE) of quantum message is presented based on it. Then several kinds
of quantum public-key encryption (QPKE) protocols, such as quantum ver-
sion PKE of RSA, ElGamal, Goldwasser-Micali, elliptic curve, McEliece,
Niederreiter and Okamoto-Tanaka-Uchiyama, are given within this frame-
work. Though all of these protocols are only computationally secure, the
last three are probably secure in post-quantum era. Besides, theoretical
frameworks for public-key authentication and signature of quantum mes-
sage are also given based on the induced trapdoor OWQT. As examples, a
public-key authentication protocol of quantum message based on SN-S au-
thentication scheme and two quantum digital signature protocols based on
RSA and McEliece algorithms respectively are presented.

Keywords: Cryptology of quantum information, quantum public-key
encryption, quantum authentication, quantum digital signature, one-way
quantum transformation

1. Introduction

Most public-key cryptosystems currently used are based on the hardness
of problems such as integer factoring and discrete logarithms. Since these
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problems would not maintain their hardness in post-quantum era [1], people
have to consider cryptosystems based on other hard problems. It is believed
that there does not exist efficient quantum algorithm to solve NP-complete
problems [2], therefore, cryptosystems based on NP-complete problems are
regarded as good choices against quantum attacks.

Okamoto et al. [3] constructed the first quantum public-key cryptosystem
(QPKC) based on subset-sum problem. Their key-generation algorithms in-
clude a quantum algorithm, though the private-key, public-key, plaintext and
ciphertext are all classical. Gottesman and Chuang [4] constructed a quan-
tum digital signature, whose pubic key is quantum, but private-key and mes-
sage are classical. In [5], a QPKC is constructed based on a hard problem so
called QSCDff , which has been proved to be one with bounded information
theoretic security. By using single-qubit rotations, Nikolopoulos [6] proposed
a QPKC with classical private-key and quantum public-key. Based on quan-
tum encryption, Gao et al. [7] presented a QPKC with symmetric keys, here
two qubits from a Bell state serve as the public-key and the private-key re-
spectively. Pan and Yang [8] constructed a quantum public-key encryption
(QPKE) scheme with information theoretic security. These QPKCs are all
classical bits oriented.

Yang [9] proposed a QPKE scheme for quantum message encryption,
which is a variation of McEliece public-key cryptosystem [10]. In [11], quan-
tum message authentication schemes were discussed. Based on classical SN-S
authentication code, a public-key authentication scheme of quantum message
was also constructed [12].

This paper focuses on the public-key encryption (PKE), authentication
and signature of quantum message. A concept named induced trapdoor one-
way quantum transformation (OWQT) is introduced, and a computation-
ally secure theoretical framework is presented based on it. QPKE protocols
such as quantum version of RSA, ElGamal, Goldwasser-Micali, elliptic curve,
McEliece, Niederreiter and Okamoto-Tanaka-Uchiyama PKE are given. Be-
sides, theoretical frameworks for public-key authentication and signature of
quantum message are also proposed.

2. Induced trapdoor one-way quantum transformation

Quantum transformation Uf computing a function f : {0, 1}n → {0, 1}m

is defined as
Uf (|x〉|y〉) = |x〉|y ⊕ f(x)〉, (1)
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where ⊕ denotes bitwise addition in F2.
It is worth to mention that the quantum transformation Uf−1 computing

f−1 does not equal to U−1
f computing the inverse of Uf .

Given function f(m, r), a unitary transformation computing f is defined
as

Uf (|r〉|m〉|0〉) = |r〉|m〉|f(m, r)〉. (2)

Another unitary transformation U(f, g) computing m from values of f(m, r),
g(m, r) and r is defined as

U(f, g) (|r〉|0〉|g(m, r)〉|f(m, r)〉) = |r〉|m〉|g(m, r)〉|f(m, r)〉. (3)

Unitary transformation implemented via quantum circuits of Uf , Ug and
U(f, g) is shown in Figure 1.
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Figure 1: The quantum circuit implementation of Ufg(r) via Uf ,Ug,U(f, g). The quantum
circuits Uf and Ug compute the functions f(m, r) and g(m, r) respectively. The quantum
circuit U(f, g) computes m from r, g(m, r) and f(m, r).

It can be seen that the quantum circuit in Figure 1 implements a unitary
transformation defined as

Ufg(r) (|m〉|0〉|0〉) = |0〉|g(m, r)〉|f(m, r)〉, (4)

where g(m, r) 6= g(m′, r) and f(m, r) 6= f(m′, r) if m 6= m′. To the receiver
and adversaries, this transformation can be regarded as a trace-preserving
quantum operation.

Definition 1: Given a classical trapdoor one-way function f(m, r) with
a random parameter r, and a classical function g(m, r), the quantum trans-
formation Ufg(r) : |m〉 → |g(m, r)〉|f(m, r)〉 is an induced trapdoor one-way
quantum transformation if it satisfy
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1. Easy to operate. A sufficient condition is: both f(m, r) and g(m, r) can
be computed efficiently; Given r, one can efficiently get m from f(m, r)
or g(m, r).

2. Hard to invert. A sufficient condition is: from the values of f(m, r) and
g(m, r), one cannot efficiently get both m and r.

3. Easy to invert with the trapdoor s. A sufficient condition is: with the trap-
door s, one can efficiently get m from f(m, r) and g(m, r), and effi-
ciently get r from m, f(m, r) and g(m, r).

