


Timing Channels in Cryptography



Chester Rebeiro • Debdeep Mukhopadhyay
Sarani Bhattacharya

Timing Channels in
Cryptography

A Micro-Architectural Perspective

2123



Chester Rebeiro Sarani Bhattacharya
Columbia University Department of Computer Science and Engin
New York IIT Kharagpur
New York Kharagpur
USA India

Debdeep Mukhopadhyay
Indian Institute of Technology
Kharagpur
West Bengal
India

ISBN 978-3-319-12369-1 ISBN 978-3-319-12370-7 (eBook)
DOI 10.1007/978-3-319-12370-7

Library of Congress Control Number: 2014954350

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Foreword

With the publication of the Data Encryption Standard DES in 1977 and the invention
of public key cryptography in the 1980s, cryptography has moved into civil appli-
cations. This was pushed by the electronic revolution, which needs cryptography to
create an electronic equivalent of the real world into the digital world. Cryptography
is used to provide confidentiality, digital signatures, anonymity, payments, electronic
transactions, elections, and many more.

Cryptography and cryptographic protocols by themselves do not provide secu-
rity: they need a digital platform that executes the algorithms and protocols. In the
early days, these platforms were computers and servers sitting in well protected
computer rooms and offices. The main concern when implementing the algorithms
and protocols was efficiency, as cryptographic algorithms are typically very com-
putationally demanding. The attacker model assumed that the computer platforms
themselves were well protected and that only the result of the encryption, the ci-
phertext, has to travel over insecure communication channels, such as cables or
satellite communication or tapes that are transported between bank offices and the
bank headquarters.

However, as the electronic revolution expanded, electronics became cheaper, more
widespread, and integrated into day to day applications. Examples are pay TV sys-
tems, banking cards, identity cards, or access control systems. This omnipresence of
electronic gadgets changes the attacker model! Now, the implementation becomes
the weak link in the chain: the attacker will attack while the electronic device is
performing cryptographic operations using the secret key operating on possible sen-
sitive data. During calculations, the devices leak information. These are the so-called
side channel attacks. The attacker will observe the device while it performs its cal-
culations. From timing or power consumption variations, or from electromagnetic
radiations, the attacker is able to guess which operations and which sensitive data is
being handled.

The contributions of this book are situated in this context. One highly important
source of side channel information leakage is the timing variations of calculations.
Cryptographic algorithms and protocols are written in high level languages and com-
piled onto sophisticated digital platforms. Both the software stack and the hardware
platform include a large variety of optimizations to improve performance. Memory
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vi Foreword

accesses and branches are expensive in execution time, therefore processors include
caches and branch predictors. Unfortunately, these optimizations result in timing
variations when executing a program. Caches are considered one of the most im-
portant sources of side channel information leakage. This book therefore gives a
comprehensive overview and an in depth analysis of many flavors of attacks using
caches and branch predictors. It ends with a set of countermeasures to address these
timing attacks at different abstraction layers.

This book is a fine read for anyone interested in the many possibilities of cache
attacks. A software engineer should not write any line of a cryptographic routine
without knowing how powerful timing attacks are. This book gives a clear insight
on how these attacks work and how they can be mitigated. Enjoy reading!

Leuven, Belgium Ingrid Verbauwhede
December 2014



Preface

Cryptography plays a vital role in securing e-business and e-commerce transactions.
The algorithms used have been rigorously analyzed and tested for their ability to
conceal information. However, these algorithms are needed to be realized in systems
that are used in a variety of applications. As the saying says, there’s many a slip
’twixt the cup and the lip, these implementations may leak sensitive information
via unintended timing channels. Over the past 20 years, several attacks have been
developed that use these side-channels to reveal secrets from ciphers. These attacks,
known as timing attacks, are powerful enough to break a mathematically robust
cipher in few minutes on standard computing platforms.

