
On the Security of Fresh Re-keying to
Counteract Side-Channel and Fault Attacks

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, and Florian Mendel

IAIK, Graz University of Technology, Austria

Abstract. At AFRICACRYPT 2010 and CARDIS 2011, fresh re-keying
schemes to counter side-channel and fault attacks were introduced. The
idea behind those schemes is to shift the main burden of side-channel
protection to a re-keying function g that is easier to protect than the
main block cipher. This function produces new session keys based on the
secret master key and random nonces for every block of message that
is encrypted. In this paper, we present a generic chosen-plaintext key-
recovery attack on both fresh re-keying schemes. The attack is based on
two observations: Since session key collisions for the same message are
easy to detect, it is possible to recover one session key with a simple
time-memory trade-off strategy; and if the re-keying function is easy to
invert (such as the suggested multiplication constructions), the attacker
can use the session key to recover the master key. The attack has a com-
plexity of about 2 · 2n/2 (instead of the expected 2n) for an n-bit key.
For the typically employed block cipher AES-128, this would result in
a key-recovery attack complexity of only 265. If weaker primitives like
80-bit PRESENT are used, even lower attack complexities are possible.

Keywords: side-channel attacks, fresh re-keying, key-recovery attack

1 Introduction

The design of efficient and effective countermeasures against side-channel and
fault attacks is a very challenging task. In fact, more than 15 years ago a kind
of an arms race between attackers and designers of countermeasures started and
still has not come to an end. In the early years, the main goal of designers of
embedded systems was to engineer systems in such a way that they do not leak
side-channel information at all [18], or to randomize the power consumption by
masking techniques [2]. However, over the years it has become more and more
clear that such countermeasures are very expensive to implement for settings
with high security requirements. An overview of costs for countermeasures can
for example be found in [11].

The main driver for these costs is the fact that in typical settings an attacker
can observe the execution of a cryptographic algorithm multiple times with the
same key. A good example for such a setting is the mutual authentication of
two communicating parties via a challenge-response protocol. In such a setting,
the attacker can send an arbitrary number of challenges to a device in order to



obtain an arbitrary number of side-channel measurements or to induce faults to
generate pairs of faulty and correct ciphertexts. During each execution of the
algorithm, the attacker learns information about the secret key and accumulates
this information. This is the basic idea of differential power analysis (DPA) [9]
as well as differential fault attacks (DFA) [3].

In [12,13], Medwed et al. propose a re-keying scheme that prevents DPA and
DFA attacks by preventing multiple executions of an algorithm with the same
key. The basic idea of this re-keying scheme is to never use a long-term key k
directly in a cryptographic algorithm, but to derive a fresh session key k∗ from
k upon each invocation of the algorithm. In fact, for each invocation a random
nonce is generated and used in a key derivation function g to generate a session
key k∗ that is then used by the cryptographic algorithm. This construction
prevents an attacker from performing differential attacks on the cryptographic
algorithm and this reduces the effort for countermeasures significantly. However,
while the cryptographic algorithm needs less protection in this construction, it
is clear that it is possible to mount differential attacks on the key derivation
function g. Hence, this re-keying approach obviously only pays off in practice
if it is significantly easier to protect g against differential attacks than it is to
protect the original algorithm.

Medwed et al. provide several arguments for this in [12,13]. In fact, they argue
that it is not necessary to have a cryptographic algorithm for the key derivation
and propose to use a modular multiplication for the key derivation. A modular
multiplication can be protected against differential attacks in a straightforward
and efficient way by using blinding techniques [11].

The proposal of Medwed et al. triggered several follow-up works. In fact,
several articles [1, 4, 7] treat the question of how to construct a key derivation
function that can be implemented efficiently and that at the same time provides
a high level of protection against differential attacks. Finding such a function is
a central research question in the field of side-channel attacks and countermea-
sures. This research question is in particular relevant for low-cost systems, such
as RFIDs, that typically rely on communication protocols based on symmetric
key cryptography. A key derivation function that can be protected efficiently
allows to do authentication and session-key derivation based on a symmetric
cipher without the need to protect it against differential side-channel and fault
attacks. Such a construction can also be used to negotiate a session key that is
then used in a leakage-resilient mode of operation [16] for communication.

