
Survey: Lattice Reduction Attacks on RSA

David Wong
supervised by Guilhem Castagnos

University of Bordeaux, March 2015

Abstract

RSA, carrying the names of Ron Rivest, Adi Shamir and Leo-
nard Adleman, is one of the first practicable public-key cryptosys-
tem. The algorithm was publicly described for the first time in 1977
and has since been the most used cryptosystem when it comes to asym-
metric problems. For now more than 30 years, Cryptanalysts and Re-
searchers have looked for ways to attack RSA.
One branch of cryptanalysis on RSA is to take an interest in a re-
laxed model of RSA. A model where we know part of the message,
or we know an approximation of the primes, or the private exponent is
too small... In these sorts of problems, lattice reduction techniques
have proved to be very relevant. Coppersmith opened the way with
his constructive theorem on how to find small roots of univariate poly-
nomials using reductions of lattices. Boneh and Durfee followed with
a method on how to find small roots of bivariate polynomials using
Coppersmith’s heuristics on multivariate polynomials. In this survey
we will see how each algorithm work and how they were respectively
made simpler by Howgrave-Graham and the duo Herrmann and
May.

Keywords : RSA, lattice, LLL, Coppersmith, Howgrave-Graham, Boneh-
Durfee, Herrmann-May.

1 Introduction

In 1995, Coppersmith released a paper on how to attack RSA using Lat-
tices and Lattice reduction techniques such as LLL. A few years later,
Howgrave-Graham revisited Coppersmith’s algorithm and made it easier
to understand and apply. His work was implemented for various problems
from revealing part of a message if most of the message was known, to brea-
king RSA if a good enough approximation of one of the prime was known.
Attacks based on Lattice reduction techniques caught up and several re-
searches were done on the subject. In 1990, Wiener had found that you

1

could successfully break RSA if the private exponent was too small (d <
N1/4). In 2000, Boneh and Durfee improved that bound (d < N0.292)
using lattices and LLL in a Coppersmith-like attack. Their work was later
simplified by Herrmann and May.
In the 2nd and 3rd sections of this survey I will briefly explain how RSA
and Lattice work. In section 4 we will see in what model the attacks are
taking place and see H̊astad’s Broadcast Attack as an introduction to
Coppersmith. Section 5 will be an overview of the Coppersmith algorithm
revisited by Howgrave-Graham. Section 6 will be an overview of the Boneh
and Durfee algorithm revisited by Herrmann and May. Finally the imple-
mentations of both attack will be added as an appendix.

2 RSA

Let’s quickly recall what is and how RSA works :
RSA is an asymmetric cryptosystem. A generator algorithm derives two
kinds of keys : a public key and a private key, both can be used either
to encrypt or decrypt thanks to the asymmetric property of RSA to allow
us to use the system as an encryption system or as a signature system.

2.1 Generation

To use RSA for encryption we need a public key to encrypt and a private
key to decrypt. We first generate the public key as follow :

We generate two primes p and q. For security issues they should be around
the same size. Those primes are the core elements of RSA. Knowing one
of those allows us to compute the private key, thus allowing us to break the
system. They can also be used to speed up calculations using the Chinese
Remainder Theorem.
Knowing p and q we can then compute the modulus N = p× q which will
be part of the public key as well as the private key. And you will see why.

Now comes the interesting part, we need to find a public exponent which
will be used for encryption. For computational optimization, a Fermat
prime (2m + 1) is often used as public exponent (it makes things faster in
binary exponentiation). In the case of a signature scheme, we would
want the speed up to occur for the private exponent so we would use such
a number as a private exponent and we would reverse the following steps.
Anyway, any kind of exponent can theoretically be chosen, as long as it is
coprime with ϕ(N) (The Euler’s Totient function).

e← Z∗ϕ(N)

2

if e is coprime with ϕ(N) then it is part of the multiplicative group (Z/ϕ(N)Z)∗

and thus invertible in Z/ϕ(N)Z.

Now it is pretty easy to find the private exponent d by inverting our public
exponent e.

All of this is possible because we can easily compute ϕ(N) :

ϕ(N) = (p− 1)× (q − 1)

And here resides the security of RSA. Imagine for a moment that we could
easily factor N into p and q, then we would be able to invert the public
exponent e. That’s why we say that the security of RSA is reduced to
the Factorization Problem.

Now let the private key be (N, d) with the addition of (p, q) if we need
to speed up calculations. And let the public key be (N, e).

2.2 Encryption/Decryption

To encrypt a message m, with m < N we just do :

c = me (mod N)

And to decrypt :
m = cd (mod N)

This works because the decryption step gives us :

cd = (me)d (mod N)

And e being d’s inverse tells us that :

e = d−1 (mod ϕ(N))

=⇒ ed = 1 (mod ϕ(N))

=⇒ ed = ϕ(N) + 1

Coupled with Euler’s Theorem stating that if a and n are coprime then :

aϕ(n) = 1 (mod n)

Tells us that med = m (mod N)

3

3 Lattice

3.1 Introduction

The attacks we will describe later both make use of the Lenstra–Lenstra–Lovász
lattice basis reduction algorithm. Hence it is necessary for us to unders-
tand what is a lattice and why is this LLL algorithm so useful.
Think about Lattices like Vector Spaces. Imagine a simple vector space of
two vectors. You can add them together, multiply them by scalars (let’s say
numbers of R) and it spans a vector space.

Now imagine that our vector space’s scalars are the integers, taken in Z.
The space spanned by the vectors is now made out of points. It’s discrete.
Meaning that for any point of this lattice there is a ball centered around that
point of radius different from zero that contains only that point. Nothing
else.

