
Mathematical and Computer Modelling 55 (2012) 256–267

Contents lists available at SciVerse ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Fault detection and a differential fault analysis countermeasure for the
Montgomery power ladder in elliptic curve cryptography
Ihor Vasyltsov a, Gokay Saldamli b,∗
a System LSI, Samsung Electronics, Yongin-city, Gyeonggi-do 449-711, South Korea
b Bogazici University, MIS Department, 34342 Bebek, Istanbul, Turkey

a r t i c l e i n f o

Article history:
Received 25 September 2010
Received in revised form 27 February 2011
Accepted 7 June 2011

Keywords:
Montgomery power ladder
Elliptic curve cryptography
Side-channel attack
Countermeasure

a b s t r a c t

We describe a new fault detection method in elliptic curve scalar multiplication
deployments using the Montgomery power ladder. An attack based on the arithmetic
properties of the Montgomery power ladder algorithm could be avoided by a clearly
defined differential fault analysis countermeasure that is extremely efficient against sign-
change fault analysis over prime fields. In order to give a complete analysis of the proposed
countermeasure, our mathematical models are supported by some software routines
implementing various schemes over prime and binary fields. According to our analysis, we
report that the performance of the proposed countermeasuremeets the theoretical bounds
for the checking-at-the-end method, and requires reasonable overhead for the others.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A reliable cryptographic system starts with correct cryptographic primitive computations. In general, bugs,
implementation mistakes, environmental influences, etc., could cause malfunctioning systems/devices that could have a
broader negative effect on the larger parent systems. In particular, with the so-called engineering attacks, cryptanalysts
focus on the fault influences of specific hardware implementations to collect some faulty output. Later, this information is
compared and analyzed with correct results in order to harvest some partial or total compromise of the secret information.
Indeed the described approach defines the so-called differential fault analysis (DFA). The early studies [1–6] discuss the
applicability of DFA attacks to elliptic curve cryptography (ECC) and advocate the necessity of the implementation of DFA
countermeasures in modern ECC signature-generation devices.

By the time simple power analysis (SPA) techniques [7] were introduced, SPA was immediately taken as a serious
threat to the payment systems in use. This attracted the interest of significant number of researchers in the security
community. However, due to the practical complications in the analysis setup, fault attacks have not been considered as an
immediate threat; hence, the research on DFA countermeasures has failed to flourish to a same extent as the side-channel
countermeasures. A recent study by Fan et al. [8] confirms this information by exploring the known side-channel and fault
attacks and related countermeasures. In fact, the same study points out that there is still much to do in DFA research and in
this respect: our study could be considered as a move in this direction. To address the most recent progressive work in the
field, we mention [9], which demonstrates a weak-curve-based analysis aiming to replace the strong curves with weaker
ones by fault injections. This is an elegant countermeasure for twist curves, but it does not give any protection against DFA.
Another work [10] is named as coherence check, which picks a valid pattern and then uses this in verifying the intermediate
or final results in scalar multiplication. In their work [11], Baek and Vasyltsov extended Shamir’s idea of improving RSA-CRT

∗ Corresponding author.
E-mail address: gokay.saldamli@boun.edu.tr (G. Saldamli).

0895-7177/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2011.06.017

http://dx.doi.org/10.1016/j.mcm.2011.06.017
http://www.elsevier.com/locate/mcm
http://www.elsevier.com/locate/mcm
mailto:gokay.saldamli@boun.edu.tr
http://dx.doi.org/10.1016/j.mcm.2011.06.017

I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267 257

(Rivest-Shamir-AdlemanusingChinese Remainter Theorem) to ECC. Later, Joye [12] reported that some faults are undetected
under their countermeasure.

A natural countermeasure against fault detection in ECC is simply checkingwhether a computed point lies on the curve or
not. However, first such an approach is costly, and second, a later result [4] describes that this traditional method is subject
to sign-change fault attacks. In this respect, we propose a new DFA countermeasure that is computationally efficient and
immune to sign-change fault attacks over a prime field. Our method detects faults in elliptic curve scalar multiplication
deployments using the Montgomery power ladder (MPL) algorithm. Attacks based on the arithmetic properties of the
Montgomery power ladder algorithm could be avoided efficiently by the proposed DFA countermeasure defined over prime
and binary extension fields.

2. ECC and the Montgomery power ladder

Abstractly, a finite field consists of a finite set of objects togetherwith two binary operations – addition andmultiplication
– that can be performed on pairs of field elements. These binary operations must satisfy certain compatibility properties.
There is a finite field containing q field elements if and only if q is a power of a prime number, and in fact for each such q
there is precisely one finite field. The finite field containing q elements is denoted by Fq.

For efficient implementation purposes, two types of finite field are of interest: prime finite fields, Fp, with q = p, p an
odd prime, and binary extension fields, F2m , thus with q = 2m for some m ≥ 1. In fact, there exist many different ways to
represent the elements of Fp. A standard representation is given by the elements by the set of integers {1, 2, 3, . . . , p}, with
addition and multiplication modulo p.