Our contribution. In this paper, we show that the requirements for the key
derivation function that have been formulated in [12, 13] are not sufficient. In
fact, we present a simple key-recovery attack on the fresh re-keying schemes pro-
posed in [12, 13]. The basic idea of the attack is that since the scheme changes
the block cipher key for every encrypted message block, a time-memory trade-off
strategy is possible. An adversary can recover a session key by requesting multi-
ple encryptions of the same message (under different unknown session keys) and
searching for collisions with a table of pre-computed encryptions under known



session keys. We also demonstrate how knowledge of one or a few session keys
allows to recover the master key for the proposed re-keying functions.

This chosen-plaintext key recovery attack has a complexity as low as 2 · 2n/2
with similar memory requirements, while the complexity should ideally be 2n.
Due to the properties of the function g (that derives the session key from the
master key and random nonces) proposed for these schemes, the master key can
be recovered out of one or more recovered session keys. Our attack allows a free
trade-off between memory (precomputation) and time/number of queries (online
phase), and as such can be tailored to different attack scenarios. In all variants,
it is significantly more efficient than Hellman’s generic time-memory trade-off.

Outline. The remainder of the paper is organized as follows. We describe the
generic construction of the fresh re-keying scheme by Medwed et al. in Section 2.
We present our generic key-recovery attack in Section 3 and discuss how the
scheme might be fixed in Section 5. Moreover, we give a brief outline to the
application of the presented attacks to other fresh re-keying schemes in Section 6.
Finally, we conclude in Section 7.

2 Fresh re-keying schemes of Medwed et al.

The basic idea of the re-keying schemes described in this section is to perform
every encryption under a new session key k∗ to limit the available side-channel
information during the encryption for one key. By doing so, the requirements to
limit the leakage of side-channel information for the cipher in use can be relaxed.
In this section, we describe the two re-keying schemes presented in [13] and [12].

2.1 Basic re-keying scheme (AFRICACRYPT 2010)

The scheme from AFRICACRYPT 2010 [13] targets scenarios where one of the
two communication parties only allows limited support for side-channel protec-
tion mechanisms. Such a scenario is the communication between an RFID tag
and a reader. RFID tags are low cost and low performance devices. Therefore,
no overly expensive countermeasures can be included in the RFID tag’s block ci-
pher implementation, whereas the protection mechanisms on the more expensive
reader can be more complex.

Fig. 1 shows the working principle of the re-keying scheme. This scheme uses
two functions: the re-keying function g(k, r) to derive new session keys, and
the block cipher E(k∗,m) to encrypt message blocks. For every message block
m, a new public nonce r has to be randomly generated on the tag. From this
nonce r and the secret master key k, a new session key k∗ is then generated
via k∗ = g(k, r). The session key k∗ is then used to encrypt one message block
c = E(k∗,m). With the help of the publicly known r and the master key k, the
reader is able to decrypt c to m = E−1(k∗, c).

Since the reader cannot contribute to the nonce, an attacker that imperson-
ates the tag can hold the nonce r constant for several different decryptions and



g

E

r

k

m

k∗

Tag

g

E−1

k

k∗

Reader

m
c

Fig. 1. Structure of the basic re-keying scheme from AFRICACRYPT 2010 [13].

increase the available side-channel information for the reader’s implementation.
This means that we need different levels of protection for the block cipher im-
plementation E on the reader and on the tag. Medwed et al. argue [13] that
both g and E have to be protected against side-channel attacks in the reader’s
implementation. However, for the tag, only g needs full protection, whereas E
does not need to be protected against differential power analysis.

An open question for this re-keying scheme is how to find a suitable function
g. In [13], Medwed et al. list six required properties for g:

1. Good diffusion of k.
2. No need for synchronization between parties, i.e., g should be stateless.
3. No additional key material, i.e., k and k∗ should be the same size.
4. Little hardware overhead.
5. Easy to protect against side channel attacks.
6. Regularity.