Remark 1: In ”1”, it is required that m can be efficiently obtained from
r, f(m, r) and g(m, r). This condition is necessary for the implementation
of the quantum transformation Ufg(r), see Figure 1. The property 2 means

that the adversary without r cannot get U †
fg(r). In ”3”, for the case that r

cannot be obtained even with the aid of trapdoor s, we have to require that
1) g(m, r) = g̃(r) or g(m, r) = g̃(m); 2) f(m, r) can be efficiently evaluated
from s, m and g(m, r).

3. Public-key cryptosystems of quantum message

3.1. Public-key encryption

Consider encrypting a quantum message
∑

m αm|m〉 with induced trap-
door OWQT Ufg(r). The algorithm is as follows:

|r〉
∑

m

αm|m〉|0〉|0〉

1
→ |r〉

∑

m

αm|m〉|g(m, r)〉|f(m, r)〉

2
→ |r〉|0〉

∑

m

αm|g(m, r)〉|f(m, r)〉, (5)

which completes the encryption transformation

Ufg(r)

(

∑

m

αm|m〉|0〉|0〉

)

= |0〉
∑

m

αm|g(m, r)〉|f(m, r)〉. (6)

According to the definition of induced trapdoor OWQT, the quantum trans-
formation Ufg(r) is an efficient encryption transformation. It can be seen
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that, given the value of r, the inverse transformation of Ufg(r) can also be
operated efficiently.

Because Bob do not know the value of r, the quantum cipher state to him
is a mixed state with density matrix

∑

r

pr(
∑

m

αm|g(m, r)〉|f(m, r)〉)(
∑

m

α∗
m〈g(m, r)|〈f(m, r)|). (7)

Given the trapdoor s of f(m, r), the decryption transformation on quan-
tum cipher state

∑

m αm|g(m, r)〉|f(m, r)〉 proceeds as follows (without loss
of generality, we restrict our attention to a pure state in the decryption pro-
cedure).

For the case that r cannot be obtained, we require g(m, r) depending
only on m or r (according to the definition of induced trapdoor OWQT,
g(m, r) = g̃(r) or g(m, r) = g̃(m)), and the decryption is as follows:

|s〉|0〉
∑

m

αm|g̃(r)〉|f(m, r)〉

1
→ |s〉

∑

m

αm|m〉|g̃(r)〉|f(m, r)〉

2
→ |s〉

∑

m

αm|m〉|g̃(r)〉|0〉.

(8)

or

|s〉|0〉
∑

m

αm|g̃(m)〉|f(m, r)〉

1
→ |s〉

∑

m

αm|m〉|g̃(m)〉|f(m, r)〉

2
→ |s〉

∑

m

αm|m〉|g̃(m)〉|0〉

2
→ |s〉

∑

m

αm|m〉|0〉|0〉. (9)

Suppose m can be efficiently get from the value of f(m, r) and g(m, r) with
the trapdoor s (see the sufficient condition of ”3” in the definition of Ufg(r)),
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the first step can be carried out efficiently. If f(m, r) can be efficiently com-
puted from s, m and g̃(r), the second step can also be carried out efficiently
(see ”1”,”3” and Remark 1).

For the case that r can be obtained with the trapdoor s, the decryption
is as follows:

|s〉|0〉|0〉
∑

m

αm|g(m, r)〉|f(m, r)〉

1
→ |s〉|r〉

∑

m

αm|m〉|g(m, r)〉|f(m, r)〉

2
→ |s〉|r〉

∑

m

αm|m〉|0〉|0〉. (10)

In the above two steps, the first step can be carried out efficiently according
to the property ”3”, and the the quantum transformations Uf and Ug are effi-
ciently performed in the second step. Then the quantum message

∑

m αm|m〉
can be obtained after polynomial time quantum computation. Denote the
decryption transformation as D1s(f, g) and D2s(f, g) for case 1 and case 2,
respectively. The decryption transformations are as follows:

D1s(f, g) (|0〉
∑

m αm|g(r)〉|f(m, r)〉) =
∑

m αm|m〉|g(r)〉|0〉, (11)

or D1s(f, g) (|0〉
∑

m αm|g(m)〉|f(m, r)〉) =
∑

m αm|m〉|0〉|0〉, (12)

D2s(f, g)

(

|0〉|0〉
∑

m

αm|g(m, r)〉|f(m, r)〉

)

= |r〉
∑

m

αm|m〉|0〉|0〉. (13)

Then we arrive at the following protocol:
f(m, r) is a trapdoor one-way function, and Bob posses its trapdoor s.

f(m, r) and g(m, r) are public.

Ecryption To encrypt a quantum message
∑

m αm|m〉, Alice selects randomly
a number r, then carries out the encryption transformation Ufg(r), and
obtained the cipher state

∑

m αm|g(m, r)〉|f(m, r)〉. Then she sends the
cipher state to Bob (Notice that classical plaintext communication is
allowed here).

Decryption Bob performs the decryption transformationD1s(f, g) orD2s(f, g)
to the cipher state, and get the quantum message

∑

m αm|m〉.
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3.2. Authentication

In a classical authentication scheme, the authentication rule is h(m) =
(m, a(m)), here a(m) is the authentication code of message m. An authenti-
cation scheme for quantum message can be described as follows:

(1) Alice encodes a k-qubit message
∑

m αm|m〉 as follows:

∑

m

αm|m〉|0〉

→
∑

m

αm|m〉|h(m)〉 =
∑

m

αm|m〉|m, a(m)〉

→ |0〉
∑

m

αm|m, a(m)〉. (14)

(2) Alice encrypts the quantum state
∑

m αm|m, a(m)〉 via PKE of quan-
tum message.

(3) Bob decrypts the received quantum state and obtains the plaintext
∑

m αm|m, a(m)〉.
(4) Bob carries out the following transformation to the quantum state

∑

m αm|m, a(m)〉.

