
BSDCon 2002 Paper [BSDCon '02 Tech Program Index]

Pp. 47–54 of the Proceedings

An implementation of the Yarrow PRNG for
FreeBSD

Mark R. V. Murray
FreeBSD Services, Ltd

Amersham, Buckinghamshire, UK
markm@freebsd-services.com

Abstract

Computers are by their definition predictable. The problem of obtaining
good-quality random numbers is well known.

There is a great need for entropy in the running kernel, as well as in user-space.
The kernel needs to randomise TCP sequences, seed keys for IPSec, randomise
PIDs, and so on. Starvation of these random numbers is a critical problem.
Users need random keys, random filenames, nondeterministic games, random
numbers for Monte-Carlo simulation and so on.

Kelsey, Schneier and Ferguson proposed an improved algorithm for providing
statistically random numbers, at the same time cryptographically protecting
their sequence and state. This is the Yarrow algorithm.

This work presents an implementation of this algorithm as the entropy device
(/dev/random) in FreeBSD's kernel.

1 Introduction

In an earlier work[Mur00], the author introduced the new entropy device to
FreeBSD-CURRENT as a work-in progress. In that work, attack methodologies
were briefly discussed, and the difference between the older entropy device and
this device were discussed. Yarrow[KSF99] was briefly explained.

It is important to remember that this device is not designed to produce pure1

random numbers. Computers do not produce enough natural randomness for
that approach to be useful in entropy-consuming environments.

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

1 of 13 12/02/15 23:38

Instead, this device is a free-running pseudo-random number generator (PRNG),
one in which great effort has been made to cryptographically protect the state
of the generator. Further, the internal state is constantly perturbed with
``harvested'' entropy to thwart attackers.

The algorithm is divided into four parts (see Figure 1):

#1 Simplified Yarrow Structure

Entropy Accumulator and Pools
These are used to ``harvest'' entropy from the running kernel. The API
provided by the author is intended to be simple to use anywhere in the
kernel.

Reseed
Reseeding is entirely internal to Yarrow. The author has attempted to stay
as close as possible to the published algorithm.

Reseed Control
Reseeds happen in response to harvested entropy, and to reads from the
entropy device. There are statistical requirements to these reseeds that are
unimplemented.

Output Generator
The generator is similar to ``classic'' PRNG's, excepting:

It uses a large, cryptographically secure hash instead of a simple
feedback formula.

1.

It is perturbed on a regular basis by harvested entropy.2.

2 Design Issues

An API for ``harvesting'' entropy was needed, so that kernel programmers
could easily provide such randomness their subsystem could produce. The
requirements were that the API should be extensible, fast, simple and able to
operate in interrupt context. Where practical, entropy sources needed the
ability to be disabled at the whim of the system administrator.

256-Bit storage pools were desired, as this was deemed to hold a reasonable
amount of entropy without being overly expensive. It should be remembered

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

2 of 13 12/02/15 23:38

that Yarrow uses two accumulation ``pools'' (fast and slow), so this meant that
up to 512 bits of environmental entropy could be held.

This decision meant that a 256-bit hashing algorithm and a 256-bit block cipher
were needed. The need for a 256-bit hash ruled out using MD2, MD4, MD5 or
SHA-1 unless a lengthening algorithm was also used. There were a few choices
for 256-bit block ciphers, however availability (or potential availability) in the
FreeBSD kernel was a limiting factor. As a suitable ``natural'' hash did not
exist, a hash had to be constructed using block ciphers. Likely candidates were
initially Blowfish and DES (reluctantly, as a block-lengthening process would be
needed). Other AES candidates were considered, but as a finalist had not been
selected they were not initially used.

The output generator needed to be fast, and also needed good key-setup speed,
as the key is changed often. In order to preserve the strength of Yarrow, its
block size was deemed to be the same size as the hash buffer. This made the
choice of the encryption cipher simple, as the hash cipher could be used.