Lattice are interesting in cryptography because we seldom deal with real
numbers and they bring us a lot of tools to deal with integers.
Just as vector spaces, lattices can also be described by different basis repre-
sented as matrices. Contrary to vector spaces, we generally represent the

4

vectors of the basis as rows in their corresponding matrices.

Last but not least, if {b̃1 . . . , b̃w} are the vectors of the Gram-Schmidt basis
of a lattice L then we define the determinant of the lattice as such :

det(L) :=

w∏
i=1

‖b̃i‖

You will see that in the technique we present, to easily compute the determi-
nant of a lattice we will make the lattice full rank (dimension = rank) and
triangular. So that the determinant is computable by doing the products
of the diagonal terms of the lattice basis.

3.2 LLL

The Lenstra–Lenstra–Lovász lattice basis reduction algorithm is a step
by step calculus that reduces a lattice basis in polynomial time. The lattice is
left unchanged but the row vectors of its new basis are “smaller” according
to some definitions :

Definition 1. Let L be a lattice with a basis B. The δ-LLL algorithm applied
on L’s basis B produces a new basis of L : B′ = {b1, . . . , bn} satisfying :

∀ 1 ≤ j < i ≤ n we have |µi,j | ≤ 1

2
(1)

∀ 1 ≤ i < n we have δ · ‖b̃i‖2 ≤ ‖µi+1,i · b̃i + b̃i+1‖2 (2)

with µi,j =
bi·b̃j
b̃j ·b̃j

and b̃1 = b1 (Gram-Schmidt)

random basis reduced basis

LLL

We will not dig into the internals of LLL here, see Chris Peikert’s course[1]
for detailed explanations of the algorithm.

5

3.3 Wanted properties of LLL

LLL yields an approximation of the Shortest Vector Problem. This is
useful for us because if we consider the row vectors of a lattice’s basis as
coefficient vectors of polynomials. We can find a linear combination
of those polynomials that has “particularly small” coefficients. But let’s
not unveil too much too soon. Here is the relevant property of a LLL reduced
basis that we will need later :

Property 1. Let L be a lattice of dimension n. In polynomial time, the LLL
algorithm outputs reduced basis vectors vi, for 1 ≤ i ≤ n, satisfying :

‖v1‖ ≤ ‖v2‖ ≤ . . . ≤ ‖vi‖ ≤ 2
n(n−1)

4(n+1−i) · det(L)
1

n+1−i

We can see that we can modify the bound on our vectors by modifying the
dimension and the determinant of the lattice basis.

4 Relaxed models and small roots problem

Attacks on RSA falls into two categories : the attacks on the implemen-
tation or the mathematical attacks. Over the years the mathematical
cryptanalysis on RSA have proven to be hard and thus the cryptosystem
is still considered as secure nowadays (march 2015). But what a researcher
could find interesting is to attack a relaxed model of the RSA problem.
What if we knew “a part” of the message, or what if we knew “an ap-
proximation” of one of the prime, or what if the private exponent was “too
small”...

Let’s imagine for an instant that Alice used RSA to encrypt the same mes-
sage to 3 different people, all using the same “small” public exponent
e = 3 as it’s common to do. There is an attack, called H̊astad’s Broadcast
Attack, that breaks this model.

Alice

David Bob Charles

m3 (mod N1)

m3 (mod N2)

m3 (mod N3)

6

c1 = m3 (mod N1)

c2 = m3 (mod N2)

c3 = m3 (mod N3)

Here the trick is to use the Chinese Remainder Theorem to create an
equation modulo N1 ×N2 ×N3 :

m3 =c1 ·N2N3 · [(N2N3)
−1 (mod N1)]

+c2 ·N1N3 · [(N1N3)
−1 (mod N2)]

+c3 ·N1N2 · [(N1N2)
−1 (mod N3)] (mod N1N2N3)

The method is similar to Lagrange Interpolation. For example let me
quickly explain the first term, this me has to be equal to c1 only when
modulo N1, so we can multiply the term c1 by N2 and N3 so that it cancels
out when modulo N2 or N3. But when it is modulo N1 we don’t want those
terms, so we multiply our term by their inverse modulo N1 as well. Easy
no ? All the variables are known so calculating me (mod N1N2N3) is straight
forward.
Let’s notice that since m < N1,m < N2,m < N3, we must have :

m×m×m = m3 < N1 ×N2 ×N3

So our m3 modulo N1N2N3 is actually just m3 over Z.
To recover the message we just have to compute the cubic root of that big
value we just calculated.

Generalizing it is pretty easy and let’s formulate H̊astad’s findings :

Theorem 1. If c = me (mod N), then we can find m in time polynomial
if |m| < N1/e.

That’s the introduction to our “small root” problem. Now what about if
|m| > N1/e but we know a part of the message m0 :

c = (m0 + x)e (mod N)

Can we efficiently recover x ? That’s the question Coppersmith is answering.

5 Coppersmith

This survey is no replacement for the original papers of Coppersmith[2]
and Howgrave-Graham[3]. If you want to get a real understanding of those
techniques I also advise you to read the survey from May[4].