An elliptic curve E(Fp) over Fp is determined by parameters a, b ∈ Fp satisfying 4a3 + 27b2 ≠ 0, and consists of the set
of solutions or points P = (x, y) for x, y ∈ Fp to the equation

y2 ≡ x3 + ax+ b mod p (1)

together with an extra point O called the point at infinity. One can show that the set of points on E(Fp) forms a group under
the following addition rule (and a similar rule for point doubling). Let (x1, y1) ∈ E(Fp) and (x2, y2) ∈ E(Fp) be two points
such that x1 ≠ x2. Then (x1, y1)+ (x2, y2) = (x3, y3), where

x3 ≡ λ2
− x1 − x2,

y3 ≡ λ(x1 − x3)− y1, (2)

with λ ≡
y2−y1
x2−x1

. The group is abelian, and all computation is performed within the finite field Fp.
Similar to the Fp case, an elliptic curve E(F2m) over F2m is defined by parameters a, b ∈ F2m satisfying b ≠ 0 and consists

of the set of solutions, or points, P = (x, y) for x, y ∈ F2m to the equation

y2 + xy ≡ x3 + ax2 + b (3)

together with an extra point O called the point at infinity. The set of points on F2m forms a group under the following
addition rule (and, again, a related doubling rule). Let (x1, y1) ∈ F2m and (x2, y2) ∈ F2m be two points such that x1 ≠ x2.
Then (x1, y1)+ (x2, y2) = (x3, y3), where

x3 ≡ λ2
+ λ+ x1 + x2 + a,

y3 ≡ λ(x1 + x3)+ x3 + y1, (4)

with λ ≡
y2+y1
x2+x1

.
The security provided by ECC is guaranteed by the difficulty of the discrete logarithm problem in the elliptic curve group.

The discrete logarithm problem is the problem of finding the least positive number, k, which satisfies the equation

Q = [k]P = P + P + · · · + P  
k times

, (5)

where P and Q are points on the elliptic curve. Naturally, the basic computation – also called point or scalar multiplication
– in ECC is finding the kth (additive) power of an element P in the group. This involves quotients of polynomials in
the coordinates of the points. That is, it relies completely upon calculations in the underlying field. There are certain
simplifications and (sophisticated) tricks to avoid field operations which are particularly onerous [13]. For instance, instead
of employing the affine coordinates used in (1) and (3), utilization of projective coordinate representation following the
mapping

P(x, y) → P(X, Y , Z), (6)

where X = x, Y = y, and Z = z, is a popular choice in ECC realizations. For further details of ECC, we refer to [3,13,6,14].

2.1. Montgomery power ladder

The Montgomery power ladder (MPL) algorithm was originally proposed by Montgomery in 1987 [15]. The algorithm
is very popular in asymmetric cryptology realizations, including digital signature generation, because of its resistance to

258 I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267

simple power analysis (SPA) attack. Due to space limitations, here, we give only a brief description of the algorithm and
refer readers to [15,16] for further details.

Let
∑t−1

i=0 ki2i be the binary expansion of scalar k in the point multiplication Q = [k]P . Initially, we define two series of
variables Lj and Hj as follows:

Lj =
t−1−
i=j

ki2i−j, Hj = Lj + 1. (7)

By carefully arranging the terms, it is possible to get

Lj = 2Lj+1 + kj = Lj+1 + Hj+1 + kj − 1

= 2Hj+1 + kj − 2. (8)

Moreover, putting this into a more closed form gives an iterative process which requires only doubling and additions.

(Lj,Hj) =


(2Lj+1, Lj+1 + Hj+1) if kj = 0
(2Lj+1 + Hj+1, 2Hj+1) if kj = 1.

In an ECC setting, these variables could be mapped into elliptic curve points as follows:

(Lj,Hj) → (P1, P2), (9)

describing a general MPL for ECC scalar multiplication.

Algorithm 1Montgomery power ladder
Require: k = (kt−1, . . . , k1, k0)2 with kt−1 = 1 and P = (x, y).
Ensure: P1 = [k]P = (x3, y3).

1: P1 ← P
2: P2 ← 2P
3: for i = t − 2 to 0 do
4: if ki = 1 then
5: P1 ← P1 + P2; P2 ← 2P2
6: else
7: P2 ← P1 + P2; P1 ← 2P1
8: end if
9: end for

10: return P1 = [k]P = (x3, y3)

Note that, in Algorithm 1, the expressions Pi ← 2Pi and Pi ← P1 + P2 for i = 1, 2 correspond to elliptic curve point
doubling and addition operations, respectively.

2.2. Fast Montgomery power ladder

At first glance, the MPL seems inefficient compared to the standard binary scanning scalar addition in the elliptic curve
group as it has to perform both point addition and doubling operations for every iteration. However, López and Dahab [17]
proposed an ingenious idea called the fast Montgomery power ladder (FMPL) algorithm andmanaged to accelerate the MPL
by considering not using the Y -coordinate calculation (for projective coordinate representation) in scalar multiplication.

To be more specific, the point addition in binary fields (i.e. (4) in affine coordinates) and respective point doubling
operations can be carried out in projective coordinates as follows:

Z3 = (X1Z2 + X2Z1)2

X3 = xZ3 + (X1Z2)(X2Z1)
Z1 = Z2

1X
2
1

X1 = X4
1 + bZ4

1 .

Similarly, such an idea is applicable to prime fields, and the respective point addition and doubling could be written as
follows if (2) is considered in projective space [18].