Starting from its inception to the present day, timing attacks and the underneath
statistics have evolved. Enhancements made to computer architecture over the years
have also influenced timing channels. To develop a system secure against these
threatening channels, one needs to be abreast of the interplay between cryptographic
algorithms and computer architecture. Here is where this book steps in. It brings on a
single platform aspects of computer architecture and cryptography that are essential
to understand how timing attacks work and why they work. It describes the attacks
and analyzes the relationship between the cipher implementation, system micro-
architecture, and the attack threat. Various timing channels arising due to cache
memories and branch prediction units are presented. The book would help engineers
and researchers understand timing attacks and thereafter develop platforms that can
tolerate these attacks.
The following topics are covered.

• Modern Cryptography. Attackers make use of the cipher’s structure to extract
the secret key from execution time. The attacks are made even more powerful
when ideas from classical cryptanalysis are used with the timing information.
The book therefore begins with a review of a variety of modern ciphers ranging
from symmetric algorithms like the Advanced Encryption Standard (AES) to
asymmetric algorithms like the Rivest-Shamir-Adleman (RSA), and some popular
classical cryptanalysis techniques.
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• Superscalar Processor Architectures. To address how timing channels arise in a
system, the book provides a background of the internal micro-architecture of pro-
cessors. An introduction to modern superscalar architectures has been provided,
with an emphasis on the components in them that affect the execution time of
ciphers.

• Time-Driven Cache Attacks on Block Ciphers. Memory load instructions that
cause a cache miss takes considerably longer than those that result in a cache
hit. Attackers utilize this difference to build a variety of attacks on block ciphers.
A detailed discussion on how these attacks are implemented is presented, with
emphasis on various accurate time measurement techniques and analysis methods
to observe the cache hit miss phenomenon.

• Advanced Time-Driven Cache Attacks on Block Ciphers. Combination of
classical cryptanalysis with side-channel attacks paves way to powerful attack
methodologies. A combination of classical differential cryptanalysis with cache
timing attacks has been discussed in the book to describe this threat.

• Formal Analysis of Time-Driven Cache Attacks. Developing suitable metrics
for comparison of secured implementations and using them to guide the design
flow is an important aspect in security engineering. In this pursuit, the book pro-
vides formal modeling of time-driven cache attacks on block ciphers and suggests
metrics for evaluation and comparison of such implementations. A discourse on
how micro-architectural features, such as pipelining and out-of-order execution,
affect cache attacks is presented. These guidelines form a framework for develop-
ing ideal implementations of the block ciphers with respect to time-driven cache
attacks.

• Profiled Time-Driven CacheAttacks on Block Ciphers. There are various types
of cache attacks, of which profiled cache attacks are arguably the most powerful.
The book provides a detailed description of such profiled attacks, which rely on
building timing profiles in a learning phase before mounting the attack. The book
also provides insights into developing metrics for estimating the information leak-
age and relates the leakage to micro-architectural features in modern computers,
such as hardware prefetchers.

• Access-Driven Cache Attacks on Block Ciphers. Cache attacks come in differ-
ent flavors, one of them, called access attacks, relies on a spy program running
along with the encryption program. The spy uses timing measurements to de-
termine memory access patterns made by the encryption. By monopolizing the
OS scheduler, the spy program can accurately determine every memory access
made, thereby leading to powerful attacks. The book provides a comprehensive
overview on the topic to understand the theory and develop the procedure of such
access attacks.

• Branch Prediction Attacks. Branch prediction units are artifacts in computer
architectures to reduce performance penalties due to branch instructions. They
predict whether a branch instruction will be taken or not taken, thereby reducing
processor stalls. Athough this can boost performance of an application signifi-
cantly, it can also lead to timing channels that are catastrophic. Attackers have
used these channels to break mathematically strong asymmetric key ciphers such
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as the RSA. Several of the attack strategies developed are discussed in detail in
the book.