As we show in Section 3, adding another property to the list is necessary:

7. Hard to invert, i.e., it should be hard to recover k from k∗, r.

Medwed et al. [13] propose the following modular multiplication as a specific
instance of g:

g : (F28 [y]/p(y))2 → F28 [y]/p(y), (k, r) 7→ k · r,

where · denotes polynomial multiplication in F28 [y] modulo p(y). The polynomial
p(y) is defined as p(y) = yd + 1 with d ∈ {4, 8, 16} for 128-bit master keys k
(typically d = 16).

Since F28 [y]/p(y) is not a field, but only a ring, and zero divisors exist, g(k, ·)
it not necessarily bijective for any k 6= 0. Master keys k that are zero divisors (not
co-prime to p(y)) can be considered weak keys since they generate a smaller key
space for k∗. Medwed et al. state in [13] that only a fraction of all possible keys
k are such weak keys, and that the reduction of the key-space if weak keys are



excluded can be neglected. The same holds true for the nonce r, and randomly
generated values for r are unlikely to be ‘weak nonces’.

Note that if r is co-prime to p(y), r−1 can be calculated easily. Now we
can define g′, the inverse function to g, easily via k = g′(k∗, r) = k∗ · r−1.
Thus, the master key k can be calculated from a known session key k∗ and the
corresponding nonce r. We will make use of the function g′ in the attack of
Section 3.

2.2 Advanced re-keying scheme for multiple parties (CARDIS 2011)

The basic scheme Medwed et al. proposed at AFRICACRYPT 2010 [13] (Sec-
tion 2.1) only allows low cost side-channel countermeasures for one of the two
communication parties. To overcome this drawback, Medwed et al. proposed a
second scheme at CARDIS 2011 [12]. This scheme is suitable for multi-party com-
munication (with a common, shared secret key) and allows cheaper side-channel
countermeasures for all parties. For clarity, we focus on two-party communica-
tion, but the attack can easily be generalized for n parties.

Fig. 2 illustrates the scheme for two-party communication. In contrast to the
scheme of Section 2.1, both communication parties are involved in the generation
of the session key k∗ by contributing a randomly generated nonce.

g

E

r

k

m

k∗

Party 1

g

E−1

k∗

Party 2

m
c

s

`
k
`

Fig. 2. Structure of the multi-party re-keying scheme from CARDIS 2011 [12] for two
parties.

In [12], Medwed at al. propose two different re-keying schemes. The first
one uses n different (common, secret) keys for an n-party communication. Each
party contributes a random nonce, which is combined with one of the n keys.
In the case of a two-party communication, the session key is k∗ = k · r + ` · s
(see Fig. 2), where k and ` are the secret master keys. r is the public nonce
randomly generated by party 1, and s is the public nonce randomly generated
by party 2. The ring operations + and · are defined over F28 [y]/p(y), as in the
AFRICACRYPT paper.



The second proposed scheme [12] uses only one master key k, and expands
this to n keys by using powers of k. For the two-party case, the session key is
computed as k∗ = r ·k+s ·k2. In general, the n nonces are used as coefficients of
a polynomial that is evaluated in k to derive the session key k. In both schemes,
the used master keys are restricted to the invertible elements in F28 [y]/p(y).

3 Generic key-recovery attack

In this section, we describe simple key-recovery attacks on the encryption scheme
of [13] and [12]. In both schemes, the session key k∗ is new for every single new
encrypted block. In Section 3.1, we show that we are able to recover one of the
used session keys k∗ with a complexity as low as 2·2n/2 for an n-bit key. Since the
function g to derive the session key is easy to invert for both re-keying schemes,
we are able to compute the secret master key k out of recovered session keys
and the corresponding nonces. We present attacks on the basic re-keying scheme
presented at AFRICACRYPT 2010 [13] in Section 3.3 and on the multi-party re-
keying scheme from CARDIS 2011 [12] in Section 3.4. Note that similar attacks
have been recently published on several authenticated encryption schemes [5,14].