X3 = 2(X1Z2 + X2Z1)(X1X2 + aZ1Z2)+ 4bZ2
1 Z

2
2 − xD(X1Z2 − X2Z1)2

Z3 = (X1Z2 − X2Z1)2
(10)

X1 = (X2
1 − aZ2

1)2 − 8bX1Z3
1

Z1 = 4X1Z1(X2
1 + aZ2

1)2 + 4bZ4
1 .

I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267 259

Since the Y -coordinate is not involved in the point addition or doubling computations, one has to recover its value from
the computed X and Z coordinates. Such a calculation needs a finite field inversion that could increase the total cost up to
20%. However, it has to be performed only once at the end of scalar multiplication.

3. Fault analysis in ECC

3.1. Fault model

In a DFA attack, an adversary collects some correct and faulty outputs from a cryptographic device by injecting some
intentional errors and then analyzes these outputs in order to obtain some information leakage about the cryptographic
secrets.

The first report on the applicability of DFA to ECC-based public key cryptosystems was announced in [1], which states
that the parameter b in (1) (or (3)) is not involved in the computation of point addition. Later, similar observations were
made for other implementations of scalar multiplication algorithms.

The fact that only one of the ECC parameters is used in the scalar multiplication computation (e.g. in (1)), allows us to
use a special point P̄ ∈ Ē(a, b̄) or P̄ ∈ Ē(ā, b).

Assume that Ē is a weak elliptic curve, whose order has a small (or smooth) factor r , and that the order of P̄ as an element
of Ē is equal to r (i.e. ordĒ(P̄) = r). Now, the discrete logarithms kP̄ mod r are computable in ⟨P⟩ (i.e. the subgroup of
order r generated by P̄). Repeating this process for sufficiently many different points P̄i yields the values of k mod r (where
ri = ordĒ(P̄)) from Q̄i = kP̄i, which soon could be combined by using the Chinese remainder theorem.

Note that fault injections aremore useful if they are induced at the beginning of the scalar multiplication. Otherwise, the
probability of successful attack drops dramatically, and converges to zero if applied after the scalar multiplication. Ciet and
Joye have expand this basic fault analysis model to a more general setting. In their work [2], they consider the possibility of
occurrence of transient and permanent faults in the base point aswell as domain parameters. Additionally they give detailed
guidelines how to use these faults for successful DFA attacks.

3.2. Sign-change fault attack

In their online report [4], Blömer et al. present a successful sign-change fault attack to the NAF-representation of the
secret exponent. Later, in a more mature work [19], the same authors show the applicability of their attack to the MPL as
well.

The basic idea of the attack is to inject a fault on the sign of the elliptic curve point P in order to extract the faulty inverse
point P̄ = −P . Note that, in this case, the traditional DFA countermeasure which verifies whether the output point is on the
curve or not would fail, since the additive inverse lies on the curve, P̄ = (−P) ∈ E. The authors showed that a secret key k
of length n can be recovered with O(n2ml) scalar multiplications with probability bigger than 1/2, wherem is the block size
and l = n

m log 2n is the number of injected sign-change faults to perform the attack.
To avoid a sign-change fault attack, Blömer et al. propose computing two scalar multiplications Q := [k]Ppl over the

curve Epl and R := [k]Pl over a smaller order curve El and suggest checking whether R ≡ Q mod t , where l is a small prime.
However, such a countermeasure does not seem efficient for real-world cryptographic applications as it would possibly
decrease the performance by more than 30%.

As a last remark on these attacks, we note that the applicability of the sign-change attack to binary fields and the FMPL
are still open problems.

3.3. Attack on the branching operator

In their study [20], Yen and Kim present a fault attack to the comparison operation, which can be realized in branching.
To be more specific, the implementation of ‘‘a ?

= b’’ can usually be realized by
SUB a, b (or CMP a, b);
JZ (jump if zero);
Notice that these instructions depend on the zero flag, and an attack on the zero flag can cause a successful DFA attack.

4. DFA countermeasure for ECC

4.1. Traditional countermeasures

To avoidDFA for ECC, various countermeasures have beendeveloped [1–4,13]. Inmost of these proposals, a fault detection
(FD) is followed by an action on the detected fault, as seen in Fig. 1.

For instance, the standard DFA countermeasure which can be applied to any of the known cryptographic systems
computes the same scalar multiplication twice in two independent calculations, and if the outcome of these calculations

260 I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267

Fig. 1. DFA countermeasure architecture.

is the same, it is assumed that no fault has occurred and the calculated value is returned; otherwise no output is generated.
The disadvantage of the basic approach is the duplication of resources (time or area).

Another approach in the FD stage is simply checking the inverse and decidingwhether the input of the forward operation
is equal to the output of the inverse calculation. Here again, the method is applicable to any cryptographic setting, if the
forward and inverse computations are considered as encryption and decryption, respectively. However, the computational
overhead is again significant.

Another FD method, particularly applicable to ECC, is checking whether the faulty point Q̄ is on the curve or not. The
probability of getting a faulty point on E is very low, and the cost of this validation is reasonable. However, such schemes
are not immune against sign-change fault attacks as described in the previous section.

On the other hand, the generic action on faults could mislead the attacker. For instance, the zero output action approach
clears the sensitive information in the registers and outputs the infinity point in case an error is detected, while a point-
diffusion action corrupts the value of the output point, and thus makes the DFA attack infeasible.