∑

m

αm|m, a(m)〉|0〉

→
∑

m

αm|m, a(m)〉|m〉

→
∑

m

αm|0, a(m)〉|m〉

→
∑

m

αm|0, a(m)⊕ a(m)〉|m〉 = |0〉
∑

m

αm|m〉. (15)

(5) Bob measures the first register to check whether it is in the state
|0〉, then he gets the message coming from Alice in the second register with
authentication.

In this kind of authentication scheme of quantum message, the authen-
tication rule h(m) is public and the scheme is a public-key data integrity
scheme.

Remark 2: If we require the scheme to be one against substitution,
it should be modified slightly as follows: Suppose Alice’s identity informa-
tion S cannot be forged. A quantum register named identity register is
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initiated with quantum state |S〉. In step (1), Alice firstly carries out an
Hadamard transformation H⊗l on the quantum state |S〉, then encodes the
quantum state H⊗l(|S〉)

∑

m αm|m〉. In step (5), Bob finally obtains the
state H⊗l(|S〉)

∑

m αm|m〉. After step (5), he carries out Hadamard trans-
formation H⊗l on state H⊗l(|S〉) and gets |S〉, then measures it to identify
the sender. Since the identity information S cannot be forged, the attackers
cannot substitute the message successfully.

3.3. Digital signature

Suppose f : {0, 1}k+n → {0, 1}k
′+n′

is a trapdoor one-way function, Alice
has its trapdoor s. Alice signs a quantum message

∑

m αm|m〉 to Bob as
follows:

(1) Bob randomly generates a number rB ∈ {0, 1}k
′

, and sends it to Alice.
(2) Alice randomly generates a number rA ∈ {0, 1}n

′

, and computes

f−1(rB, rA) = (r, r′), (16)

where r ∈ {0, 1}k and r′ ∈ {0, 1}n. Then Alice signs the quantum message
∑

m αm|m〉
∑

m

αm|m〉 →
∑

m

αm|m〉|f(m, r)〉, (17)

and sends the quantum state
∑

m αm|m〉|f(m, r)〉 to Bob.
(3) Bob tells Alice that he has received the quantum state.
(4) Alice announces r and r′.
(5) Bob computes f(r, r′) and checks whether the first k′ bits are rB.

Then he performs the transformation

∑

m

αm|m〉|f(m, r)〉 →
∑

m

αm|m〉|0〉, (18)

and measures the second quantum register. He accepts the signature if and
only if the second register is in state |0〉.

Remark 3: (1) These protocols are interactive digital signature protocols
of quantum message. (2) They are undeniable signature protocols and Alice’s
collaboration is needed during the verification. (3) Multiple verification is
possible through copying |f(m, r)〉 to other registers. But after the quantum
message

∑

m αm|m〉 is extracted, it is impossible to verify any more. So
these signatures are signed on the envelop and this kind of signature should
be termed as ”quantum sealing wax”.
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4. Concrete protocols

A quantum message is a sequence of pure states. Without loss of gen-
erality, we restrict our attention to the encryption and decryption of a pure
state.

4.1. Encryption protocols without post-quantum security

4.1.1. Quantum RSA PKE

In RSA PKE [13], p and q are two large primes, N = pq, φ(N) = (p −
1)(q − 1), e satisfies (e, φ(N)) = 1, and s = e−1mod(φ(N)). According to
the theoretical framework established in the previous section, we construct a
PKE of quantum message which is a quantum version of RSA. Let g(m, r) =
m⊕ r, f(m, r) = memodN , s is the trapdoor of f(m, r).

Encryption

Alice selects a value of r, then does the following encryption transforma-
tion

|r〉
∑

m

αm|m〉|0〉

→ |r〉
∑

m

αm|m〉|memodN〉

→ |r〉
∑

m

αm|m⊕ r〉|memodN〉. (19)

After that, she sends to Bob the cipher state
∑

m αm|m⊕ r〉|memodN〉.

Decryption

After receiving the cipher state, Bob does the decryption transformation
using the private-key s,

|s〉
∑

m

αm|m⊕ r〉|memodN〉|0〉

→ |s〉
∑

m

αm|m⊕ r〉|memodN〉|(me)smodN〉

= |s〉
∑

m

αm|m⊕ r〉|memodN〉|m〉

9



→ |s〉|r〉
∑

m

αm|m
emodN〉|m〉

→ |s〉|r〉|0〉
∑

m

αm|m〉. (20)

Finally, Bob obtains the quantum message
∑

m αm|m〉.

4.1.2. Quantum ElGamal PKE

In the ElGamal PKE [14], s is private, p, α, β are public, here β = αs. Let
g(m, r) = αrmodp and f(m, r) = mβrmodp. The quantum ElGamal PKE is
as follows:

Encryption

Alice randomly selects a number r and performs the following transfor-
mations to encrypt a quantum message

∑

m αm|m〉:

|r〉
∑

m

αm|m〉|0〉

→ |r〉
∑

m

αm|m〉|mβrmodp〉. (21)

Then Alice sends αrmodp and the cipher state
∑

m αm|m〉|mβrmodp〉 to Bob.

Decryption

After receiving the cipher state and αrmodp, Bob decrypts it using the
private-key s. The procedure is as follows:

|s〉|αrmodp〉
∑

m

αm|m〉|mβrmodp〉

→ |s〉|αrmodp〉
∑

m

αm|m〉|mβr ⊕m(αr)smodp〉

= |s〉|αrmodp〉
∑

m

αm|m〉|0〉. (22)

Then Bob obtains the quantum message
∑

m αm|m〉.