Throughout this section, k is the n-bit master key, k∗ an n-bit session key,
and r an n-bit nonce.

3.1 Recovery of the session key

As a first step of the attack, we want to recover one of several used session keys.
This step consist of two phases: an offline (precomputation) phase and an online
(query) phase. The attack is a chosen-plaintext attack with a time complexity
of about 2 · 2n/2. The complexity in memory and number of queries is 2n/2.
Different trade-offs between the memory complexity and the number of queries
are possible, at the cost of a higher overall complexity. Chosen-plaintext attacks
are not unlikely to be practically applicable if, for instance, protocols based on
challenge-response techniques are used.

The basic idea of our attack is to recover the session key k∗ from collisions
with pre-computed keys. The encryption scheme changes the session key k∗ for
every block of plaintext that is encrypted. By keeping the plaintext message
input to the block cipher fixed, the adversary can apply a basic time-memory
trade-off strategy to recover one of the session keys. We will demonstrate in
Section 3.3 that this is already enough to also recover the master key k if no
additional precautions are taken.

Let E(k∗,m) denote the raw block cipher encryption operation with key k∗

and plaintext m. Then the attack strategy is given in Algorithm 1, where m is
a fixed message throughout.

A match between an entry in list L and a received ciphertext c gives a
candidate session key k∗ and the according nonce r. Since there is on average
only one possible session key k∗ that maps m to c, the possibility of false positives



Algorithm 1 Recover a session key k∗

Fix a message block m.

I. Offline Phase (Precomputation)
Repeat t times:
1. Guess a new value for k∗.
2. Compute c = E(k∗,m) and save the pair (c, k∗) in a list L.

II. Online Phase (Queries)
Repeat t′ = 2n/t times:
1. Request ciphertext c and random nonce r for an encryption of m.
2. If list L contains an entry (c, k∗) for some k∗, return r and k∗.

is negligible. (If in doubt, the candidate k∗ and the derived master key k can be
verified with a few additional queries.)

The number of iterations is such that the success probability of finding at
least one collision is ≥ 1− 1

e ≈ 63.21 %, where e is Euler’s number. We assume
that no key candidate k∗ in the offline phase is selected twice (drawing without
replacement), but duplicates may occur in the online phase. Then, the proba-

bility of failure is
(
1− t

2n

)t′
= (1− t′)t

′
, which increases monotonically from 0

up to 1
e as the number t′ of online queries grows (while t decreases accordingly).

Since the expected number of false alarms is small, we can state that the al-
gorithm finds a correct used session key k∗ with high probability with a total
complexity of t offline encryptions plus 2n/t online chosen-plaintext queries. The
best overall complexity of 2 · 2n/2 is achieved for t = 2n/2.

Sometimes, an attacker wants to recover more than only a single master key.
In this case, only the second phase of the attack has to be repeated, while the
precomputation phase has to be done only once. In such settings, in particu-
lar if the number of attacked keys is large, other values of t might result in
a better overall complexity. In Table 1, we give the complexities and memory
requirements for different choices of t.

Table 1. Complexities and memory requirements for both phases of the attack with
different choices of t.

log2(t) offline phase online phase memory total

n/4 2n/4 23n/4 2n/4 23n/4

n/3 2n/3 22n/3 2n/3 22n/3

n/2 2n/2 2n/2 2n/2 2 · 2n/2

2n/3 22n/3 2n/3 22n/3 22n/3

3n/4 23n/4 2n/4 23n/4 23n/4



3.2 Memoryless session key recovery

In practice, the memory requirements are typically the most significant restric-
tion for this attack. Unfortunately, since the values of the online phase are not
under the attacker’s control, standard memoryless collision search techniques
are not directly applicable. If the attacker could additionally choose the nonce r
for online queries, memoryless cycle finding algorithms would reduce the mem-
ory requirements to constant or logarithmic while only marginally (by a small
constant factor) increasing the necessary number of online queries.