4.2. Proposed DFA countermeasure for the MPL

The main idea of the proposed DFA countermeasure relies on the basics of the MPL. In fact, Fisher et al. [5] present a
similar countermeasure for RSA implementations. In this study, we prove that this approach is applicable to ECC and then
utilize it.

A careful analysis of (7) shows us that in a normal (non-faulty) computation the difference between the temporary
variables Hj and Lj is always equal to 1. If the mapping (9) and the initialization of the temporary variables P1 and P2 in
Algorithm 1 are considered, the difference between the temporary points P1 and P2 in the general MPL would always be
equal to the difference between points during initialization. In other words, it is equivalent to the base point P . Therefore,
we can write

Hj − Lj = 1 → P2j − P1j = P. (11)

If this relation is stored during the non-faulty computation, we would be sure about the correctness of the computation
by simply checking the difference of P1 and P2 in any one of the following three equations:

P2 − P1
?
= P, P2 − P ?

= P1 and P1 + P ?
= P2. (12)

To prove this claim, assume that an attacker injects a fault into the point P1j , getting corrupted point P̄1j = P1j + P∆j .
Considering the case for kj = 0, the updated values will be computed as

P1j+1 ← P̄1j + P2j = P1j + P∆j + P2j
= P1j + P∆j + P1j + P

P2j+1 ← 2P2j = 2(P1j + P).

To determine the existence of the fault we simply check whether P2j+1 − P1j+1 is equal to P or not:

P2j+1 − P1j+1 = (2(P1j + P))− (P1j + P∆j + P1j + P)

= P − P∆j ≠ P.

We conclude that fault detection is possible, and for the next iteration kj = 1 we write

P2j+2 ← P1j+1 + P2j+1 = 4P1j + P∆j + 3P
P1j+2 ← 2P1j+1 = 4P1j + 2P∆j + 2P.

Checking for P2j+2 − P1j+2 = P , we have

P2j+2 − P1j+2 = P − P∆j ≠ P.

Therefore, the proposed countermeasure can detect a fault at any iteration (or after) of the scalar multiplication process,
as the other cases can be proved in a similar manner. For fault detection, it is possible to use different checking techniques
including regular, at-the-end, and random. The difference of these techniques is suggested by their names, giving the timing

I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267 261

Algorithm 2 (At-the-end checking MPL)
Require: k = (kt−1, . . . , k1, k0)2 with kt−1 = 1 and P = (x, y).
Ensure: P1 = [k]P = (x3, y3).

1: P1 ← P
2: P2 ← 2P
3: for i = t − 2 to 0 do
4: if ki = 1 then
5: P1 ← P1 + P2; P2 ← 2P2
6: else
7: P2 ← P1 + P2; P1 ← 2P1
8: end if
9: end for

10: if P2 − P1 ≠ P then
11: action on fault
12: end if
13: return P1 = [k]P = (x3, y3)

of the fault-checking process during computation. In this section, we present the checking-at-the-end method, which is the
most common and simplest of these.We present the regular and random checkingmethods in Appendix A for completeness.

Algorithm 2 gives the proposed MPL with checking-at-the-end DFA countermeasure.
This technique performs the checking operation at the end, right after finishing the scalar multiplication. If a fault occur

during scalar multiplication, it naturally1 corrupts the equivalence in (12) and thus the fault will be detected and action on
the fault will be performed.

Note that the comparison operation in the proposed algorithm can also be attacked using the approaches that
have already been discussed in Section 3.3. However, it is possible to avoid these using the so-called ‘‘branchless DFA
countermeasure’’ method proposed by Vasyltsov et al. [21]. The branchless DFA countermeasure for ECC is based on a fault-
diffusion technique in which simultaneous fault detection and action on the fault operations are carried. The main idea is
simply xoring the following operations, as below2:

P1 ← P1 ⊕ (P2 − P1)⊕ P.

The fault-diffusion technique is based on the idea of changing the originally computed point P1 to an unpredictable point
P ′′1 if any fault is detected. If no fault occurs during the computation, then (P2 − P1)⊕ P = 0 as a result of the equivalence
in (12). Thus, the originally computed point P1 remains the same. Otherwise, any fault during the scalar multiplication
computation will cause an inequivalence in (12) (i.e. (P2 − P1) ⊕ P ≠ 0) and the point P ′′1 would hardly be predictable
provided that the faults are random. The following algorithm gives a modified version of Algorithm 2.

Algorithm 3 (MPL with branchless DFA countermeasure)
Require: k = (kt−1, . . . , k1, k0)2 with kt−1 = 1 and P = (x, y).
Ensure: P1 = [k]P = (x3, y3).

1: P1 ← P
2: P2 ← 2P
3: for i = t − 2 to 0 do
4: if ki = 1 then
5: P1 ← P1 + P2; P2 ← 2P2
6: else
7: P2 ← P1 + P2; P1 ← 2P1
8: end if
9: end for

10: return P1 ⊕ (P2 − P1)⊕ P

The computational overhead for the proposed countermeasure is just a single point addition operation which requires
ten finite field multiplications. Additionally, it requires just a few more multiplications for the coordinate normalization
(for example, two finite field multiplications for the projective representations, or four finite field multiplications for the
Jacobian). This is negligible compared to the number of finite field multiplications for the whole scalar multiplication.