4.1.3. Quantum Goldwasser-Micali PKE

In Goldwasser-Micali PKE [15], p and q are two primes, N = pq, t ∈ Z1
N

is a quadratic nonresidue modulo N . N, t are public and p, q are private.
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QN(x) = 1 if x is a quadratic residue modulo N , otherwise QN (x) =
0. To encrypt a binary string m = m1m2 · · ·mk, Alice selects randomly
r1, r2, . . . , rk, then computes ci = tmir2imodN for i = 1, 2, . . . , k. The num-
bers (c1, c2, . . . , ck) are sent to Bob as the cipher. As Bob knows the fac-
tors of N , he can know whether ci is a quadratic residue modulo N . Let
mi = QN(ci), he obtains the plaintext m = m1 · · ·mk.

Let g(m, r1, · · · , rk) =
(

m⊕ r1, (r1mmod2k)⊕ r2, . . . , (rk−1mmod2k)⊕ rk
)

and f(m, r1, · · · , rk) = (c1, · · · , ck), here ci = tmir2imodN and mi is the ith
bit of its binary string. The quantum Goldwasser-Micali PKE is as follows:

Encryption

Alice encrypts the quantum message
∑

m αm|m〉 via computing

|r1 · · · rk〉
∑

m

αm|m〉|0〉|0〉

→ |r1 · · · rk〉
∑

m

αm|m〉|0〉|c1 · · · ck〉

→ |r1 · · · rk〉
∑

m

αm|m〉|m⊕ r1,

(r1mmod2k)⊕ r2, . . . , (rk−1mmod2k)⊕ rk〉|c1 · · · ck〉

→ |r1 · · · rk〉|0〉
∑

m

αm|m⊕ r1, (r1mmod2k)⊕ r2,

. . . , (rk−1mmod2k)⊕ rk〉|c1 · · · ck〉, (23)

then sends the cipher state
∑

m αm|m⊕r1, (r1mmod2k)⊕r2, . . . , (rk−1mmod2k)⊕
rk〉|c1 · · · ck〉 to Bob.

Decryption

After receiving the cipher state
∑

m αm|m⊕r1, (r1mmod2k)⊕r2, . . . , (rk−1mmod2k)⊕
rk〉|c1 · · · ck〉, Bob computes

|p, q〉
∑

m

αm|m⊕ r1, (r1mmod2k)⊕ r2,

. . . , (rk−1mmod2k)⊕ rk〉|c1 · · · ck〉|0〉

→ |p, q〉
∑

m

αm|m⊕ r1, (r1mmod2k)⊕ r2,
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. . . , (rk−1mmod2k)⊕ rk〉|c1 · · · ck〉|m〉

→ |p, q〉|r1, . . . , rk〉
∑

m

αm|c1 · · · ck〉|m〉

→ |p, q〉|r1, . . . , rk〉
∑

m

αm|0〉|m〉

= |p, q〉|r1, . . . , rk〉|0〉
∑

m

αm|m〉. (24)

Finally, Bob obtains the quantum message
∑

m αm|m〉.

4.1.4. Quantum elliptic curve PKE

In [16], the classical elliptic curves PKE is proposed. An elliptic curve
defined over Zp (p > 3 is prime) is the set of solutions (x, y) ∈ Zp×Zp to the
equation y2 ≡ x3+ax+b(modp), here a, b ∈ Zp satisfy 4a3+27b2 6= 0(modp).
The points on the elliptic curve form a group with identity element the point
at infinity. Given a point P does not equal to identity element, and chosen
Q being sP , s is the private-key and Q is the public-key.

Let g(m, r) = rP and f(m, r) = m ⊕ x2, here x2 satisfies (x2, y2) = rQ.
The quantum elliptic curve PKE is as follows.

Encryption

Alice randomly selects a number r, and computes rQ = (x2, y2). Given
any quantum message

∑

m αm|m〉, she carries out encryption with r as fol-
lows:

|r〉|0〉|0〉
∑

m

αm|m〉

→ |r〉|x2, y2〉
∑

m

αm|rP 〉|m〉

→ |r〉|x2, y2〉|rP 〉
∑

m

αm|m⊕ x2〉, (25)

then sends the quantum state |rP 〉
∑

m αm|m⊕ x2〉.

Decryption

Bob receives the cipher state |rP 〉
∑

m αm|m⊕x2〉, then uses s to decrypt

12



it:

|s〉|rP 〉
∑

m

αm|m⊕ x2〉

→ |s〉|x2, y2〉
∑

m

αm|m⊕ x2〉

→ |s〉|x2, y2〉
∑

m

αm|m〉. (26)

Finally, Bob obtains the quantum message
∑

m αm|m〉. Notice that in the
cipher state, |rP 〉 can be replaced with classical message (x1, y1).

4.2. Encryption protocols with post-quantum security

4.2.1. Quantum McEliece PKE [9]

Consider McEliece PKE protocol [10]. Suppose G is a k × n generator
matrix of a Goppa code, G′ = SGP , here S is a k × k invertible matrix
and P is an n × n permutation matrix. We choose G′ as the public-key
and (S,G, P ) as the private-key. Let H is the check matrix of Goppa code
satisfying GHT = 0. Suppose g(m, r) = 0 and f(m, r) = mG′ ⊕ r. The
quantum McEliece PKE scheme is as follows:

Encryption

Alice selects a random number r, and uses Bob’s public-key G′ with r to
encrypt a k-qubit state