There are two possible modifications to the attack that allow this. Both
attack the reader instead of the tag in the basic scheme of Section 2.1. The first
assumes that the reader can also send messages to the tag by requesting a new
nonce from the tag and then encrypting under this nonce. This would require
the tag to remember the nonce until it receives the corresponding encrypted
message. Then, the attacker can send chosen nonces r together with the fixed
message m for encryption, and apply the memoryless algorithm described below.

The other variant does not make any such assumptions, but simply attacks
decryption instead of encryption in a chosen-ciphertext setting. Instead of a
fixed plaintext m, a fixed ciphertext c is sent to the reader together with a
chosen nonce r. The collision target, then, is the received plaintext m.

Either of these two versions can be used for memoryless session key recovery
as follows. We construct a helper function f : {0, 1}n → {0, 1}n:

f(x) =

{
D(x, c) if the last bit of x is 0 (offline, session key guess x),

D(g(k, x), c) if the last bit of x is 1 (query with nonce x),

where D(k∗, c) denotes decryption of a fixed ciphertext c. A collision f(x1) =
f(x2) for f will give us a session key k∗ = x1 and corresponding nonce r = x2
with a probability of 1

2 (otherwise, we have to repeat the procedure).

Now, we can consider the sequence generated by xi = f(xi−1) and apply a
standard cycle finding algorithm to determine the periodicity of this sequence
and derive a collision. For example, using Brent’s algorithm [6], the expected
number of evaluations of f to find a collision (for a random mapping) is√

π

8
·
(

3

log 4
+ 2

)
· 2n/2 ≈ 2.6094 · 2n/2.

Since the expected necessary number of collisions to recover a session key is 2,
the overall complexity of this approach is slightly higher than before, but the
memory requirements are negligible.

For minimizing the overall complexity for a fixed given memory size, bet-
ter trade-offs are achieved by distinguished-point searches and similar meth-
ods. Examples include Quisquater and Delescaille’s [17] or van Oorschot and
Wiener’s [15] algorithms. In particular, the latter is useful if multiple collisions
are required.



3.3 Master key recovery for the basic AFRICACRYPT2010 scheme

For the attack on the basic re-keying scheme of AFRICACRYPT 2010 [13], we
can directly apply the standard or memoryless collision searches from Section 3.1.
Assume we successfully recovered one session key k∗ and the corresponding nonce
r. The re-keying function used in this scheme is k∗ = g(k, r) = k · r.

As already discussed in Section 2.1, the majority of the nonces r is coprime
to yd+1 and the inverse r−1 exists. Therefore, we can define the inverse function
k = g′(k∗, r) = k∗ · r−1 and simply derive the master key k in use. The overall
complexity of this attack is dominated by the session-key recovery complexity
of 2 · 2n/2.

3.4 Master key recovery for the CARDIS 2011 multi-party scheme

Two different functions g for re-keying are proposed in [12]. We first consider the
version with k∗ = r ·k+s ·` in the two-party case. Recall that k and ` are the two
master keys, and r and s are nonces chosen freshly by the two communicating
parties. We attack the device during the online phase, where the attacker has
control over the nonce s. For simplicity, the nonce s is kept constant during the
whole online phase, although the attack works just as well for random nonces.
Now, we need to recover two session keys k∗1 and k∗2 with two corresponding
nonces r1 and r2 to determine the master key. We can then set up the following
equations:

k∗1 = r1 · k + s · `,
k∗2 = r2 · k + s · `.

By combining them, we get

k∗1 − k∗2 = (r1 − r2) · k.

If the inverse of (r1 − r2) exists (which holds with overwhelming probability),
we can calculate the first master key k as

k = (r1 − r2)−1 · (k∗1 − k∗2)

As s is also invertible (trivially if we control s, with high probability otherwise),
we also get `:

` = s−1 · (k∗1 − r1 · k).