Further research[Sch96a] indicated that lengthening algorithms were most
probably unwise.

2.1 Entropy Harvesting

As entropy could be found in any part of the kernel, both bottom-half and
top-half, the entropy harvesting needed to be cheap, non-invasive and
non-blocking.

A fixed-size circular buffer is used to accumulate entropy for later processing. If
the buffer becomes full, further attempts to add entropy are ignored. The buffer
is never locked when written to; this does not matter, as data corruption would
be beneficial.

Entropy is added to the buffer by a subsystem calling the random_harvest(9)
function. This is declared in sys/random.h as follows:

enum esource { \
 RANDOM_WRITE, RANDOM_KEYBOARD, \
 RANDOM_MOUSE, RANDOM_NET, \
 RANDOM_INTERRUPT, ENTROPYSOURCE \
};
void random_harvest(void *data, \
 u_int count, u_int bits, \
 u_int frac, enum esource source);

Entropy is accumulated in up to HARVESTSIZE2 byte chunks.

The arguments are:

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

3 of 13 12/02/15 23:38

data

a pointer to the stochastic data
count

the number of bytes of data
bits

an estimate of the random bits
frac

as above, except fractional ([frac/1024] bits)
source

the source of the entropy

The stochastic events added to the buffer are stored in a structure:

struct harvest {
 u_int64_t somecounter;
 u_char entropy[HARVESTSIZE];
 u_int size, bits, frac;
 enum esource source;
};

The structure holds all of the information provided by random_harvest plus a
timestamp.

The timestamp is taken from the CPU's fast counter register (like the Intel
Pentium(tm) processor's TSC register). CPUs that do not have this register (like
the Intel i386) use nanotime(9) instead. This has an unfortunate time penalty.

It is not important that this timestamp is an accurate reflection of real-world
time, nor is it important that multiple CPUs in an SMP environment would have
different values. It is important that the counter/timestamp increase quickly and
linearly with time.

A count of accumulated entropy is kept, and this is used to reseed the output
generator on occasion. The fractional entropy count supplied in the frac
parameter is used in very low entropy situations. For example, a particular
device can be said to produce 1 bit of randomness every 20 events.

Kernel programmers wishing to supply entropy from their code should extend
the enum esource list, leaving the constant at the end of the list. Then, the
randomness should be gathered and supplied as efficiently as possible.

In sys/random.h:

enum esource {
 RANDOM_WRITE,
 RANDOM_KEYBOARD,
 RANDOM_MOUSE,
 RANDOM_NET,

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

4 of 13 12/02/15 23:38

 RANDOM_INTERRUPT,
 RANDOM_MYSTUFF, /* New */
 ENTROPYSOURCE };

In the code to be harvested:

:
#include <sys/types>
:
#include <sys/random>

int
somefunc(...)
{
 :
 struct {
 u_int32_t junk;
 u_int32_t garbage;
 u_char rubbish[8];
 } randomstuff;

 :
 randomstuff.junk = somelocaljunk;
 randomstuff.garbage = otherjunk;
 strncpy(randomstuff.rubbish, dirt, 8);
 :
 /* harvest the entropy in
 * randomstuff. Be really
 * conservative and estimate the
 * the random bit count as only 4.
 */
 random_harvest(randomstuff,
 sizeof(randomstuff), 4, 0,
 RANDOM_MYSTUFF);
 :

If control over the new harvesting is required, then a sysctl may be added to
src/sys/dev/random/randomdev.[ch]:

SYSCTL_PROC(_kern_random_sys_harvest,
 OID_AUTO, interrupt,
 CTLTYPE_INT|CTLFLAG_RW,
 &harvest.mystuff, 0,
 random_check_boolean, "I",
 "Harvest mystuff entropy");

The call to random_harvest should then be made conditional on harvest.mystuff:

 :
 if (random.mystuff)
 random_harvest(randomstuff,
 sizeof(randomstuff), 4, 0,
 RANDOM_MYSTUFF);
 :

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

5 of 13 12/02/15 23:38

Writing to the entropy device from the user's perspective (ie, writing to
/dev/random) is similar to writing to /dev/null; it has no discernible effect. In actual
fact, the data written is ``harvested'' using the harvesting calls, with the
proviso that the entropy is estimated to be nothing. This has the effect of not
causing reseeds, but perturbing the internal state anyway. If the user is the
superuser, then closing the device after a write will cause an explicit reseed.