7

5.1 Known modulus

That being said, let’s dig into Coppersmith’s use of LLL to crack RSA. We’ll
first see one of the problem it solves and build it from there.
Imagine that you know a part of the message : this is called the Stereotyped
Messages Attack. For example you know that Alice always sends her
messages this way : “the password is : cupcake”.
Let’s say we know m0 of the message m = m0 + x0. And of course we don’t
know x0. We have our problem translated to the following polynomial :

f(x) = (m0 + x)e − c with f(x0) = 0 (mod N)

Well. Coppersmith says we can solve this in polynomial time if x0 and e
are small enough :

Theorem 2. Let N be an integer of unknown factorization, which has a
divisor b ≥ Nβ, 0 < β ≤ 1. Let f(x) be a univariate monic polynomial of
degree δ and let c ≥ 1.
Then we can find in time O(cδ5log9(N)) all solutions x0 of the equation

f(x) = 0 (mod b) with |x0| ≤ c ·N
β2

δ

In our case that would mean that for c = 1 and β = 1 we could find a
solution of our previous equation if |x0| ≤ N

1
e . And here we find something

very similar to H̊astad’s Broadcast Attack.
To find the roots of a polynomial over a ring of integers modulo N
is a very difficult task, whereas we possess efficient tools to find roots of
polynomials over the integers (Berlekamp–Zassenhaus, van Hoeij, Hensel
lifting...). Hence Coppersmith’s intuition to look for such a polynomial :

f(x0) = 0 (mod N) with |x0| < X

g(x0) = 0 over Z

But how can we go from f to g here ? The theorem of Howgrave-Graham
gives us a clue :

Theorem 3. Let g(x) be an univariate polynomial with n monomials. Fur-
ther, let m be a positive integer. Suppose that

g(x0) = 0 (mod Nm) where |x0| ≤ X (1)

‖g(xX)‖ < Nm

√
n

(2)

Then g(x0) = 0 holds over the integers.

8

What Howgrave-Graham is saying is that we need to find a polynomial
that shares the same root as our function f but modulo Nm and it has to
have “small” coefficients so that its norm would be “small” as well.

f(x0) = 0 (mod N) with |x0| < X

g(x0) = 0 over Z

g(x0) = 0 (mod Nm)

‖g(xX)‖ < Nm
√
n

Howgrave-Graham’s idea is that we need to find this polynomial g by com-
bining polynomials who also have x0 as roots. The more polynomials we
can play with, the better. We will see later that it is very easy for us to create
polynomials fi such that fi(x0) = 0 (mod Nm). And that is the reason why
we choose to find a polynomial over Nm and not over N .

The LLL reduction has two properties that are useful to us :
– It only does integer linear operations on the basis vectors
– The shortest vector of the output basis is bound (as seen in Pro-

perty 1)

The first point allows us to combine them to build a function that still has
x0 as root modulo Nm :

g(x0) =

n∑
i=1

ai · fi(x0) = 0 (mod Nm) ai ∈ Z

The second point allows us to get Howgrave-Graham’s second point (‖g(xX)‖ <
bm√
n).

But first let’s see how to build the polynomials fi (we will call them gi,j
and hi) we will build our g(x0) = 0 with. Note that δ is the degree of f :

gi,j(x) = xj ·N i · fm−i(x) for i = 0, . . . ,m− 1, j = 0, . . . , δ − 1

hi(x) = xi · fm(x) for i = 0, . . . , t− 1

Those polynomials achieve two things :
– they have the same root x0 but modulo Nm

9

– each iteration introduce a new monomial. That allows us to build a tri-
angular lattice (so that the determinant is easier to calculate)

If you don’t understand how they have the same root x0 remember that
since f(x0) = 0 (mod N) we know that f(x0) = k ·N

Now we just have to create a lattice basis with fi(xX) as row vectors (be-
cause we want them to build a polynomial g(xX) to test Howgrave-Graham
second point).

Let’s take a look at the overview again :

f(x0) = 0 (mod N) with |x0| < X

g(x0) = 0 over Z

g(x0) = 0 (mod Nm)

‖g(xX)‖ < Nm
√
n

generate fi s.t. fi(x0) = 0 (mod Nm)

B =

fi(xX)
...

fn(xX)


LLL

B′ =


b1 = g(xX)

b2
...
bn



Now the shortest vector of B′ (the LLL-reduced basis) should be the coeffi-
cient vector of g(xX).

As I said earlier, the LLL reduction allows us to achieve an upper bound
on this shortest vector :

‖b1‖ ≤ 2
n−1
4 · det(L)

1
n

10

And recall Howgrave-Graham Theorem’s second point :

‖b1‖ = ‖g(xX)‖ < Nm

√
n

Now, to obtain Howgrave-Graham’s second point on our g we have to ma-
nipulate gi,j(xX) and hi(xX) to obtain a small enough determinant. From
the previous equations we bound the determinant :

det(L) < 2−
n(n−1)

4 · n−
n
2 ·Nn·m

The small terms can be considered as “error terms” to simplify our bound :

det(L) < Nm·n

It is from these equations that Coppersmith bounded the value of x in his
theorem. Now if we want to use this algorithm we will have to tweak m and
t until we obtain the correct bounds. Note that the bound on the shortest
vector of the reduced lattice basis is generous. That means that even if we
don’t correctly bound our determinant, we might find an answer.

5.2 Any modulus

Coppersmith method is actually more general : it also works for unknown
modulus.
We will see how the Factoring with High Bits Known Attack works to
understand this part. Imagine the relaxed problem of RSA where we know
an approximation p̃ of one of the prime p. The approximation is bounded as
followed :

|p̃− p| < N
1
4

Now we have an equation with one unknown, modulo another unknown :

p̃ = x0 (mod p)

This gives us an equation f(x) = p̃−x such that f(x0) = 0 (mod p). We can
use that in the Coppersmith algorithm we have seen earlier. This is because
Howgrave-Graham’s theorem works for unknown modulus. Let’s see this
theorem again :

Theorem 4. Let g(x) be an univariate polynomial with n monomials. Fur-
ther, let m be a positive integer. Suppose that

g(x0) = 0 (mod bm) where |x0| ≤ X (1)

‖g(xX)‖ < bm√
n

(2)

Then g(x0) = 0 holds over the integers.