1 We reasonably assume that the attacker might not inject two random faults which can satisfy the checking equation.
2 Provided that any elliptic curve point is represented by projective coordinates (X, Y , Z), the XOR operation is performed on their coordinates, which

in fact, have to be normalized to the common Z-coordinate before the operation.

262 I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267

0 1

yes

yes

no

no

fault no fault

FAULT DETECTION

Fig. 2. Computational flow of the proposed fault detection method for the FMPL.

4.3. Fault detection method for the FMPL in ECC

Since the Y -coordinates of the points are not involved in the scalar multiplication computation process, straightforward
implementations of the proposed DFA countermeasures for the FMPL are not possible. The most intuitive way to get the
Y -coordinates of the points P1 and P2 is to perform coordinate conversion, but this conversion requires additional finite
field operations (i.e. about ten multiplications and one inversion per Y -coordinate [17,18]). Although this overhead is not
critical for the checking-at-the-end method, it may cause significant performance loss for some implementations including
the proposed random and regular checking methods.

To solve this problem, we propose to use another method to perform the checking operation in the FMPL case. From (8),
the very first description of the MPL, we get

Hj = 2Lj+1 + kj + 1 = Lj+1 + Hj+1 + kj
= 2Hj+1 + kj − 1. (13)

This equation allows us to propose an alternative relation for the checking process:

Hj = Lj + 1 2Hj+1 = Hj + 1|if kj=0,

which can be mapped into the elliptic curve point’s relations as follows:

Hj = Lj + 1 → P2j = P1j + P
2Hj+1 = Hj + 1|if kj=0 → 2P2j+1 = P2j + P|if kj=0.

As mentioned in Section 2.2, in order to calculate the X-coordinate of the sum of two points P1 and P2 without using the
Y -coordinates, the knowledge of the difference of these points PD = P2− P1 is needed. That is why for computing the above
equation for (P1j + P) term what we need to know is the difference point PD = (P1j − P), in addition to the part we know.
Careful examination of Eq. (13) shows us that

Lj − 1 = 2Lj+1 + kj + 1|if kj=1 = 2Lj+1,

and thus, after mapping into the elliptic curve point relations, we have

PD = P1j − P = 2P1j+1 .

Hence, to compute 2P2j+1 (for kj = 0), we need to store the value of P2j+1 (from the previous iteration) and to perform the
elliptic curve point doubling operation.

With the above mathematical analysis, we introduced two additional variables and developed a fault detection method.
To be specific, in the FMPL case, the elliptic curve point addition operation is based on the three input parameters (namely
adding point, added point, and difference point). In Fig. 2, the addition operation is marked as ADD(PA, PB, PC), where PA is
the adding point, PB is the added point, and PC is the difference point.

Observe from Fig. 2 that the values of temporary points P1 and P2 are involved in the fault detection, which shows the
ability to detect a fault in any computed point during scalar multiplication.

4.4. Point addition formula for fault detection in the FMPL

Since XD = x, and ZD = 1, the point addition computation in prime fields (10) involves the X-coordinate of the difference
point alone. However, this is not correct for the developed fault detection method in the FMPL [22]. Therefore, we outline

I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267 263

Fig. 3. The flow of the proposed fault detection method for the FMPL in prime fields.

somemodifications to the traditional ADD equation as follows. Note that, for the proposed fault detection method, the base
point P is originally defined in affine coordinates, so we assume that Z2 = 1.

X3 = ZD[2(X1 + X2Z1)(X1X2 + aZ1)+ 4bZ2
1] − XD(X1 − X2Z1)2

Z3 = ZD(X1 − X2Z1)2.

In Fig. 3, the computational flow to realize the above equation has been illustrated. Note that, for a polynomial basis,
the ECC finite field squaring operation can be substituted by multiplications, so the total number of required finite field
multiplications is 10.

Similarly, the following adjustment could be done for binary extension fields [23] (assuming that Z2 = 1):
Z3 = ZD(X1 + X2Z1)2

X3 = XD(X1 + X2Z1)2 + ZDX1X2Z1.

Since the finite field squaring operation could be substituted by multiplication and shift operations for polynomial
and optimal normal basis (ONB) cases respectively, the total number of required finite field multiplications can easily be
calculated from Fig. 4 as 5 for the ONB and 6 for the polynomial basis.

4.5. The FMPL with DFA countermeasure in ECC

The above analysis allows us to introduce a DFA countermeasure for the FMPL in ECC use. In this respect, Algorithm
4 presents an FMPL with checking-at-the-end DFA countermeasure. Notice that to realize Algorithm 4 one would need
two additional temporary points, T1 and T2. For completeness, we present the FMPL with regular and random checking
countermeasures in Appendix B.

5. Security analysis

5.1. Resistance to traditional DFA attack

In order to have a realistic analysis of our proposed DFA countermeasure, we adopt the terms and notions of [24] to our
needs. To be informative, the authors mentioned four possible fault attack models, namely precise bit errors (sign-change
fault attack is not included), precise byte errors, unknown byte errors, and random errors. It is obvious that the realization
of precise bit errors is not trivial and requires an advanced attacker having some costly experimental setting. On the other
hand, random error insertion seems easier and more realistic.