As nearly every difference of (r1−r2) is coprime to y16+1, the complexity of this
attack is determined by finding the two necessary session keys. By increasing the
precomputed table size and the number of online queries to t = t′ =

√
2 · 2n/2,

we can achieve this with an overall complexity of 2
√

2 · 2n/2 ≈ 2.8284 · 2n/2
encryptions and a success probability of about 1− 3

e2 ≈ 59.40 %. Note that the
memoryless version cannot realistically be used in this scenario, since we are
unlikely to be able to control both parties’ nonces.

Clearly, the same attack applies if k2 is used instead of `. For m parties, we
need m session keys to recover the m unknown master keys. The necessary table
size and number of queries grow accordingly.



4 Comparison to Hellman’s time-memory trade-off attack

Hellman [8] described a generic cryptanalytic time-memory trade-off attack on
block ciphers. For a block cipher with a key size of n bits, after a precomputa-
tion with time complexity of about 2n, Hellman’s method has an (online) time
complexity of T = 22n/3 and memory requirements of M = 22n/3 to recover the
key. In more detail, it allows a time/memory trade-off curve of M ·

√
T = 2n.

Since we are only interested in attacks with T ≤ 2n (faster than brute force), M
has to be at least 2n/2. We want to note that the attack described in this paper
is on a much better time/memory trade-off curve, M · T = 2n, and in particular
does not require a 2n precomputation.

5 Fixing the scheme

The main problem of the construction is that the function g is easy to invert. This
allows to extend the time-memory trade-off attacks for session key recovery to full
master key recovery as demonstrated in Section 3. A simple, but unsatisfactory
solution to prevent this kind of attack is to increase the master key, session
key, and nonce sizes to twice the security level each. For example, if the desired
security level is 128 bits, AES-256 is a natural choice for the block cipher E,
with a performance overhead of about 40 % compared to AES-128. Additionally,
the nonce transmission overhead becomes twice as large. This is clearly not
compatible with resource-constrained application scenarios.

The alternative is to fix the construction by using a function g that is hard to
invert, as for instance the one suggested in [4]. It should be hard to recover the
master key k from the knowledge of one or a few session keys k∗ and correspond-
ing nonces r. However, this raises the question how such a cryptographically
strong function can be constructed without in turn being very costly to protect
against side-channel attacks. It is not sufficient to simply postprocess k∗ with
some preimage-resistant function that does not additionally depend on any se-
cret information (i.e., parts of the key). Clearly, additional research is necessary
to identify suitable constructions and desirable properties for g.

6 Application to other fresh re-keying schemes

The attacked schemes [12,13] are nonce-based and stateless. In short, this means
that the communicating parties share a secret key and derive the session key by
using the exchanged nonces. Besides this type of schemes, other schemes have
been proposed, such as the re-keying scheme by Kocher [10]. This scheme works
without nonces. To generate the session keys, the communicating parties traverse
a tree-like structure. We call schemes like Kocher’s [10] stateful schemes.

It is easy to see that similar time-memory trade-off attacks are also possible
on stateful schemes. To mount such attacks and recover the master key, the used
functions to generate the session keys have to be publicly known and must be
easy to invert.



7 Conclusions

In this paper, we have analyzed fresh re-keying schemes from a generic point of
view. We demonstrated how to recover one (of many) used session keys with a
complexity of about 2 ·2n/2 chosen-plaintext queries. Depending on the function
g used for deriving the session key, knowledge of one or a few session keys may
allow to even recover the master key. In case of the simple and multi-party re-
keying schemes suggested by Medwed et al. [12,13], recovering the master key is
easily possible since their function g is easy to invert. The effect of our attacks
is that the complexity to recover the master key is reduced from the ideal 2n to
about 2 · 2n/2.

A simple, but unsatisfactory solution to prevent this kind of attacks is to
increase the master key, session key and nonce sizes to twice the security level
each. More promising approaches focus on the properties of g, in particular the
hardness to invert g(·, r) to deduce the key k, as in the scheme by Belaid et al. [4].
Our results show that designing secure, efficient re-keying functions remains a
challenging task, and that frequent re-keying opens up problems of its own that
are not yet fully understood.