∑

m αm|m〉 as follows:

|r〉
∑

m

αm|m〉|0〉

→ |r〉
∑

m

αm|m〉|mG′〉

→ |r〉
∑

m

αm|m⊕mG′G′−1〉|mG′〉 = |r〉|0〉
∑

m

αm|mG′〉

→ |r〉|0〉
∑

m

αm|mG′ ⊕ r〉, (27)

where the matrix G′−1 is a generalized inverse matrix of G′. Because G′ is
a full row rank matrix, there exists G′−1 that satisfies G′G′−1 = Ik. This is
the condition that one can get

∑

m αm|mG′〉 from
∑

m αm|m〉. Alice sends
the cipher state

∑

m αm|mG′ ⊕ r〉 to Bob.
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Decryption

Bob uses his private-key s = (S,G, P ) to decrypt the state coming from
Alice,

|s〉
∑

m

αm|mG′ ⊕ r〉|0〉|0〉

→ |s〉
∑

m

αm|mG′ ⊕ r〉|(mG′ ⊕ r)P−1〉|0〉

→ |s〉
∑

m

αm|0〉|(mG′ ⊕ r)P−1〉|0〉 = |s〉|0〉
∑

m

αm|mSG⊕ rP−1〉|0〉

→ |s〉|0〉
∑

m

αm|mSG⊕ rP−1〉|(mSG⊕ rP−1)HT 〉

= |s〉|0〉
∑

m

αm|mSG⊕ rP−1〉|rP−1HT 〉, (28)

then measures the second register to get rP−1HT , and find rP−1 via the
fast decoding algorithm of the Goppa code generated by G. Bob carries out
the following transformation on the quantum state

∑

m αm|mSG ⊕ rP−1〉
according to the value of rP−1,

|rP−1〉
∑

m

αm|mSG⊕ rP−1〉 → |rP−1〉
∑

m

αm|mSG〉. (29)

Then he computes

|s〉
∑

m

αm|mSG〉|0〉|0〉

→ |s〉
∑

m

αm|mSG〉|mSGG−1〉|0〉 = |s〉
∑

m

αm|mSG〉|mS〉|0〉

→ |s〉
∑

m

αm|0〉|mS〉|0〉

→ |s〉|0〉
∑

m

αm|mS〉|mSS−1〉 = |s〉|0〉
∑

m

αm|mS〉|m〉

→ |s〉|0〉|0〉
∑

m

αm|m〉. (30)

Finally, the quantum message
∑

m αm|m〉 is obtained.
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4.2.2. Quantum Niederreiter PKE

In Niederreiter PKE protocol [17], M is an invertible matrix, H is a
check matrix of a code with random-error-correcting capability t, and P is
a permutation matrix. Let H ′ = MHP . (M,H, P ) is the private-key and
H ′ is the public-key. Let g(m, r) = m ⊕ r, f(m, r) = mH ′T , the quantum
Niederreiter PKE is as follows:

Encryption

Alice randomly selects an error vector r which satisfies w(r) = t, here w(·)
represents Hamming weight. She encrypts a quantum message

∑

m αm|m〉
using r:

|r〉
∑

m

αm|m〉|0〉

→ |r〉
∑

m

αm|m〉|mH ′T 〉

→ |r〉
∑

m

αm|m⊕ r〉|mH ′T 〉, (31)

then sends the quantum states
∑

m αm|m⊕ r〉|mH ′T 〉 as cipher state to Bob.

Decryption

Bob receives the cipher state and decrypts it as follows: he computes
∑

m

αm|m⊕ r〉|mH ′T 〉

→
∑

m

αm|m⊕ r〉|mH ′T ⊕ (m⊕ r)H ′T 〉

=
∑

m

αm|m⊕ r〉|rH ′T 〉, (32)

and then uses the private-key s = (M,H, P ) to computes r which includes 4
steps 1) measure the second register and obtain rH ′T ; 2) compute rH ′T (MT )−1 =
r(MHP )T (MT )−1 = rP THT ; 3) find rP T via the fast decoding algorithm of
the code generated by H ; 4) compute (rP T )(P T )−1 = r. Finally, he performs
the following transformation according to the value of r:

|r〉
∑

m

αm|m⊕ r〉 → |r〉
∑

m

αm|m〉, (33)
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and obtains the quantum message
∑

m αm|m〉.

4.2.3. Quantum Okamoto-Tanaka-Uchiyama PKE

In the Okamoto-Tanaka-Uchiyama PKE scheme [3], (g, d, p, p1, p2, . . . , pn)
is private-key. The public-key (n, k, b1, b2, . . . , bn) is computed from the
private-key with Shor’s algorithm for finding discrete logarithms [1]. In the
encryption procedure, the plaintext m is encoded to a code e(m) = e1e2 · · · en
of constant weight k, the cipher is c(m) =

∑n

i=1 eibi. In the decryption pro-

cedure, Bob computes u = g(c−kd)mod(p−1)modp, then chooses ei = 1 if pi|u,

otherwise 0. Finally, he computes m = ei
∑n

i=1C
k−

∑i−1

j=1
ej

n−i .

Let g(m, r) = m ⊕ r and f(m, r) = f̃(m) =
∑n

i=1 eibi, here e1 · · · en is
the constant weight code of m. We construct a quantum Okamoto-Tanaka-
Uchiyama PKE as follows.

Encryption

Alice randomly selects a number r, then encrypts the quantum message
∑

m αm|m〉 using r and the public-key (n, k, b1, b2, . . . , bn). Suppose e(m) =
e1e2 · · · en is the constant weight encoding of m, and c(m) =

∑n

i=1 eibi is the
cipher of m. Alice computes

|r〉
∑

m

αm|m〉|0〉|0〉

→ |r〉
∑

m

αm|m〉|0〉|e(m)〉

→ |r〉
∑

m

αm|m〉|c(m)〉|e(m)〉

→ |r〉
∑

m

αm|m〉|c(m)〉|0〉

→ |r〉
∑

m

αm|m⊕ r〉|c(m)〉|0〉, (34)

then obtains the cipher state
∑

m αm|m⊕ r〉|c(m)〉.