11

We know we can build the fi polynomials as we did before. And here instead
of bounding ‖g(xX)‖ with pm we can bound it with Nβm (since we have
p > Nβ in Coppersmith Theorem). This allows us to formulate problems
with unknown modulus.
And now obtain a bound on the determinant :

det(L) < Nm·n·β

5.3 How were the bounds calculated ?

Let’s go back from the start. Here’s our new general equation with this
time an unknown modulus b :

f(x) = (m0 + x)e − c = 0 (mod b)

we know m0, e, c, N and β. We don’t know b, and x. Here are the relations
we know : {

b ≥ Nβ, 0 < β ≤ 1

|x0| < X

What we want is to find the biggest possible X for which it is possible to
find the root x0 of this polynomial f . So we have to find that upperbound
X such that there exists m and t to construct a lattice basis of dimensions
n = δm + t that will yield satisfactory results after a LLL reduction. This
happens if we respect Howgrave-Graham’s second point, that we couple
with our LLL’s property to bound the determinant :

‖g(xX)‖ < bm√
n

‖v1‖ ≤ 2
n−1
4 det(L)

1
n

 =⇒ 2
n−1
4 det(L)

1
n <

bm√
n

Since we don’t know b, as I explained earlier we use Nβ instead :

=⇒ 2
n−1
4 det(L)

1
n <

Nβm

√
n

And here’s the determinant :

det(L) = N
1
2
δm(m+1)X

1
2
n(n−1)

We can use both equations to bound X as such :

=⇒ X ≤ 1

2
N

2βm
n−1
− δm(m+1)

n(n−1) (1)

12

Earlier I said that we wanted the row vectors in our basis to be helpful.
Meaning their highest monomial, the one appearing in the diagonal thus in
the determinant, had to be less than Nβm. Bounding the last and highest
monomial of the diagonal of the basis gives us :

Xn−1 < Nβm (2)

Coppersmith’s constructive proof showed that using X = 1
2N

β2

δ
−ε we

could satisfy these two previous inequalities for those values :
0 < ε ≤ 1

7β

m =
⌊
β2

δε

⌋
t =

⌊
δm(1

β − 1)
⌋

5.4 Experiments

I used Sage 6.4 in a Virtualbox with 512Mo of RAM and 1 core from an
Intel i7 @ 2.30GHz.
Here are the experiments for the Stereotyped Message Attack :

size of x0 size of N e m t running time

100 512 3 3 0 0.02s
200 1024 3 3 0 0.05s

Here are the experiments for the Factoring with High Bits Known
Attack :

size of |p− p̃| size of N m t running time

110 512 4 4 0.01s
200 1024 4 4 0.03s

6 Boneh-Durfee

6.1 Overview of the method

This survey is no replacement for the original papers of Boneh and Durfee[5]
and Herrmann and May[6].
We’ve seen how Coppersmith found a way of using lattices and the LLL
algorithm to find small roots to particular univariate polynomials. What
about problems that have two unknowns ? Coppersmith gave an heuristic for
finding roots of bivariate polynomials but left it at that. More recently,
Boneh and Durfee have released papers on some RSA attacks that make

13

use of the initial ideas of Coppersmith for finding small roots of bivariate
polynomials.
Let’s introduce the problem :
Boneh and Durfee are telling us we can, most of the time (they released
a heuristic and not a theorem), successfully factor N if the private ex-
ponent d is too small. Precisely if d < N0.292.

Recall how RSA works :

e · d = 1 (mod ϕ(N))

=⇒ e · d = k · ϕ(N) + 1

=⇒ k · ϕ(N) + 1 = 0 (mod e)

=⇒ k · (N + 1− p− q) + 1 = 0 (mod e)

Here the unknowns are k and (−p − q). We can write that problem as a
polynomial with root x0 and y0 :

f(x, y) = x · (A+ y) such that f(x0, y0) = 0 (mod e)

with A = N + 1 and y = −p− q.

Now we use Coppersmith’s heuristic for multivariate polynomials.
Coupled with Howgrave-Graham’s Theorem for bivariate polynomials :

Theorem 5. Let g(x) be an bivariate polynomial with at most n monomials.
Further, let m be a positive integer. Suppose that

g(x0, y0) = 0 (mod em) where |x0| ≤ X and |y0| ≤ Y (1)

‖g(xX, yY)‖ < em√
n

(2)

Then g(x0, y0) = 0 holds over the integers.

But the problem here is that one polynomial is not enough to get the
roots of a bivariate equation. What we need are two polynomials, then we
could use the resultant or a Gröbner basis to find the roots.
Coppersmith proposed to take the two shortest vectors, of the LLL-
reduced basis, as polynomials. Let’s take a look at what it should look from
a distance :

14

f(x0, y0) = 0 (mod e) with |x0| < X and |y0| < Y

g1(x0, y0) = 0 over Z
g2(x0, y0) = 0 over Z

r(x) = resultantx(g1, g2)

g1(x0, y0) = 0 (mod em) and ‖g1(xX, yY)‖ < em√
n

g2(x0, y0) = 0 (mod em) and ‖g2(xX, yY)‖ < em√
n

generate fi s.t. fi(x0, y0) = 0 (mod Nm)

B =

fi(xX, yY)
...

fn(xX, yY)


LLL

B′ =


b1 = g1(xX, yY)
b2 = g2(xX, yY)

...
bn



And once we find the root x0 of r we can re-inject it in g1 to find y0.
This doesn’t always yield a solution. For example, if the two polyno-
mials g1 and g2 are not independent, the resultant will be zero.

Boneh and Durfee proposed a construction of the fi polynomials as fol-
low :

for k = 0, . . . ,m :

gi,k(x) = xi · fk(x, y) · em−k for i = 0, . . . ,m− k
hj,k(x) = yj · fk(x, y) · em−k for j = 0, . . . , t

They called the gi,k x-shifts and the hj,k y-shifts.

By using these polynomials to build the lattice, carefully balancing the va-
riables so that the determinant of the triangular basis doesn’t exceed emn,

15

Boneh and Durfee showed that LLL successfuly yielded useful results if
d < N0.284.