• Countermeasures. To circumvent timing attacks, a variety of countermeasures
have been proposed at various levels in the system: from the application level
and architectural level to the Operating System. The book tries to provide an
overview on these countermeasures, how they are applied, their effectiveness,
and the consequent overheads involved.

IIT Kharagpur, India Chester Rebeiro
November 2014 Debdeep Mukhopadhyay

Sarani Bhattacharya
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Chapter 1
An Introduction to Timing Attacks

With the ever-increasing proliferation of e-business practices, great volumes of busi-
ness transactions and data transmission are routinely carried out in devices ranging
in scale from personal smartcards to business servers. Cryptographic algorithms are
employed in order to secure these transactions and to ensure that the communicated
data is only accessible by the intended parties. Exclusive access to the data (referred
to as plaintext) is achieved by encrypting it with a key that is known only to the
authorized parties.

Since Claude Shannon’s benchmark paper on the communication theory of se-
crecy systems in [1], significant scientific advancements have been made in the
development of cryptographic algorithms. The algorithms in use today are supported
by extensive mathematical evaluations, which provide guarantees for secrecy of the
plaintext and key. The guarantees for instance, ensure that an attacker would find it
extremely difficult to get any information about the secret key from the ciphertext
even if the plaintext and cryptographic algorithm are known. To take an example, the
best known cryptanalytic attack against the popular Advanced Encryption Standard
(AES) cipher would require around 2126 operations of the cipher before any infor-
mation about the key is obtained. This would take several centuries to run even with
the best computing resources.

To circumvent the strict security guarantees that cryptographic algorithms com-
ply with, attackers target the physical implementation of the algorithms rather than
the algorithms itself. Irrespective of the device that the algorithm is implemented
in, its execution would leave a trace in the system and the surrounding medium.
The trace may reveal information about the internal state of the cipher that classical
cryptanalytic attackers do not have. The mathematical proofs that guarantee secu-
rity of the cipher fail when such additional information is known. This results in
attacks on the cipher that are considerably more practical. For instance, when the
cryptographic algorithm executes on a processor, it leaves a trace in the power con-
sumed by the device. This trace, which essentially is a modulation of the dynamic
power consumption, contains information about the data being processed and has
been used by attackers to retrieve the secret key of ciphers in a few hours. Such chan-
nels that leak information about the executing cipher are called side channels. The
class of attacks that use these side channels to obtain secret information are called
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Fig. 1.1 The power consumption trace of a smart card reader may reveal the secret. The glitch in
the trace can identify a 1 in the secret

side-channel attacks [2]. Figure 1.1 shows how the power consumed by a smart card
reader is affected by the secret key stored in the smart card. An attacker monitoring
this side can infer the smart card’s secret from the glitches in the power trace.

Besides the power consumption, several other side channels have been discov-
ered over the years. For instance, secret keys were recovered from electromagnetic
radiation that emanates from a device when executing a cipher [3]. More recently,
high-pitched acoustics from the vibration of electronic components have been used
to recover cryptographic keys [4]. Side channels based on time have also been used
to build attacks against ciphers. Information in timing channels is conveyed by the
variation in the execution time of a piece of code [6]. As an example, consider the
function Divide in Listing 1.1. The function generally returns the quotient when a is
divided by b. However, if b happens to be 0, then the function returns an error value.

Listing 1.1 Function divide returns the quotient of a/b

unsigned int Divide(unsigned int a, unsigned int b){
if ( b== 0)

return ERROR ;
else

return a/b;
}

Since no division is performed when b = 0, the function finishes a bit earlier com-
pared to when b �= 0. An observer who can only monitor the execution time of
Divide, would therefore be able to identify invocations when b = 0. Further infor-
mation about b may be obtained from the execution time if the hardware used for
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division depends on the divisor length. A division where the divisor is large would
complete earlier than a division with a small divisor.