Decryption

Bob uses his private-key s = (g, d, p, p1, p2, . . . , pn) to decrypt the cipher
state. During the decryption process, in order to get e(m) from c(m), Bob
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computes u = g(c(m)−kd)mod(p−1)modp firstly, then check if pi|u for each i ∈
{1, 2, · · · , n}. If pi|u, then set ei = 1, otherwise, set ei = 0. Based on this
algorithm, he can computes

|s〉
∑

m

αm|m⊕ r〉|c(m)〉|0〉|0〉

→ |s〉
∑

m

αm|m⊕ r〉|c(m)〉|e(m)〉|0〉

→ |s〉
∑

m

αm|m⊕ r〉|c(m)〉|e(m)〉|m〉

→ |s〉|r〉
∑

m

αm|c(m)〉|e(m)〉|m〉

→ |s〉|r〉|0〉
∑

m

αm|e(m)〉|m〉

→ |s〉|r〉|0〉|0〉
∑

m

αm|m〉. (35)

Finally, he obtains the quantum message
∑

m αm|m〉.

4.3. Remarks of QPKE protocols

We have proposed seven QPKE protocols, which are all under our theoret-
ical framework. The four protocols in Sec.4.1 are based on factoring problem
or discrete logarithms problem which can be solved efficiently on quantum
computer. However, these protocols can help us to understand the theo-
retical framework of quantum message oriented PKE. The three protocols
in Sec.4.2 are based on the hardness of NP-complete problem and currently
regarded as ones with post-quantum security.

In this section, we give a brief overview of the above seven protocols.

(1) Quantum RSA PKE

g(m, r) = m⊕r, f(m, r) = memodN , and the trapdoor is s = e−1mod(φ(N)).

(2) Quantum ElGamal PKE

g(m, r) = m, f(m, r) = mβrmodp, and the trapdoor s satisfies β = αs.
In this protocol, classical message αrmodp must be transmitted.
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(3) Quantum Goldwasser-Micali PKE

g(m, r1, · · · , rk) =
(

m⊕ r1, (r1mmod2k)⊕ r2, . . . , (rk−1mmod2k)⊕ rk
)

and
f(m, r1, · · · , rk) = (c1, · · · , ck), here ci = tmir2imodN and mi is the ith bit of
its binary string. In this protocol, the primes p, q are the trapdoor, which
satisfy pq = N .

(4) Quantum elliptic curve PKE

g(m, r) = rP and f(m, r) = m ⊕ x2, here x2 satisfies (x2, ∗) = rQ. The
trapdoor s satisfies Q = sP . In this protocol, |rP 〉 in the cipher state can
be replaced with classical message rP = (x1, y1).

(5) Quantum McEliece PKE

g(m, r) = 0 and f(m, r) = mG′ ⊕ r. The trapdoor s , (S,G, P ) satisfies
SGP = G′.

(6) Quantum Niederreiter PKE

g(m, r) = m ⊕ r and f(m, r) = mH ′T . The trapdoor s , (M,H, P )
satisfies MHP = H ′.

(7) Quantum Okamoto-Tanaka-Uchiyama PKE

g(m, r) = m ⊕ r and f(m, r) =
∑n

i=1 eibi, here e1 · · · en is the constant

weight encoding of m. The trapdoor is s , (g, d, p, p1, p2, . . . , pn).

In these seven QPKE protocols, the protocols (2) and (4) satisfy the case
related with Formula.(8)(9). In these two protocols, a classical message is
transferred and the value of r is not computed during the decryption process.
We can see that the other protocols satisfy the case related with Formula.(10).
No classical information is transferred in these protocols, and r is computed
during the decryption process.

4.4. An authentication protocol [12]

Consider the original SN-S authentication scheme [18]. Suppose generator
matrix Gs is a k by n1 matrix and in standard form: Gs = [Ik|A], here
Ik is the k by k identity matrix, A is chosen randomly from k by n1 −
k matrices. The [n1, k] linear code generated by Gs need not be of any
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error-correcting or error-detecting capability. Generalized inverse matrixG−1
s

satisfies: GsG
−1
s = Ik. Suppose the parity check matrix of the linear code

generated by Gs is Hs, then Hs =
[

−AT |In−k

]

. Public-key authentication of
quantum message is proposed in the following steps.

(1) Alice encodes a k-qubit message
∑

m αm|m〉 into n1-qubit one as fol-
lows:

∑

m

αm|m〉|0〉

→
∑

m

αm|m〉|mGs〉

→
∑

m

αm|m⊕mGsG
−1
s 〉|mGs〉 = |0〉

∑

m

αm|mGs〉. (36)

(2) Alice uses Bob’s public-key G′ to encrypt n1-qubit state
∑

m αm|mGs〉
via Quantum McEliece PKE.

(3) Bob uses his private-key (S,G, P ) to decrypt the received quantum
state and obtains the n1-qubit plaintext

∑

m αm|mGs〉.
(4) Bob performs the following transformations on the quantum state

∑

m αm|mGs〉.

|0〉
∑

m

αm|mGs〉|0〉

→ |0〉
∑

m

αm|mGs〉|mGsG
−1
s 〉 = |0〉

∑

m

αm|mGs〉|m〉

→
∑

m

αm|mGsHs〉|mGs〉|m〉 = |0〉
∑

m

αm|mGs〉|m〉

→ |0〉
∑

m

αm|mGs ⊕mGs〉|m〉 = |0〉|0〉
∑

m

αm|m〉. (37)

(5) Bob measures the first register to check whether it is in the state |0〉.
If it is, he accepts the message in the third register.