A kernel thread ``kthread'' constantly runs, polling the circular buffer, and if
data is present, it accumulates each event alternately into the two accumulation
hashes (or ``entropy pools'').

2.2 Accumulation Pools

An initial version of the 256-bit accumulation hash was constructed using a
Davies-Meyer[Sch96b] hash with Blowfish[Sch96c] as the block cipher.

The hash works by repeatedly encrypting an initial (zero) state while cycling the
hash data through the key. At each iteration, the previous value of the hash is
exclusive-or-ed into the newly encrypted value.

This can be represented as:
Hi = EMi(Hi-1) XOR Hi-1

where Hn is the nth iteration of the hash result, Mj is the jth fragment of the
data to be hashed and Ek(m) is the result of encrypting m with block cipher E()
and key k.

Davies-Meyer hash from block cipher.

While this worked, it was unbearably slow as Blowfish has an extremely
expensive key schedule. Slowness was experienced as very bad kernel latency,
and a kernel thread running with unacceptably high CPU usage.

The (by this time) newly released AES (``Rijndael'')[NIS] algorithm was then
tried, and a crude benchmark produced extremely promising results. (Here,
Blowfish was replaced with Rijndael.)

The benchmark is a timed 16MB read from each device:

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

6 of 13 12/02/15 23:38

$ dd if=${DEVICE} of=/dev/null \
 count=16 bs=1048576

For comparison, /dev/zero was also read.

The time is the time in seconds for the 16MB read, and the rate is measured in
KB/s.

$device Time (s) Rate (kB/s)

Blowfish 137.7 122

AES 6.5 2595

Zero 0.2 81861

After consulting literature [SKW+][WSB][FKL+], it was suspected that AES was
the ideal algorithm, but further investigation was considered prudent,
particularly as the benchmark measured output performance, not hashing
performance.

The hash routines were broken out of the kernel, and various speeds were
measured using alternative block ciphers. A Null algorithm and 160-bit SHA-1
were included for comparison.

The ``Null'' cipher simply duplicates the input data, ignoring the key:

Nk(m) = m

This reduced the Davies-Meyer algorithm to the XOR and data-movement parts
only.

Each result represents the time taken to hash 2MB of pseudo-random data.

Algorithm Time (s) Rate (kB/s)

AES 3.1 461.6

Blowfish 40.2 35.2

DES 2.9 491.7

SHA-1 2.0 693.3

Null 1.8 786.7

It can be seen that AES with 256-bit keys and 256-bit blocks is approximately as
fast as DES with 56-bit keys and 64-bit blocks.

160-bit SHA-1 is about 50% faster than the AES hash, but the AES hash has an

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

7 of 13 12/02/15 23:38

approximately 50% larger capacity for storing bits.

The ``Null'' algorithm confirms that encryption overhead is acceptably low in
comparison with other code overhead.

2.3 Output Generator

The output generator is a counter that is repeatedly encrypted, producing the
output:

The Output Generator

Oi = Ek(Ct)
Ct+1 = Ct+1

where Ct is the (256-bit) counter3 at time t, Oi is the ith output, and Ek(Ct) is the
result of encrypting counter Ct using cipher E() and key k.

The dashed line represents the data path during a gate event. The key ``k'' is
inserted during a reseed. This is the point at which environmental noise
(``harvested'' entropy) is used.