Variation in the execution time of Divide is due to the effect of the input b on the
conditional statements and underlying hardware. Conditional statements alter the
execution path of the function. This may affect execution time if, for instance, one
path is substantially more longer than another. Hardware components in the system
could also affect execution time. For example, data present in the cache memory
would take considerably less time to load compared to when the data is accessed from
the RAM. Other components in the system such as branch prediction units, memory
interface units, and ALU blocks may also affect execution time of the program.
Microarchitectural features in the processor such as symmetrical multithreading,
prefetching, parallelization, pipelining, input–output ports, also influence execution
time, albeit in a subtle manner.

To a neophyte it may seem trivial to overcome side-channel attacks by adding
noise, randomizing, or fuzzing the side channels of the system. While these additions
may successfully stymie certain side-channel attacks, there are still considerable
number of attacks that are capable of dealing with such naïve countermeasures.
In many of these cases, surprisingly, little extra effort is required to overcome the
countermeasures. This book takes a look at how various features in the architecture
and program structure are exploited to build time-based side-channel attacks against
cryptographic ciphers. It determines how the program design and the choice of
architectural components in the system can affect the success of the attacks. In this
chapter we provide a brief introduction to side-channel attacks, before introducing
timing side channels and the various categories of timing attacks.

1.1 Side-Channel Attacks

The idea of using side channels to steal information has been used for over a century.
In World War I, the telephones used in battle fields had just one wire and used
the earth to carry the return current. Spies would insert rods in the ground and
connect them to amplifiers in order to pick up enemy conversation. During World
War II, Bell Labs were the first to discover that electromagnetic emissions from
devices could be used for spying. They were able to reveal 75 % of the plaintext
that was sent in a secured fashion from a distance of over 80 ft. During the 1950s,
the Americans used radiations from encoding machines to spy on encrypted Russian
message transmission. By building an appropriate device, it was possible to rebuild
messages without decryption. These attacks were studied by American scientists
under the code name Tempest, in order to identify shields for equipment. It was
initially thought that side-channel attacks would require sophisticated tools that were
available only to governments. In 1985, Win van Eck published the first unclassified
report which showed how low cost equipment could be used to eavesdrop on messages
from a distance of a few hundred meters using the emanations from cathode ray tube
monitors. The equipment required an antenna tuned to receive radio transmissions



4 C. Rebeiro et al.

from the monitor, and could efficiently reconstruct the images that were displayed
on the monitor.

More recent studies show how emissions from cables of LCD monitors, wire-
less keyboards, and LED indicators can be picked up and decoded from several feet
away. In the mid-1990s two seminal papers by Paul Kocher showed how execution
time and power consumption could be used to easily retrieve secret keys from naïve
implementations of cryptographic ciphers. Subsequently, substantial research ac-
tivities have been directed to understanding side-channel attacks and implementing
defenses. The challenge of side-channel attacks comes from the fact that it violates
classical notions of cryptography. Side channels expose the fragility of a mathemat-
ically sound cipher, making it unsuitable for security applications. Hence a deeper,
thorough, and theoretical study of the topic is required. In this section, we provide
an overview of the side-channel attacks on cryptographic ciphers.

1.1.1 Side-Channel Attack Requirements

There are three essential requirements in order that a side-channel attack be success-
fully carried out. These are a perturbation, manifestation, and an observation. We
discuss each of these requirements below.

1. Perturbation : A perturbation occurs when the secret that the attacker wants to
reveal alters the behavior of the system or its state. For instance, in Listing 1.1,
the divisor b alters the program execution. Depending on the value of b, the
result of conditional statements are altered, thus affecting the instructions that
are executed. The behavior of the hardware divider may vary depending on the
divisor b. Additionally, hardware registers that hold intermediate results in the
divider may be perturbed during the computations. These perturbations in the
behavior or system state contain information about the secret divisor b.