To achieve their improved results of d < N0.292, they showed that using a
sublattice by ignoring some of the y-shifts, the bounds on the shortest
vectors found by LLL were improved.
This is because of the “helpful vectors” notion of Howgrave-Graham. A
vector is helpful if his contribution to the determinant (its monomial that
appears in the diagonal of the lattice basis) is less than em. Boneh and Dur-
fee’s method is to discard all y-shifts when their highest monomial exceeds
em.



1 x xy x2 x2y x2y2 y xy2 x2y3

e2 e2

xe2 e2X
fe e eAX eXY
x2e2 e2X2

xfe eX eAX2 eX2Y
f2 1 2AX 2XY A2X2 2AX2Y X2Y 2

ye2 e2Y
yfe eAXY eY eXY 2

yf2 2AXY A2X2Y 2AX2Y 2 Y 2XY 2 X2Y 3


Boneh-Durfee basis matrix for m = 2, t = 1



1 x xy x2 x2y x2y2 y xy2 x2y3

e2 e2

xe2 e2X
fe e eAX eXY
x2e2 e2X2

xfe eX eAX2 eX2Y
f2 1 2AX 2XY A2X2 2AX2Y X2Y 2

yf2 2AXY A2X2Y 2AX2Y 2 Y 2XY 2 X2Y 3


After removing the damaging y-shifts’ coefficient vectors

Unfortunately by doing this we lose the triangular structure of the basis
and evaluating the determinant of the new rectangular basis is tricky.
Boneh and Durfee developed the notion of Geometrically progressive
matrices to handle these non-triangular lattice basis. Later Blömer and
May took a different approach by noticing that some of the columns could
be removed without affecting the determinant too much, that allowed the
lattice basis to return to a triangular structure. Both those methods are
quite difficult to handle and it’s more recently that Herrmann and May
found a clever and better way :

16

The Unravelled Linearization technique consists in modifying our ini-
tial polynomial f . Done cleverly this will modify the fi so that after removing
the y-shifts, our sublattice basis will directly be triangular.
Herrmann and May propose to do the following substitution on f :

f(x, y) = 1 + xy︸ ︷︷ ︸
u

+Ax (mod e)

This leaves us with the linear polynomial f̄(u, x) = u + Ax (note the
lexicographic order, u before x) and a relation xy = u− 1.
The x-shifts are still constructed as usual :

ḡi,k(u, x) = xi · f̄k · em−k for k = 0, . . . ,m and i = 0, . . . ,m− k

The y-shifts are constructed the same way, but we need to apply our relation
again afterward to completely perform our unravelled linearization :

h̄j,k(u, x, y) = yj · f̄k · em−k for j = 1, . . . , t and k =
⌊m
t

⌋
· j, . . . ,m

They are selected with the notion of “increasing pattern” in mind, so
that using the previous relation xy = u − 1 we end up with a triangular
lattice basis :



1 x u x2 ux u2 u2y

e2 e2

xe2 e2X
f̄e eAX eU
x2e2 e2X2

xf̄e eAX2 eUX
f̄2 A2X2 2AUX U2

yf̄2 −A2X −2AU A2UX 2AU2 U2Y


The same matrix previously, after the unravelled linearization step

Now that we have built a lattice basis, we have to know how we need to
bound our two shortest vectors so that Howgrave-Graham second point
is respected. From LLL’s property :

‖v1‖ ≤ ‖v2‖ ≤ 2
n
4 · det(L)

1
n−1

We need to bound v1 and v2 so that they respect Howgrave-Graham’s theo-
rem second point. This is the bound we end up with on the determinant :

det(L) <
em(n−1)

(n2n)
n−1
2

17

That can be reduced by removing the “error terms” :

det(L) < emn

6.2 How was the bound on d calculated ?

Let’s go back to our first equation :

e · d = k · ϕN + 1 = k · (N + 1− p− q)

Let’s recap what we know :
– p and q should be half the size of N :

log(p)

log(N)
≈ 1

2

=⇒ p, q ≈ N
1
2

– e ≈ N
– d < N δ

The first two are what we usually use in RSA. Our last one is the bound
we are trying to define. Of course we want a δ as big as possible. Now that
we have defined all these, let’s go back to our previous equation and let’s
bound our unknowns :

k · (N + 1︸ ︷︷ ︸
A

+−p− q︸ ︷︷ ︸
s

) (mod e) with

{
|s| ≈ 2N

1
2

|k| < Nδ−1
N−1+2N

1
2

s should be pretty close to our prediction. But k ? It could be way lower,
this incertitude tells us we have the possibility to play with its bound.
Let’s note that s >> k and that reducing the size of our unknown s is a
good idea. Notice that both s and A are even, that allows us to reformulate
our problem with a smaller s :

f(x, y) = x · (A+ y) (mod e) with


x = 2k

y = (−p− q)/2
A = (N + 1)/2

We can now reformulate our bounds and remove the negligible terms :{
|y| ≈ N

1
2

|x| < 2N δ

We do not need to bound them accurately as the LLL property on the
shortest vector bound is a dramatic one.