264 I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267

Fig. 4. The flow of the proposed fault detection method for the FMPL in binary fields.

Algorithm 4 (At-the-end branchless FMPL)
Require: k = (kt−1, . . . , k1, k0)2 with kt−1 = 1 and P = (x, y).
Ensure: P1 = [k]P = (x3, y3).

1: P1 ← P
2: P2 ← 2P
3: for i = t − 2 to 0 do
4: T1 ← P1; T2 ← P2
5: if ki = 1 then
6: P2 ← 2P2; P1 ← P1 + T2
7: else
8: P1 ← 2P1; P2 ← T1 + P2
9: end if

10: end for
11: if ki = 1 then
12: T1 ← 2T1; T2 ← P1 + P
13: return P1 ⊕ P2 ⊕ T2
14: else
15: T2 ← 2T2; T1 ← P2 + P
16: return P1 ⊕ T2 ⊕ T1
17: end if

For the security analysis, we consider the precise byte errormodel as themost realistic and dangerous fault attack [25,26].
Such amodel assumes that attackers could inject single byte errors any time theywant but could only determine the location
of the faulty byte and not the bits (i.e. the position of the flawed bits on the faulty bytes cannot be settled by the attacker).
This means that that new faulty value can only be known with the probability 2−8 by the attacker (we assume that faults
are uniformly distributed, i.e. the probability of inserting faults is equivalent for every possible value).

Even though injecting a fault into a byte is more realistic, to bypass the proposed DFA countermeasures, the attacker has
to keep the equality of (12), which requires modifying both points P1 and P2. Since to represent an elliptic curve point one
needs the coordinates (X, Y , Z) and (X, Z) in theMPL and the FMPL, respectively, one has to inject faults into six registers for

the MPL and four registers for the FMPL. Therefore, the probability of a successful attack can be estimated as


1
28

6
= 2−48

and


1
28

4
= 2−32 for the MPL and the FMPL, respectively. In other words, an attacker has to perform up to 248 and 232

faulty computation for the MPL and the FMPL correspondingly in order to have a successful DFA attack, which can again be
considered as infeasible.

I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267 265

5.2. Resistance to sign-change fault attack

As mentioned in Section 3.2, a sign-change fault attack is applicable to MPL-based scalar multiplication in prime fields.
Therefore, in this section, we consider the resistance of the proposed DFA countermeasure to this attack. Recall that, in
order to bypass the proposed DFA countermeasure, the attacker has to modify more than one point to satisfy the equality
P2 − P1 = P in calculations. As most realizations of MPL in prime field use Jacobian coordinate representations for
implementation of point doubling and mixed Jacobian–affine coordinate representations for point addition, we consider
the following equations for realization of these operations [3], where λ = Y2Z3

1 − Y1:
X3 = (3X2

1 + aZ4
1)2 − 8X1Y 2

1

Y3 = (3X2
1 + aZ4

1)(4X1Y 2
1 − X3)− 8Y 4

1

Z3 = 2Y1Z1

(14)


X3 = λ2

− (X2Z2
1 − X1)

2(X1 + X2Z2
1)

Y3 = λ(X1(X2Z2
1 − X1)

2
− X3)− Y1(X2Z2

1 − X1)
3

Z3 = λZ1.

A sign-change fault attack inserts the inverse of a faulty point P̄ = −P into the curve equation (i.e. P̄(X, Y , Z) =
P(X,−Y , Z) in prime fields). Careful examination of the point doubling operation (14) shows that injecting a faulty
Y -coordinate corrupts the Z-coordinate of the computed point, i.e. P3 ≠ P̄3.

On the other hand, note that,while computing theX-coordinate in the point addition operation, the termλ = (Y2Z3
1−Y1)

2

is involved, and if any one of the Y -coordinates is inverted, it will corrupt the X- and Y -coordinates of the computed point.
In the other case, if the attacker inverts both of the Y -coordinates, then the Y -coordinate of the computed point will be
corrupted due to the term−Y1(X2Z2

1 − X1)
3, and hence the faulty and correct points will differ, P3 ≠ P̄3.

Note that this would cause a spreading fault diffusion in scalarmultiplication using theMPL. Hence, the corrupted output
would be detected, as was shown in Section 4.2.

6. Conclusion

We have described a new fault detection method for elliptic curve scalar multiplication deployments using the
Montgomery power ladder. The proposed method allows one to build efficient and secure DFA countermeasure for the
MPL and FMPL in prime and binary fields. According to our security analysis based on respected attack models, a successful
attack to our countermeasure would need more than 248 trials according to the chosen attack model. Such number of trials
demands very skillful attackers, Therefore, we claim that the security level of the proposed method is satisfactory as the
targeted applications are considered.

In order to implement the DFA countermeasure for the FMPL, special equations to realize point addition in prime and
binary fields have been developed. Additionally, to resist potential attacks on the branching operator, a modification of the
branchless DFA countermeasure is given for the proposed method. According to our cost analysis, the new countermeasure
requires only ten finite field multiplications for theMPL in prime fields. This result corresponds to roughly 5% overhead, and
hence, compared to the previous results for the overhead (ranging from 20% to 30%) given above, ourmethod gives themost
efficient technique for avoiding sign-change fault attacks.