2. Manifestation : Most often the perturbations in the system, brought about
by the execution, cannot be directly accessible by an attacker. In many cases
however, they are manifested through side channels, which are generally more
accessible. For instance, changes in register values are not always visible to a
user executing an application; however, the changes are manifested in the power
consumption and electromagnetic radiation of the device. The instructions exe-
cuted by the program are manifested in the execution time as well as the radiation
and power consumption. These manifestations provide information about the
program’s internals.

3. Observation : An attacker would have to observe the side channels in order to
obtain the required information about the secret. For example, the power con-
sumption channel would require the attacker to obtain a physical device and
monitor its dynamic power consumption through an oscilloscope. For radiation
measurements, the attacker would need a receiver and be close enough to pick up
emissions from the device. Time-based side channels would require monitoring
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of execution time. The clock used to measure time would need to be highly pre-
cise in order to distinguish between microarchitectural events in the execution. In
certain cases the attacker could create an environment which forces the program
or system to behave in a specified way.

1.1.2 The Attacker’s Success

Even if the three requirements for a side-channel attack are fulfilled, the attacker may
not always be successful in discovering the secret. The amount of success the attacker
achieves would depend on additional factors. First, the success would depend on how
effectively perturbations convey the secret. For instance, in the function Divide in
Listing 1.1, the perturbations due to the conditional statement result in only one value
of the divisor to be detected (i.e. when b = 0). An attacker would be able to identify
cases only when the divisor (b) is zero. All other divisors cannot be distinguished.
On the other hand, perturbations in the execution time due to a nonconstant time
hardware divider would be able to convey more information about the divisor.

The manifestation of the perturbations through side channels also affects the
success of the attack. Perturbations which are well manifested would be more easy
to detect. Considering the Divide function again, the presence or absence of the
divide operation due to b = 0 or b �= 0 has a higher impact on the execution time of
the function compared to the subtle variations in time inflicted by the divisor on the
divide hardware. As a result, it is easier for an attacker to detect a division compared
to detecting the differential behavior of the divider.

A third factor affecting the attack’s success is the noise in side channel. Most side-
channels are extremely noisy. Further, the amount of noise and their characteristics
vary between systems, processors, technologies used, and even depends on the time
when measurements are made. An attacker could eliminate a significant amount of
noise by signal processing, filtering, and applying other heuristics. Noise, which
are uniformly distributed can be eliminated by averaging, provided the attacker is
capable of making sufficient number of measurements.

1.1.3 Side-Channel Attack Suppression

Side-channel attacks can be prevented by suppressing or preventing at least one
of the afore mentioned requirements. While it is difficult to completely eliminate
the perturbations in the system caused when a program executes, the information
they convey can be hidden—for instance by masking the secret. Systems could be
designed so that manifestations of the perturbations can be eliminated. Take for
example, Listing 1.1. The Divide function can be rewritten so that a division is
always carried out irrespective of the value of b, for instance, by performing a dummy
division when b = 0. Further, the division hardware could be redesigned to ensure
that the time taken is independent of the value of the divisor b, thereby preventing
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any timing channels that occur in the divide operation. Registers in the system can
be manufactured in such a way that the power consumed does not depend on the data
it stores. As a final resort, the systems could be shielded to ensure that side-channel
observations are not made. Electromagnetic shields for instance could be used to
prevent radiation-based side-channel attacks. Precision clocks in the system could
be disabled to ensure high resolution timers are not available to an attacker, thereby
mitigating timing side channels.

Such suppression techniques do not completely protect and in many cases come
with large overheads. Consider for instance, huge noise generation circuits added
to a mobile phone in order to hide side-channel leakage. This would not only make
the phone more bulky but also increase its cost. Worse still would be a large elec-
tromagnetic shield around the phone to prevent leakage through radiation. Building
efficient and low overhead countermeasures for side-channel attacks is still an open
research problem.