18

Now for our algorithm we need to fix a m and a t such that dim(L) = n.
For Herrmann and May’s selection of the y-shifts we need m ≥ t so we will
write t = τm with τ < 1.
Remember earlier we said that we need to bound our determinant to obtain
Howgrave-Graham’s Theorem second point, and LLL’s property
gave us this bound :

det(L) < emn

det(L) being a function of e ≈ N , δ, m and t. The bound being a function
of e, m and t.
from Herrmann and May’s proof we end up with this formula as determi-
nant (after removing negligible terms that were calculated for m→∞) :

det(L) = X
1
6
m3
Y

τ2

6
m3
U (1

6
+ τ

3
)m3

e(
1
3
+ τ

2
)m2

with this dimension of the lattice :

dim(L) = n =

(
1

2
+
τ

2

)
m2

We can now develop the previous bound, and we inject our t = τm :

X
1+τ
3
m3
Y

(τ+1)2

6
m3
e(

1
3
+ τ

6
)m3

< e(
1
2
+ τ

2
)m2

for m→∞

We then inject X = eδ and Y = e
1
2 (since we said e ≈ N) in our equation :

(eδ)
1+τ
3
m3

(e
1
2)

(τ+1)2

6
m3
e(
τ+2
6

)m3
< e

1+τ
2
m2

Boneh and Durfee derived an optimized value of τ = (1−2δ) that simplifies
the inequality to :

−1

3
δ2 +

2

3
δ − 1

6
< 0

And thus can be derived the Boneh-Durfee bound :

δ <
1

2
(2−

√
2) ≈ 0.292

6.3 Experiments

My experiments were far from Boneh and Durfee’s. When they took hours
to solve for small m and t, I took seconds. This is mostly due to the gap
of computation power and LLL’s implementation between 1999 and now
(2015) : I used Sage 6.4 in a Virtualbox with 512Mo of RAM and 1 core
from an Intel i7 @ 2.30GHz. I found out that in practice, the bound of X
was often way higher than the root x0, decreasing X until the algorithm

19

worked was a good way to find the roots.
I also found out that increasing m (and t) would increase the running time
of LLL way too much, thus our equation calculated for m→∞ didn’t work
for practical small values m and t.

δ size of N (bits) size of d (bits) m t dim(L) running time

0.25 2048 512 3 1 11 0.5s
0.26 2048 532 3 1 11 1.9s
0.27 2048 553 6 2 33 2m 27s

7 Summary

Boneh and Durfee were the last ones to improve the bound on the low private
exponent problem. At the end of their paper they claimed that “a bound of

d < N
1− 1√

2 cannot be the final answer. It is too unnatural”, emitting the
idea of a more “natural” bound of d < N

1
2 . It was more than 15 years ago.

Coppersmith’s ideas of attacking cryptosystems using the lattice reduction
algorithm LLL (invented in 1982) seem to still have a lot of room for gro-
wing. But at the moment, they are all working in a relaxed version of the
problems, which most of the time are far from the reality.
Without even talking about Coppersmith, LLL seems to have a lot of appli-
cations in Cryptography and we should see it used more and more during
the next years of research.

20

Références

[1] Chris Peikert Lattices in Cryptography, Georgia Tech, Fall 2013 : Lecture
2, 3

[2] Don Coppersmith Finding Small Solutions to Small Degree Polynomials

[3] Nicholas Howgrave-Graham Finding Small Roots of Univariate Modular
Equations Revisited

[4] Alexander May Using LLL-Reduction for Solving RSA and Factorization
Problems

[5] Boneh and Durfee Cryptanalysis of RSA with Private Key d Less Than
N0.292

[6] Herrmann and May Maximizing Small Root Bounds by Linearization and
Applications to Small Secret Exponent RSA

21

coppersmith.py Page 1

import time

debug = True

display matrix picture with 0 and X
def matrix_overview (BB, bound):
 for ii in range (BB.dimensions()[0]):
 a = ('%02d ' % ii)
 for jj in range (BB.dimensions()[1]):
 a += '0' if BB[ii,jj] == 0 else 'X'
 a += ' '
 if BB[ii, ii] >= bound:
 a += '~'
 print a

def coppersmith_howgrave_univariate (pol, modulus, beta, mm, tt, XX):
 """
 Coppersmith revisited by Howgrave−Graham

 finds a solution if:
 * b|modulus, b >= modulus^beta , 0 < beta <= 1
 * |x| < XX
 """
 #
 # init
 #
 dd = pol.degree()
 nn = dd * mm + tt

 #
 # checks
 #
 if not 0 < beta <= 1:
 raise ValueError ("beta should belongs in (0, 1]")

 if not pol.is_monic():
 raise ArithmeticError ("Polynomial must be monic.")

 #
 # calculate bounds and display them
 #
 """
 * we want to find g(x) such that ||g(xX)|| <= b^m / sqrt(n)

 * we know LLL will give us a short vector v such that:
 ||v|| <= 2^((n − 1)/4) * det(L)^(1/n)

 * we will use that vector as a coefficient vector for our g(x)

 * so we want to satisfy:
 2^((n − 1)/4) * det(L)^(1/n) < N^(beta*m) / sqrt(n)

 so we can obtain ||v|| < N^(beta*m) / sqrt(n) <= b^m / sqrt(n)
 (it's important to use N because we might not know b)
 """
 if debug:
 # t optimized?
 print " \n # Optimized t? \n "
 print "we want X^(n−1) < N^(beta*m) so that each vector is helpful"
 cond1 = RR(XX^(nn− 1))
 print "* X^(n−1) = " , cond1
 cond2 = pow(modulus, beta*mm)
 print "* N^(beta*m) = " , cond2
 print "* X^(n−1) < N^(beta*m) \n −> GOOD" if cond1 < cond2 else "* X^(n−1) >=
 N^(beta*m) \n −> NOT GOOD"

 # bound for X
 print " \n # X bound respected? \n "
 print "we want X <= N^(((2*beta*m)/(n−1)) − ((delta*m*(m+1))/(n*(n−1)))) / 2
 = M"
 print "* X =" , XX
 cond2 = RR(modulus^(((2*beta*mm)/(nn− 1)) − ((dd*mm*(mm+ 1))/(nn*(nn− 1)))) / 2
)

coppersmith.py Page 2

 print "* M =" , cond2
 print "* X <= M \n −> GOOD" if XX <= cond2 else "* X > M \n −> NOT GOOD"