To compromise the output generator, a key compromise of the cipher is
necessary. This is computationally difficult; nevertheless, to thwart this, the
counter is regularly replaced with data from the output stream:

Ct+1 = Ct+1
Ct+1 = Ek(C)

The data thus used is not used as part of the output. This is called a gate event,
and it happens at a time configurable by the system administrator via sysctl(9).
It defaults to happening every 10 blocks. If a user process reads less than a
256-bit block, the remainder is cached for future reads.

To show that the output was statistically acceptable, some tests were done.

A simple histogram of 8M single-byte values was plotted:

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

8 of 13 12/02/15 23:38

Spectrum of 8M 8-bit values

A straight line was fitted to this data, and was found to substantiate the fact
that the slope was » 0 and the mean value was » 32k.

The spread of values around 32k was plotted, and the distribution found to be
reassuringly normal:

Distribution of values around expected norm of 32k

This corresponded to a mean (m) of 32759.5 and a s of 187.2

Further tests were done using a more sophisticated random number ``torture
chamber'' called Diehard[Mar]. Its use produced voluminous output which
indicated, on careful perusal, that the generator's output was statistically
acceptable.

It must be noted that the output generator does not block. This is intentional.

2.4 Reseed Control

This is the trickiest part of the algorithm to write. The Yarrow specification
mandates three separate estimates of incoming entropy ``harvest-units'':

A programmer-supplied estimate. This has been very conservatively set.
This is given as a constant to each entropy-harvesting call.

1.

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

9 of 13 12/02/15 23:38

A system-wide ``density''. This is set at [1/2], meaning no sample of N bits
can supply more than [N/2] bits of entropy.

2.

A statistically determined, per-source continuous estimate. This is
unimplemented, as the mechanism for doing the statistical estimation has
been deemed too expensive for the kernel.

3.

The algorithm states that the lowest of these three is taken as the entropy
supplied for the individual unit. The author has endeavoured to ensure that the
programmer-supplied estimate will always be low enough.

3 Impact on the Running System

The running device has great potential to be very invasive to the running
kernel, as early experiments with slow ciphers showed. In the current code,
however, the system is proving to be no such hindrance.

l2.85in

last pid: 19524; load averages: 0.25, 0.22, 0.18 up 3+09:01:43 21:52:53
92 processes: 3 running, 74 sleeping, 15 waiting
CPU states: 4.3% user, 0.0% nice, 2.3% system, 0.4% interrupt, 93.0% idle
Mem: 27M Active, 5536K Inact, 18M Wired, 4348K Cache, 14M Buf, 4856K Free
Swap: 68M Total, 34M Used, 33M Free, 50% Inuse

 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
 10 root -16 0 0K 12K RUN 59.9H 86.47% 86.47% idle
18128 root 96 0 16636K 5932K select 15:37 1.61% 1.61% XFree86
18169 mark 96 0 15884K 3216K select 4:53 1.61% 1.61% kdeinit
18217 mark 96 0 17116K 4540K select 1:47 0.39% 0.39% kdeinit
18227 mark 96 0 10872K 5916K select 1:59 0.29% 0.29% xemacs-21.1
19524 mark 96 0 2096K 1144K RUN 0:00 0.75% 0.20% top
 22 root -64 -183 0K 12K WAIT 40:57 0.10% 0.10% irq14: ata0
 12 root -48 -167 0K 12K RUN 20:06 0.10% 0.10% swi6: tty:sio
18205 mark 96 0 17836K 5928K select 1:38 0.10% 0.10% kdeinit
18203 mark 96 0 21428K 4080K select 1:07 0.10% 0.10% kdeinit
 6 root 20 0 0K 12K syncer 4:02 0.00% 0.00% syncer
 14 root 76 0 0K 12K sleep 3:19 0.00% 0.00% random
18183 mark 60 -36 5244K 2044K select 3:09 0.00% 0.00% artsd
 15 root -28 -147 0K 12K WAIT 2:58 0.00% 0.00% swi5: task qu
18810 mark 96 0 9728K 3076K select 1:30 0.00% 0.00% acroread
18208 mark 96 0 16372K 3964K select 1:21 0.00% 0.00% kdeinit

#1Snapshot of a running system

This snapshot of a running FreeBSD workstation shows that the random
process (the kthread that runs the reseed process) has approximately the same
impact on the system as the syncer process, ie negligible.