1.2 Timing Attacks

Time has always been known to contain information but it was not until 1977 that
Schaefer, Gold, Linde, and Scheid published a research paper showing how time
could be used to carry information [6]. They showed how a timing channel could be
established between two programs in a system to communicate covertly. Information
can be transferred from one program to another by the amount of time a sender
holds the CPU. For instance, holding the CPU for 10, 20, or 30 μs, can be used to
represent a 0, 1, or 2 respectively. Over the years several covert timing channels have
been discovered. The rate at which a program performs paging, schedules disks,
utilizes cache memory, and scheduled to execute in a CPU have been used to transfer
information between two collaborating programs.

In 1996, Kocher published the first timing attack against a cryptographic cipher.
He used the variance in the execution time of a cipher to predict secret information.
This attack kindled interest in the cryptography community and spurred research
in the area, resulting in several papers published on timing attacks and defenses on
a variety of ciphers. Timing attacks use the fact that the time required to perform
an operation varies depending on the cipher’s inputs. The inputs, comprising of a
plaintext and key, undergo a series of mathematical operations before the encrypted
message is obtained. The mathematical operations performed during encryption af-
fects results of conditional statements, branch destinations, the number and type of
instructions executed, instruction operands, and the memory locations accessed by
the program. These are the perturbations in the system and could potentially contain
information about the secret plaintext and key.

There are two ways by which a timing attacker could monitor these perturbations.
The first is by timing executions of the cipher. This works since many of the per-
turbations in the system made during the execution of the cipher directly affects the
execution time. For instance, the pattern with which cache hits and misses occur dur-
ing execution of the cipher would affect its execution time. Alternatively, measuring
the perturbations made by a cipher can be done by another program (called the spy).
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Algorithm 1.1: Modular Exponentiation
Input: y, x, n
Output: s = yx mod n

1 begin
2 s ← 1
3 i ← w−1
4 while i>= 0 do
5 s ← s2 mod n
6 if x[i] = 1 then
7 s ← s∗ y mod n
8 end
9 i ← i−1

10 end
11 return s
12 end

The spy would determine perturbations by monitoring the usage of various hardware
components in the system during or soon after the spy executes. This indirect mon-
itoring is generally done with timing channels. For instance, the spy could identify
the memory accesses made by the cipher, by using timing to determine how cache
memories are utilized.

Just like in any other side-channel attack, a timing attack has two phases: an online
phase, followed by an offline phase. The online phase monitors the time required
for certain operations to be carried out, while the offline phase predicts the secret
key from the timing information collected. We illustrate how the two phases work
by taking a look at Kocher’s timing attack.

1.2.1 Kocher’s Timing Attack

Paul Kocher’s attack was on a naïve implementation of a modular exponentiation
algorithm. The algorithm takes as input three numbers y, x, and n, and determines the
remainder when yx is divided by n. This is represented as yx mod n. The algorithm
(depicted in Algorithm 1.1) is an integral part of ciphers such as RSA (Rivest Shamir
and Adleman) and DH (Diffie Hellman) based ciphers. Typically, n is public and y

can be found by an eavesdropper, while the exponent x is secret. Each iteration of
the loop considers a bit of x (denoted x[i] in the algorithm) starting from its most
significant bit. Assuming x to be of length w bits, there are w iterations of the loop.
The conditional statement in line 6 results in a multiplication being performed only
if x[i] = 1. Thus, a value of x[i] = 1 results in a modular squaring followed by a
modular multiplication, while a value of x[i] = 0 only has a modular squaring.

The attacker knows the value of n and wants to get x. We assume the attacker is
powerful enough to be able to invoke the program (or function) which implements
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Algorithm 1.1 and can choose or monitor different values of y. She can also replace
x with her own exponent, which we denote x∗.