 # solution possible?
 print " \n # Solutions possible? \n "
 detL = RR(modulus^(dd * mm * (mm + 1) / 2) * XX^(nn * (nn − 1) / 2))
 print "we can find a solution if 2^((n − 1)/4) * det(L)^(1/n) < N^(beta*m) /
 sqrt(n)"
 cond1 = RR(2^((nn − 1)/ 4) * detL^(1/nn))
 print "* 2^((n − 1)/4) * det(L)^(1/n) = " , cond1
 cond2 = RR(modulus^(beta*mm) / sqrt(nn))
 print "* N^(beta*m) / sqrt(n) = " , cond2
 print "* 2^((n − 1)/4) * det(L)^(1/n) < N^(beta*m) / sqrt(n) \n −> SOLUTION W
ILL BE FOUND" if cond1 < cond2 else "* 2^((n − 1)/4) * det(L)^(1/n) >= N^(beta*m) /
sqroot(n) \n −> NO SOLUTIONS MIGHT BE FOUND (but we never know)"

 # warning about X
 print " \n # Note that no solutions will be found _for sure_ if you don't resp
ect: \n * |root| < X \n * b >= modulus^beta \n "

 #
 # Coppersmith revisited algo for univariate
 #

 # change ring of pol and x
 polZ = pol.change_ring(ZZ)
 x = polZ.parent().gen()

 # compute polynomials
 gg = []
 for ii in range (mm):
 for jj in range (dd):
 gg.append((x * XX)**jj * modulus**(mm − ii) * polZ(x * XX)**ii)
 for ii in range (tt):
 gg.append((x * XX)**ii * polZ(x * XX)**mm)

 # construct lattice B
 BB = Matrix(ZZ, nn)

 for ii in range (nn):
 for jj in range (ii+ 1):
 BB[ii, jj] = gg[ii][jj]

 # display basis matrix
 if debug:
 matrix_overview(BB, modulus^mm)

 # LLL
 BB = BB.LLL()

 # transform shortest vector in polynomial
 new_pol = 0
 for ii in range (nn):
 new_pol += x**ii * BB[0, ii] / XX**ii

 # factor polynomial
 potential_roots = new_pol.roots()
 print "potential roots:" , potential_roots

 # test roots
 roots = []
 for root in potential_roots:
 if root[0].is_integer():
 result = polZ(ZZ(root[0]))
 if gcd(modulus, result) >= modulus^beta:
 roots.append(ZZ(root[0]))

 #
 return roots

##
Test on Stereotyped Messages

coppersmith.py Page 3

print "//////////////////////////////////"
print "// TEST 1"
print "////////////////////////////////"

RSA gen options (for the demo)
length_N = 1024 # size of the modulus
Kbits = 200 # size of the root
e = 3

RSA gen (for the demo)
p = next_prime(2^ int (round (length_N/ 2)))
q = next_prime(p)
N = p*q
ZmodN = Zmod(N);

Create problem (for the demo)
K = ZZ.random_element(0, 2^Kbits)
Kdigits = K.digits(2)
M = [0]*Kbits + [1]*(length_N−Kbits);
for i in range (len (Kdigits)):
 M[i] = Kdigits[i]
M = ZZ(M, 2)
C = ZmodN(M)^e

Problem to equation (default)
P.<x> = PolynomialRing(ZmodN) #, implementation='NTL')
pol = (2^length_N − 2^Kbits + x)^e − C
dd = pol.degree()

Tweak those
beta = 1 # b = N
epsilon = beta / 7 # <= beta / 7
mm = ceil(beta** 2 / (dd * epsilon)) # optimized value
tt = floor(dd * mm * ((1/beta) − 1)) # optimized value
XX = ceil(N**((beta** 2/dd) − epsilon)) # optimized value

Coppersmith
start_time = time.time()
roots = coppersmith_howgrave_univariate(pol, N, beta, mm, tt, XX)

output
print " \n # Solutions"
print "we want to find:" , str (K)
print "we found:" , str (roots)
print ("in: %s seconds " % (time.time() − start_time))
print " \n "

##
Test on Factoring with High Bits Known
##
print "//////////////////////////////////"
print "// TEST 2"
print "////////////////////////////////"

RSA gen
length_N = 1024 ;
p = next_prime(2^ int (round (length_N/ 2)));
q = next_prime(round (pi.n()*p));
N = p*q;

qbar is q + [hidden_size_random]
hidden = 200 ;
diff = ZZ.random_element(0, 2^hidden− 1)
qbar = q + diff;

F.<x> = PolynomialRing(Zmod(N), implementation= 'NTL');
pol = x − qbar
dd = pol.degree()

PLAY WITH THOSE:
beta = 0.5 # we should have q >= N^beta
epsilon = beta / 7 # <= beta/7

coppersmith.py Page 4

mm = ceil(beta** 2 / (dd * epsilon)) # optimized
tt = floor(dd * mm * ((1/beta) − 1)) # optimized
XX = ceil(N**((beta** 2/dd) − epsilon)) # we should have |diff| < X

Coppersmith
start_time = time.time()
roots = coppersmith_howgrave_univariate(pol, N, beta, mm, tt, XX)

output
print " \n # Solutions"
print "we want to find:" , qbar − q
print "we found:" , roots
print ("in: %s seconds " % (time.time() − start_time))

boneh_durfee.py Page 1

import time

debug = True

display stats on helpful vectors
def helpful_vectors (BB, modulus):
 nothelpful = 0
 for ii in range (BB.dimensions()[0]):
 if BB[ii,ii] >= modulus:
 nothelpful += 1

 print nothelpful, "/" , BB.dimensions()[0], " vectors are not helpful"

display matrix picture with 0 and X
def matrix_overview (BB, bound):
 for ii in range (BB.dimensions()[0]):
 a = ('%02d ' % ii)
 for jj in range (BB.dimensions()[1]):
 a += '0' if BB[ii,jj] == 0 else 'X'
 a += ' '
 if BB[ii, ii] >= bound:
 a += '~'
 print a

def boneh_durfee (pol, modulus, mm, tt, XX, YY):
 """
 Boneh and Durfee revisited by Herrmann and May

 finds a solution if:
 * d < N^delta
 * |x| < e^delta
 * |y| < e^0.5
 whenever delta < 1 − sqrt(2)/2 ~ 0.292
 """