On the basis of the proposed algorithm, software routines for scalar multiplication in prime and binary fields have
been developed. The efficiency analysis on profiling information showed that the performance overhead is reasonable and
acceptable to theoretical assumptions. As futurework,we aim to combine this countermeasurewith DPA (differential power
analysis) countermeasures, since in a real-world realization resistance to both DPA and DFA would be required.

Appendix A. Regular and random checking DFA countermeasure for the MPL

In addition to the checking-at-the-end DFA countermeasure presented in Section 4.2, here we present our regular and
random checking methods. We start with the regular checking technique, which performs the checking operation in every
iteration of the scalar multiplication, as shown below.

The advantage of regular checking comes from the early elimination of the fault and following immediate action on it.
On the other hand, the random checking technique performs the checking operation randomly during the scalar

multiplication. To be more specific, the checking operation is performed only when the ‘‘check’’ variable gets the value
equal to 1.

Notice that, in this implementation, the performance losswill be less than that in the regular checking technique. Another
advantage of the proposed random checking DFA countermeasure method is the generated timing difference. This is useful
for increasing the complexity of the power analysis, since it increases the number of trials.

266 I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267

Algorithm 5 (Regular checking MPL)
Require: k = (kt−1, . . . , k1, k0)2 with kt−1 = 1 and P = (x, y).
Ensure: P1 = [k]P = (x3, y3).

1: P1 ← P
2: P2 ← 2P
3: for i = t − 2 to 0 do
4: if ki = 1 then
5: P1 ← P1 + P2; P2 ← 2P2
6: else
7: P2 ← P1 + P2; P1 ← 2P1
8: end if
9: if P2 − P1 ≠ P then

10: action on fault
11: end if
12: end for
13: return P1 = [k]P = (x3, y3)

Algorithm 6 (Random checking MPL)
Require: k = (kt−1, . . . , k1, k0)2 with kt−1 = 1 and P = (x, y).
Ensure: P1 = [k]P = (x3, y3).

1: P1 ← P
2: P2 ← 2P
3: for i = t − 2 to 0 do
4: if ki = 1 then
5: P1 ← P1 + P2; P2 ← 2P2
6: else
7: P2 ← P1 + P2; P1 ← 2P1
8: end if
9: check← rand() mod 2

10: if check = 1 then
11: if P2 − P1 ≠ P then
12: action on fault
13: end if
14: end if
15: end for
16: return P1 = [k]P = (x3, y3)

Algorithm 7 (Regular branchless FMPL)
Require: k = (kt−1, . . . , k1, k0)2 with kt−1 = 1 and P = (x, y).
Ensure: P1 = [k]P = (x3, y3).

1: P1 ← P
2: P2 ← 2P
3: for i = t − 2 to 0 do
4: T1 ← P1; T2 ← P2
5: if ki = 1 then
6: P2 ← 2P2; P1 ← P1 + T2
7: else
8: P1 ← 2P1; P2 ← T1 + P2
9: end if

10: if ki = 1 then
11: T1 ← 2T1; T2 ← P1 + P
12: return P1 ⊕ P2 ⊕ T2
13: else
14: T2 ← 2T2; T1 ← P2 + P
15: return P1 ⊕ T2 ⊕ T1
16: end if
17: end for

I. Vasyltsov, G. Saldamli / Mathematical and Computer Modelling 55 (2012) 256–267 267

Appendix B. Regular and random checking DFA countermeasure for the FMPL

Similar to the MPL case, regular and random checking methods can be applied to the FMPL DFA countermeasure. The
following algorithm outlines the branchless regular checking technique for the FMPL.

Finally, we present the FMPL with random checking DFA countermeasure as follows.

Algorithm 8 (Random branchless FMPL)
Require: k = (kt−1, . . . , k1, k0)2 with kt−1 = 1 and P = (x, y).
Ensure: P1 = [k]P = (x3, y3).

1: P1 ← P
2: P2 ← 2P
3: for i = t − 2 to 0 do
4: T1 ← P1; T2 ← P2
5: if ki = 1 then
6: P2 ← 2P2; P1 ← P1 + T2
7: else
8: P1 ← 2P1; P2 ← T1 + P2
9: end if

10: check← rand() mod 2
11: if check = 1 then
12: if ki = 1 then
13: T1 ← 2T1; T2 ← P1 + P
14: return P1 ⊕ P2 ⊕ T2
15: else
16: T2 ← 2T2; T1 ← P2 + P
17: return P1 ⊕ T2 ⊕ T1
18: end if
19: end if
20: end for

References

[1] I. Biehl, B. Meyer, V. Müller, Differential fault attacks on elliptic curve cryptosystems, in: Advances in Cryptology CRYPTO’00, Santa Barbara, CA, USA,
pp. 131–146.

[2] M. Ciet, M. Joye, Elliptic curve cryptosystems in the presence of permanent and transient faults, Designs, Codes and Cryptography 36 (2005) 33–43.
[3] D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography, Springer-Verlag, 2003.
[4] J. Blömer, M. Otto, J.-P. Seifert, Sign change fault attacks on elliptic curve cryptosystems, Cryptology ePrint Archive, Report 2004/227, IACR, 2004.