The attacker triggers the execution of the function with secret x and monitors its
execution time. The execution time for the algorithm varies depending on the length
of x (i.e., w) and its value. This can be denoted as

T = e +
w−1∑

i=0

ti , (1.1)

where ti is the time required for the i-th iteration of the loop (i.e., corresponding to the
bit x[i]) and e includes the measurement error, loop overhead, and all other sources
of inaccuracies. For a fixed x, time distributions can be obtained by observing the
execution time corresponding to different values of y. The variance of the distribution
is given by

V ar(T ) = V ar(e) + w · V ar(t). (1.2)

The mathematical formalism for the encryption time and its variance is used to
recover the secret x. The attack is iterative in the sense that the attacker discovers x

starting from its most significant bit. She discovers bit x[b] (where 0 ≤ b < w) only
after recovering all bits from x[w − 1] to x[b + 1].

The attacker makes a guess of x∗[b] (either 0 or 1), chooses x∗ = (x[w − 1] ‖
x[w − 2] ‖ x[w − 3] ‖ · · · ‖ x[b + 1] ‖ x∗[b]), triggers modular exponentiation,
and obtains the execution time (T ∗). The difference between the time for the two
executions is

T − T ∗ = [e +
w−1∑

i=0

ti] − [t∗b +
w−1∑

i=b+1

ti]

= [e +
b−1∑

i=0

ti] + tb − t∗b (1.3)

If the guess is correct (x[b] = x∗[b]), then tb = t∗b and the difference between the
time for the two executions is e+∑b−1

i=0 ti . Further, on a correct guess, the difference
in the variance obtained after measuring the execution time of several exponentiation
is given by

V ar[T − T ∗] = V ar(e) + b · V ar(t). (1.4)

If the guess is wrong

V ar[T − T ∗] = V ar(e) + (b + 2) · V ar(t). (1.5)

In other words, a correct guess causes a reduction in variance, while a wrong guess
causes the variance to increase. This distinguisher can be used to validate the guess
for x[b].
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The accuracy with which a bit in x is determined depends on how a multiplication
operation can impact the execution time of a single iteration of the loop. Modern
microprocessors have hardware multipliers capable of multiplying two inputs of 32 or
64 bit in a single clock cycle. If the length of s and y are small, a single microprocessor
instruction, typically taking less than a nano second would be required to perform
the multiplication. In such a case, the impact of the multiplication in the execution
time of an iteration is negligible. In spite of this, the multiplication could be detected
with reasonable accuracy, provided sufficient amount of time measurements are
collected and averaged. As the length of s and y increase beyond the range of the
available hardware multiplier, multiple clock cycles would be required to perform
the multiplication. Each clock cycle would typically produce a partial product. In
this case, the impact of the multiplier in the execution time would increase and the
multiplication will be identified with a higher accuracy.

Subsequent to Kocher’s work, several timing attacks have been proposed. The
attacks target a variety of ciphers, utilize different techniques, and make different
assumptions about the attacker. The next part of this section attempts to classify the
different timing attacks on ciphers.

1.2.2 Taxonomy of Timing Attacks

Classification Based on the Type of Cipher: Ciphers are broadly classified as
symmetric-key and asymmetric-key ciphers. The attack technique varies in each
case. Timing attacks on asymmetric-key ciphers are iterative. One bit of the key is
recovered at a time just as in Kocher’s timing attack on the modular exponentiation
algorithm. Timing attacks on symmetric key ciphers target implementations that
use look-up tables. Leakage from these ciphers is due to perturbations in the cache
memory present in the system.

Classification Based on the Perturbed Component: This classification is based
on the component in the system that is perturbed by the cipher’s execution. Kocher’s
timing attack for instance falls into a category based on the execution path, since
different execution paths are taken based on the secret. The requirement for these
attacks is that the conditional branch depends on the value of the cipher’s secret.
Further, the paths should have different execution time requirements. These attacks
are generally relevant to public-key ciphers.