For the case that Gs is public, the scheme is a public-key data integrity
scheme. This scheme can be modified to be one against substitution, the
details are given in Sec.3.2.

4.5. Quantum message signature protocols

We have established a theoretical framework of signature of quantum
message. Here, two protocols are proposed as the instances of the theoretical
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framework. One is not secure in post-quantum era, while the other is post-
quantum secure.

In the first protocol, we take the function f(x) = xemodN as the trap-
door one-way function, here the numbers e and N is the same as in Sec.4.1.1.
Because f(x) = xemodN is a trapdoor one-way permutation, it can be ex-
pressed as f : {0, 1}k × {0, 1}n −→ {0, 1}k × {0, 1}n, here k + n = ⌈log2N⌉.
That means, in the framework described in Sec.3.3, the random number
generated by Bob is rB ∈ {0, 1}k and the random number generated by Al-
ice is rA ∈ {0, 1}n. Alice uses her private-key d to compute f−1(rB, rA) =
(rB, rA)

dmodN = (r, r′), then obtains r ∈ {0, 1}k and r′ ∈ {0, 1}n. With the
number r and the function f , Alice signs the n-qubit message

∑

m αm|m〉
and gets k + 2n-qubit state

∑

m αm|m〉|(r,m)emodN〉, then sends it to Bob.
After receiving the quantum state, Bob tells Alice that he has received it.
Then Alice announces r and r′. Bob computes (r, r′)emodN , and if its first
k bits are rB, he performs the transformation

∑

m

αm|m〉|(r,m)emodN〉 −→
∑

m

αm|m〉|0〉. (38)

Bob measures the second quantum register and accepts the signature if and
only if the second register is in the state |0〉.

This signature protocol bases its security on the hardness of factoring
problem. Because there exists efficient quantum algorithm for this prob-
lem [1], the protocol is not secure in post-quantum era.

In the second protocol, we take the function f(x) = x1G
′ ⊕ x2, here

x ∈ {0, 1}k+n is divided into two parts x1 ∈ {0, 1}k and x2 ∈ {0, 1}n, and
the k × n matrix G′ is the same as in Sec.4.2.1. Thus the trapdoor one-way
function can be expressed as f : {0, 1}k × {0, 1}n −→ {0, 1}

n
2 × {0, 1}

n
2 . In

the framework described in Sec.3.3, the random number generated by Bob is
rB ∈ {0, 1}

n
2 and the random number generated by Alice is rA ∈ {0, 1}

n
2 . It

is required thatWH(rA) = WH(rB) = ⌊ t
2
⌋, hereWH(x) denotes the Hamming

weight of x, and t is the correctable number of errors. Alice uses her private-
key s , (S,G, P ) to compute (r′, r) which satisfy r′G′ ⊕ r = (rB, rA), then
obtains r′ ∈ {0, 1}k and r ∈ {0, 1}n. With the number r and the function
f , Alice signs the k-qubit message

∑

m αm|m〉 and gets 2k + n-qubit state
∑

m αm|m〉|mG′ ⊕ r〉, then sends it to Bob. After receiving the quantum
state, Bob tells Alice that he has received it. Then Alice announces r and
r′. Bob computes r′G′ ⊕ r, and if its first n

2
bits are rB, he performs the
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transformation

∑

m

αm|m〉|mG′ ⊕ r〉 −→
∑

m

αm|m〉|0〉, (39)

and measures the second quantum register. He accepts the signature if and
only if the second register is in state |0〉.

For the second protocol, it is worth to mention that, in order to make it
possible to compute f−1 efficiently, the sum of Hamming weights of rA and
rB should not exceed t. Denote H as the check matrix of the code generated
by G. If r′G′⊕ r = (rB, rA), according to (r′G′⊕ r)P−1H = rP−1H , we have
rP−1H = (rB, rA)P

−1H . Because P is a n × n permutation, WH(wP
−1) =

WH(w) for any w ∈ {0, 1}n. Then WH(r) = WH(rB, rA) = WH(rB) +
WH(rA). BecauseWH(r) should not exceed t, the sum of Hamming weights of
rA and rB should not exceed t also. Here, we take WH(rA) = WH(rB) = ⌊ t

2
⌋

for convenience.

5. Security evaluation

Now we evaluate the security of proposed theoretical frameworks.
Proposition 1: In the QPKE framework based on induced trapdoor

OWQT, it can be verified that the encryption transformation does not de-
crease the fidelity between two quantum states.

Proof: For two quantum messages |M1〉 =
∑

m αm|m〉 and |M2〉 =
∑

m α′
m|m〉, their fidelity is

F (|M1〉, |M2〉) = |〈M1|M2〉| =

∣

∣

∣

∣

∣

∑

m

α∗
mα

′
m

∣

∣

∣

∣

∣

. (40)

The ciphers of |M1〉 and |M2〉 are
∑

r prρr and
∑

r prσr respectively, here ρr
and σr can be expressed as

ρr = (
∑

m

αm|g(m, r)〉|f(m, r)〉)(
∑

m

α∗
m〈g(m, r)|〈f(m, r)|), (41)

and
σr = (

∑

m

α′
m|g(m, r)〉|f(m, r)〉)(

∑

m

α′∗
m〈g(m, r)|〈f(m, r)|). (42)
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According to the joint concavity of fidelity, it holds that

F

(

∑

r

prρr,
∑

r

prσr

)

≥
∑

r

prF (ρr, σr) . (43)

Because ρr and σr are pure states, then

F (ρr, σr) =

∣

∣

∣

∣

∣

∑

m

∑

n

α∗
mα

′
n〈g(m, r)|g(n, r)〉〈f(m, r)|f(n, r)〉

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

m

α∗
mα

′
m

∣

∣

∣

∣

∣

= F (|M1〉, |M2〉). (44)

Therefore, F (
∑

r prρr,
∑

r prσr) ≥ F (|M1〉, |M2〉). �
From this proposition, we can also know that the trace distance between

two quantum states does not increase after the encryption transformation.
It can be seen that the holding of these results relates with the fact that the
encryption transformation can be regarded as a trace-preserving quantum
operation to Bob and Eve.