Available online at: http://eprint.iacr.org/2004/227.pdf.
[5] C. Giraud, An RSA implementation resistant to fault attacks and to simple power analysis, IEEE Transactions on Computers 55 (2006) 1116–1120.
[6] I.F. Blake, G. Seroussi, N.P. Smart, Advances in Elliptic Curves in Cryptography, Cambridge University Press, 2004.
[7] P. Kocher, Timing attacks on implementations of Diffie–Hellman, RSA, DSS, and other systems, in: Advances in Cryptology CRYPTO’96, Santa Barbara,

CA, USA, pp. 104–113.
[8] J. Fan, X. Guo, E. DeMulder, P. Schaumont, B. Preneel, I. Verbauwhede, State-of-the-art of secure ECC implementations: a survey on known side-channel

attacks and countermeasures, in: Hardware-Oriented Security and Trust, HOST, IEEE International Symposium on, 2010, pp. 76–87.
[9] P. Fouque, R. Lercier, D. Real, F. Valette, Fault attack on elliptic curve Montgomery ladder implementation, in: Fifth International Workshop on Fault

Diagnosis and Tolerance in Cryptography—FDTC’08, pp. 92–98.
[10] A. Dominguez-Oviedo, On fault-based attacks and countermeasures for elliptic curve cryptosystems, Ph.D. Thesis, University of Waterloo, 2008.
[11] Y.-J. Baek, I. Vasyltsov, How to prevent DPA and fault attack in a unified way for ECC scalar multiplication—ring extension method, in: Information

Security Practice and Experience, ISPEC2007, in: LNCS, vol. 4464, pp. 225–237.
[12] M. Joye, On the security of a unified countermeasure, in: Fifth International Workshop on Fault Diagnosis and Tolerance in Cryptography—FDTC’08,

pp. 87–91.
[13] I.F. Blake, G. Seroussi, N.P. Smart, Elliptic Curves in Cryptography, Cambridge University Press, 1999.
[14] IEEE, P1363: Standard specifications for public-key cryptography, Draft Version 13, 1999.
[15] P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Mathematics of Computation 48 (1987) 243–264.
[16] M. Joye, S.-M. Yen, The Montgomery powering ladder, in: CHES 2002, in: LNCS, Springer-Verlag, 2002, pp. 291–302.
[17] J. López, R. Dahab, Fast multiplication on elliptic curves over GF(2m) without pre-computation, in: Proceedings of International Workshop on

Cryptographic Hardware and Embedded Systems, CHES’99, pp. 316–327.
[18] W. Fisher, C. Giraud, E.W. Knudsen, J.-P. Seifert, Parallel scalar multiplication on general elliptic curves over Fp hedged against non-different side-

channel attacks, Cryptology ePrint Archive, Report 2002/7, IACR, 2002. Available online at: http://eprint.iacr.org/2002/007.pdf.
[19] J. Blömer, M. Otto, J.-P. Seifert, Sign change fault attacks on elliptic curve cryptosystems, in: FDTC 2006, in: LNCS, vol. 4236, 2006, pp. 36–52.
[20] S.-M. Yen, D. Kim, Cryptanalysis of two protocols for RSA with CRT based on fault infection, in: FDTC 2006, in: LNCS, vol. 4236, 2006, pp. 53–61.
[21] I. Vasyltsov, Y.-J. Baek, H.-K. Son, Branchless DFA countermeasuremethod for ECC, in: Pre-Proceedings of 6-th InternationalWorkshop on Information

Security Applications WISA 2005, Jeju Island, S. Korea, pp. 429–439.
[22] I. Vasyltsov, J.-H. Hwang, Apparatus for performing a fault detection operation and method thereof, US Patent Application 2008003144, 2008.
[23] I. Vasyltsov, Apparatus for performing a fault detection operation and method thereof, US Patent Application, 20080031444, 2008.
[24] M. Ciet, M. Joye, Practical fault countermeasure for Chinese remaindering based RSA, Presented at FDTC’05, 2005.
[25] J. Blömer, M. Otto, J.-P. Seifert, A new CRT-RSA algorithm secure against Bellcore attacks, in: CCS 2003, ACM SIGSAC, ACM Press, 2003, pp. 311–320.
[26] S.P. Skorobogatov, R.J. Anderson, Optical fault induction attacks, in: 4th International Workshop on Cryptographic Hardware and Embedded Systems,

CHES’02, Springer-Verlag, 2003, pp. 2–12.

http://eprint.iacr.org/2004/227.pdf
http://eprint.iacr.org/2002/007.pdf

	Fault detection and a differential fault analysis countermeasure for the Montgomery power ladder in elliptic curve cryptography
	Introduction
	ECC and the Montgomery power ladder
	Montgomery power ladder
	Fast Montgomery power ladder

	Fault analysis in ECC
	Fault model
	Sign-change fault attack
	Attack on the branching operator

	DFA countermeasure for ECC
	Traditional countermeasures
	Proposed DFA countermeasure for the MPL
	Fault detection method for the FMPL in ECC
	Point addition formula for fault detection in the FMPL
	The FMPL with DFA countermeasure in ECC

	Security analysis
	Resistance to traditional DFA attack
	Resistance to sign-change fault attack

	Conclusion
	Regular and random checking DFA countermeasure for the MPL
	Regular and random checking DFA countermeasure for the FMPL
	References