Acknowledgments. This work has been supported in part by the Austrian
Science Fund (project P26494-N15) and by the Austrian Government through
the research program ICT of the Future under the project number 4593209
(project SCALAS).

References

1. Abdalla, M., Beläıd, S., Fouque, P.A.: Leakage-Resilient Symmetric Encryption via
Re-keying. In: Bertoni, G., Coron, J.S. (eds.) CHES. LNCS, vol. 8086, pp. 471–488.
Springer (2013)

2. Akkar, M.L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Çetin Kaya Koç, Naccache, D., Paar, C. (eds.) CHES. LNCS,
vol. 2162, pp. 309–318. Springer (2001)

3. Ali, S., Mukhopadhyay, D., Tunstall, M.: Differential fault analysis of AES: towards
reaching its limits. J. Cryptographic Engineering 3(2), 73–97 (2013)

4. Beläıd, S., Santis, F.D., Heyszl, J., Mangard, S., Medwed, M., Schmidt, J., Stan-
daert, F., Tillich, S.: Towards fresh re-keying with leakage-resilient PRFs: cipher
design principles and analysis. J. Cryptographic Engineering 4(3), 157–171 (2014)

5. Bogdanov, A., Dobraunig, C., Eichlseder, M., Lauridsen, M., Mendel, F., Schläffer,
M., Tischhauser, E.: Key Recovery Attacks on Recent Authenticated Ciphers. In:
Aranha, D., Menezes, A. (eds.) LATINCRYPT. LNCS, Springer (2014), to appear

6. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT, Nord. Tidskr.
Inf.-behandl. 20 pp. 176–184 (1980)

7. Grosso, V., Poussier, R., Standaert, F.X., Gaspar, L.: Combining Leakage-Resilient
PRFs and Shuffling (Towards Bounded Security for Small Embedded Devices).
IACR Cryptology ePrint Archive 2014, 411 (2014)

8. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Transactions on In-
formation Theory 26(4), 401–406 (1980)



9. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.)
CRYPTO. LNCS, vol. 1666, pp. 388–397. Springer (1999)

10. Kocher, P.: Leak-resistant cryptographic indexed key update (Mar 25 2003), http:
//www.google.com/patents/US6539092, US Patent 6,539,092

11. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

12. Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.X.: Fresh Re-
keying II: Securing Multiple Parties against Side-Channel and Fault Attacks. In:
Prouff, E. (ed.) CARDIS. LNCS, vol. 7079, pp. 115–132. Springer (2011)

13. Medwed, M., Standaert, F.X., Großschädl, J., Regazzoni, F.: Fresh Re-keying: Se-
curity against Side-Channel and Fault Attacks for Low-Cost Devices. In: Bernstein,
D.J., Lange, T. (eds.) AFRICACRYPT. LNCS, vol. 6055, pp. 279–296. Springer
(2010)

14. Mendel, F., Mennink, B., Rijmen, V., Tischhauser, E.: A Simple Key-Recovery
Attack on McOE-X. In: Pieprzyk, J., Sadeghi, A.R., Manulis, M. (eds.) CANS.
LNCS, vol. 7712, pp. 23–31. Springer (2012)

15. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Application to
Hash Functions and Discrete Logarithms. In: ACM Conference on Computer and
Communications Security. pp. 210–218 (1994)

16. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EURO-
CRYPT. LNCS, vol. 5479, pp. 462–482. Springer (2009)

17. Quisquater, J.J., Delescaille, J.P.: How Easy is Collision Search. New Results and
Applications to DES. In: Brassard, G. (ed.) CRYPTO. LNCS, vol. 435, pp. 408–
413. Springer (1989)

18. Tiri, K., Verbauwhede, I.: Securing Encryption Algorithms against DPA at the
Logic Level: Next Generation Smart Card Technology. In: Walter, C.D., Çetin
Kaya Koç, Paar, C. (eds.) CHES. LNCS, vol. 2779, pp. 125–136. Springer (2003)