The use of random numbers by security-conscious engineers has been taken
into account over and above the concerns of the professional cryptographic
community. Speed was deemed to be more important than the production of
number-theoretic-quality random numbers (eg: suited to generating one-time-
pads). It is believed that FreeBSD is used by many more system-administrators

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

10 of 13 12/02/15 23:38

than professional cryptographers.

The author is, however, appreciative of the concerns of those who would want a
more austere presentation of random numbers from the operating system.
Those members of the community are considered to be a specialist minority,
though.

4 Future plans

There are two main expansion areas in the FreeBSD entropy device.

More entropy harvesting. Any ``cheap'' entropy that may be found in the
kernel may be used in the future. The user community is encouraged to
submit likely sources. The author has provisional code to harvest entropy
from Intel chipsets fitted with hardware random number generators.

1.

Provision of a ``distilled'' device for those who wish to be assured of an
``entropy-in = entropy-out'' conservation-of-entropy device. This needs to
be conservative enough to not provide a denial-of-service attack by its very
existence.

2.

5 Thanks

Thanks are due to Sue Bourne and Brian Somers for proofreading and helpful
comments.

Thanks are also due to FreeBSD Services, Ltd for giving me the time to produce
this work.

My fondest thanks are also given to my father. Thanks, Dad. I'll miss you.

References

[FKL+]
Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay,
David Wagner, and Doug Whiting. Improved cryptanalysis of rijndael.
http://www.counterpane.com.

[KSF99]
John Kelsey, Bruce Schneier, and Niels Ferguson. Yarrow-160: Notes on the
design and analysis of the yarrow cryptographic pseudorandom number
generator. Sixth Annual Workshop on Selected Areas in Cryptography,
August 1999.

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

11 of 13 12/02/15 23:38

This paper was originally published in Technical Program

[Mar]
George Marsaglia. Diehard. http://www/stat.fsu.edu/[\tilde]geo
/diehard.html.

[Mur00]
Mark R. V. Murray. Effective entropy from the freebsd kernel. In BSDCon,
pages 92-98, 2000.

[NIS]
NIST. The aes algorithm (rijndael) information. http://csrc.nist.gov
/encryption/aes/rijndael/.

[Sch96a]
Bruce Schneier. Applied Cryptography, pages 430-431. Wiley, second
edition, 1996.

[Sch96b]
Bruce Schneier. Applied Cryptography, pages 446-455. Wiley, second
edition, 1996.

[Sch96c]
Bruce Schneier. Applied Cryptography, pages 336-339. Wiley, second
edition, 1996.

[SKW+]
Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, and Chris Hall.
Performance comparison of the aes submissions.
http://www.counterpane.com.

[WSB]
Doug Whiting, Bruce Schneier, and Steve Bellovin. Aes key agility issues in
high-speed ipsec implementations. http://www.counterpane.com.

Footnotes:

1In the number-theoretic sense; the numbers remain statistically random and
include environmental noise

2Currently 16

3Internal to the FreeBSD kernel, the 256-bit value is represented as a structure
containing four 64-bit unsigned integers. Only 64 bits are incremented. The
author does not believe this is a problem.

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

12 of 13 12/02/15 23:38

the Proceedings of the BSDCon '02
Conference on File and Storage
Technologies, February 11-14, 2002,
Cathedral Hill Hotel, San Francisco,
California, USA.
Last changed: 28 Dec. 2001 ml

BSDCon 2002 Home
USENIX home

An implementation of the Yarrow PRNG for FreeBSD https://www.usenix.org/legacy/events/bsdcon/full...

13 of 13 12/02/15 23:38