 # substitution (Herrman and May)
 PR.<u, x, y> = PolynomialRing(ZZ)
 Q = PR.quotient(x*y + 1 − u) # u = x*y + 1
 polZ = Q(pol).lift()

 UU = XX*YY + 1

 # x−shifts
 gg = []

 for kk in range (mm + 1):
 for ii in range (mm − kk + 1):
 xshift = x^ii * modulus^(mm − kk) * polZ(u, x, y)^kk
 gg.append(xshift)

 gg.sort()

 # x−shifts monomials
 monomials = []

 for polynomial in gg:
 for monomial in polynomial.monomials():
 if monomial not in monomials:
 monomials.append(monomial)

 monomials.sort()

 # y−shifts (selected by Herrman and May)
 for jj in range (1, tt + 1):
 for kk in range (floor(mm/tt) * jj, mm + 1):
 yshift = y^jj * polZ(u, x, y)^kk * modulus^(mm − kk)
 yshift = Q(yshift).lift()
 gg.append(yshift) # substitution

 # y−shifts monomials
 for jj in range (1, tt + 1):
 for kk in range (floor(mm/tt) * jj, mm + 1):
 monomials.append(u^kk * y^jj)

boneh_durfee.py Page 2

 # construct lattice B
 nn = len (monomials)

 BB = Matrix(ZZ, nn)

 for ii in range (nn):

 BB[ii, 0] = gg[ii](0, 0, 0)

 for jj in range (1, ii + 1):
 if monomials[jj] in gg[ii].monomials():
 BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[
jj](UU,XX,YY)

 # check if vectors are helpful
 if debug:
 helpful_vectors(BB, modulus^mm)

 # check if determinant is correctly bounded
 if debug:
 det = BB.det()
 bound = modulus^(mm*nn)
 if det >= bound:
 print "We do not have det < bound. Solutions might not be found."
 diff = (log(det) − log(bound)) / log(2)
 print "size det(L) − size e^(m*n) = " , floor(diff)
 else :
 print "det(L) < e^(m*n)"

 # debug: display matrix
 if debug:
 matrix_overview(BB, modulus^mm)

 # LLL
 BB = BB.LLL()

 # vectors −> polynomials
 PR.<x,y> = PolynomialRing(ZZ)

 pols = []
 for ii in range (nn):
 pols.append(0)
 for jj in range (nn):
 pols[− 1] += monomials[jj](x*y+ 1,x,y) * BB[ii, jj] / monomials[jj](UU,XX,
YY)
 if pols[− 1](xx,yy) != 0:
 pols.pop()
 break

 # find two vectors we can work with
 pol1 = pol2 = 0
 found = False

 for ii, pol in enumerate (pols):
 if found:
 break
 for jj in range (ii + 1, len (pols)):
 if gcd(pol, pols[jj]) == 1:
 print "using vectors" , ii, "and" , jj
 pol1 = pol
 pol2 = pols[jj]
 # break from that double loop
 found = True
 break

 # failure
 if pol1 == pol2 == 0:
 print "failure"
 return 0, 0

 # resultant
 PR.<x> = PolynomialRing(ZZ)

boneh_durfee.py Page 3

 rr = pol1.resultant(pol2)
 rr = rr(x, x)

 # solutions
 soly = rr.roots()[0][0]
 print "found for y_0:" , soly

 ss = pol1(x, soly)
 solx = ss.roots()[0][0]
 print "found for x_0:" , solx

 #
 return solx, soly

##
Test
##

RSA gen options (tweakable)
length_N = 2048
length_d = 0.27

RSA gen (for the demo)
p = next_prime(2^ int (round (length_N/ 2)))
q = next_prime(round (pi.n()*p))
N = p*q
phi = (p− 1)*(q− 1)
d = int (N^length_d)
if d % 2 == 0: d += 1
while gcd(d, phi) != 1:
 d += 2
e = d.inverse_mod((p− 1)*(q− 1))

Problem put in equation (default)
P.<x,y> = PolynomialRing(Zmod(e))
A = int ((N+ 1)/ 2)
pol = 1 + x * (A + y)

and the solutions to be found (for the demo)
yy = (−p −q)/ 2
xx = (e * d − 1) / (A + yy)

#
Default values
you should tweak delta and m. X should be OK as well

delta = 0.27 # < 0.292 (Boneh & Durfee's bound)
X = 2*floor(N^delta) # this _might_ be too much
Y = floor(N^(1/ 2)) # correct if p, q are ~ same size
m = 7 # bigger is better (but takes longer)
t = int ((1−2*delta) * m) # optimization from Herrmann and May
Checking bounds (for the demo)
print "=== checking values ==="
print "* |y| < Y:" , abs (yy) < Y
print "* |x| < X:" , abs (xx) < X
print "* d < N^0.292" , d < N^(0.292)
print "* size of d:" , int (log(d)/log(2))

boneh_durfee
print "=== running algorithm ==="
start_time = time.time()
solx, soly = boneh_durfee(pol, e, m, t, X, Y)

Checking solutions (for the demo)
if xx == solx and yy == soly:
 print " \n === the solutions are correct ==="
else :
 print "=== FAIL ==="

Stats
print ("=== %s seconds ===" % (time.time() − start_time))