According to the definition of induced trapdoor OWQT, the function
f(m, r) and g(m, r) are classical functions. Finding the trapdoor s is a clas-
sical computational problem in each protocol. Thus, the QPKE protocols
based on induced trapdoor OWQT are just computational secure.

Now we prove that those seven encryption protocols are at least as secure
as their classical counterparts.

Theorem 2: The quantum McEliece PKE is more secure than classical
McEliece PKE.

Proof: Suppose there is a quantum algorithm A, which can efficiently
transform the cipher state

∑

m αm|mG′⊕r〉 into quantum message
∑

m αm|m〉.
In order to decrypt arbitrary classical cipher m0G

′ ⊕ r0, we firstly prepare a
quantum state |m0G

′⊕ r0〉. Then, the quantum state |m0G
′⊕ r0〉 is an input

to the quantum algorithm A, and will be transformed into the quantum state
|m0〉. Finally, the classical message m0 is obtained via measuring the output
quantum state |m0〉. Thus, if there is an attack to quantum McEliece PKE,
there would be an attack to classical McEliece PKE.

However, an attack to classical McEliece PKE does not mean an attack
to quantum McEliece PKE. There are several kinds of attack to classical
McEliece PKE, such as Korzhik-Turkin attack [19], message-resend attack
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and related-message attack [20]. Since the detail of Korzhik-Turkin attack
has not been given till now, the efficiency of this attack is still an open prob-
lem. Because iterative decoding algorithm is used in the Korzhik-Turkin
attack, and quantum state cannot be reused, it fails when attacking quan-
tum McEliece PKE. Though classical McEliece PKE have to be improved to
prevent message-resend attack and related-message attack [21], these attacks
also fail while facing the quantum McEliece PKE.

Therefore, quantum McEliece PKE is more secure than classical McEliece
PKE. �

In the same way, it can be proved that the other QPKE protocols within
our framework are at least as secure as their classical counterparts.

In our framework of authentication, QPKE scheme are used to ensure
the quantum message with authentication being transmitted securely. Eve
cannot get the quantum message with authentication if she cannot break
related QPKE scheme. So it seems hard for her to successfully break the
integrity of quantum message.

In our framework of digital signature, if Eve wants to forge the signature
of Alice, she must capture the number rB and find (r, r′) which satisfies
f(r, r′) = (rB, ∗). However, this implies she can invert the trapdoor one-way
function f . So the security of digital signature is ensured by the trapdoor
one-way function f .

6. Discussions

(1) In the framework of QPKE, given the random number r or the
trapdoor information s of f(m, r), the transformation from cipher state
∑

m αm|g(m, r)〉|f(m, r)〉 to plaintext state
∑

m αm|m〉 can be completed ef-
ficiently. Both r and s are trapdoors of the induced trapdoor OWQT Ufg(r).
Moreover, it can be concluded within the framework that, as an encryption
algorithm is one with random number, the disentanglement in the decryption
is a process of extracting the pure state from the received mixed state.

(2) If the message to be encrypted is
∑

m αm|m〉, and only one of αm is 1
and others are 0, the QPKE protocols above degenerate into corresponding
classical PKE protocols respectively.

(3) The encryption transformations in this paper are trace-preserving
quantum operation to Bob and Eve, which are induced from the classical
functions g(m, r) and f(m, r). So that our protocols can be regarded as ones
constructed via trace-preserving quantum operations.
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(4) Our QPKE schemes are designed to encrypt quantum message
∑

m αm|m〉.
However, if we consider the number r involved as classical message to be
encrypted, the QPKE schemes can also transmit classical information via
sending quantum states, so this kind of QPKE scheme can also be named
as ”quantum envelope”. In addition, since the attacks to classical McEliece
PKE, such as Korzhik-Turkin attack [19], message-resend attack and related-
message attack [20], fail to attack quantum McEliece PKE, we believe it is
more secure to transmit classical information via quantum McEliece PKE
than via classical McEliece PKE.

(5) It can be seen that our QPKE schemes are computationally secure.
The protocols in Sec.4.1 base their security on factoring problem or discrete
logarithms problem, so they are not secure in post-quantum era. However,
since the protocols in Sec.4.2 base their security on the hardness of different
NP-complete problems, we guess they are secure against quantum attacks.

7. Conclusions

Induced trapdoor OWQT has been introduced, and a theoretical frame-
work of QPKE based on it has been proposed. Seven QPKE protocols
are given within this framework, such as quantum version of RSA, ElGa-
mal, Goldwasser-Micali, elliptic curve, McEliece, Niederreiter and Okamoto-
Tanaka-Uchiyama PKE. These QPKE protocols for quantum message are
shown to be at least as secure as their classical counterparts. The last three
protocols may be secure under the assumption that NP-complete problems
cannot be solved efficiently with quantum algorithms. Besides, theoretical
frameworks for public-key authentication and signature of quantum message
are also proposed. A public-key authentication protocol and two digital sig-
nature protocols are given as their instances.
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