A closely related category of timing attacks target perturbations in the processor’s
branch predictor. These predictors are present in most modern processors in order to
reduce the performance overheads when a branch occurs. These units automatically
predict the branches during the execution of the program and fetch instructions from
the new location. Branch predictors can substantially influence execution time and
have been exploited by attackers to determine the secret from public key ciphers.

Perturbations made to cache memories have been used by attackers to discover
secret keys from ciphers, especially block ciphers. Attacks that use cache memories
require that the cipher accesses memory at locations which depend on the secret key.
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Timing attacks based on cache memories use the fact that a cache miss takes consid-
erably longer time compared to a cache hit. This is manifested in the execution time.

Classification Based on the Attacker’s Capabilities: Attackers capabilities may
differ. The most powerful attacker is one who can choose the plaintext to be encrypted,
trigger encryptions, accurately monitor the side channel after every instruction exe-
cuted. On the other side of the spectrum, the weakest attacker is one who can only
monitor execution time remotely, for instance over a network. The capabilities of the
attacker would therefore dictate the attack’s success.

1.3 Organization

A primary goal of this book is to introduce and analyze timing attacks on block
ciphers due to information leaking from cache memories in the system. The book
discusses how microarchitectural features in the cache memory such as automatic
hardware prefetching, nonblocking, parallel, and pipelined servicing of cache misses
can influence leakage. Mathematical analysis is used to quantify this leakage.Another
goal of the book is to introduce and analyze timing attacks on asymmetric key
ciphers due to information leakage in the processor’s branch prediction units. The
instruction flow of the asymmetric ciphers can be revealed using the information
leakage from the branch predictors. In this book, using timing as side channel, we
discuss how the microarchitectural features can be monitored efficiently, and due to
their deterministic nature they eventually result in leaking the secret instruction flow.
The organization is as follows.

In Chapter 2, a brief review of modern cryptography is given. Topics addressed
include an overview of encryption algorithms, their implementation, and classical
cryptanalysis. Covert timing channels used for stealthy communication is introduced,
and a brief introduction to formal analysis of side-channel attacks is presented.

The aim of Chapter 3 is to provide an overview of superscalar processor archi-
tecture, modern cache memories, and branch predictors used in modern computer
systems. Subtle changes in these components can significantly affect information
leakage from timing channels.

Chapter 4 discusses how time measurements can be accurately made on systems.
Accurate time measurements are critical for the success of most timing attacks. The
chapter then discusses how cache hits and misses can be distinguished from the
execution time. These hits and misses are used to build a time-driven attack on a
block cipher.

The information obtained from the attack presented in Chapter 4 is restricted by
the size of the cache line. Chapter 5 shows how this restriction can be overcome by
advanced attack strategies. The chapter shows how block cipher algorithms and their
differential properties can be exploited to build powerful time-driven cache attacks.

Chapter 6 develops a framework to analyze information leakage in time-driven
cache attacks. The framework is capable of analyzing modern cache memories that
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are equipped with microarchitectural acceleration features such as nonblocking, par-
allel, pipelined, and out-of-order servicing of cache misses. The framework is used
to evaluate the leakage of popular block implementations and also identify the ideal
way a block cipher should be implemented.

Chapter 7 introduces profiled time-driven cache attacks. These attacks require
a powerful adversary who can characterize the system behavior when the cipher
is executed. The adversary’s success would differ depending on the way the block
cipher is implemented. Further, automatic hardware prefetching can abet the attack.

Chapter 8 provides an illustrative description of access-driven attacks on block
ciphers. Just as in the attacks described in Chap. 4, these attacks track cache trace
patterns made by an executing block cipher. The tracing is done by a malicious
process which schedules itself in such a manner, so as to observe the cache traces
of individual accesses made by the cipher. The chapter explains various strategies
used by the malicious process in order to make fine-grained timing measurements to
observe several microarchitectural events.

Chapter 9 starts with an introduction to the algorithms used in the implementation
of the public key cipher RSA. The branch predictors play a major role in predicting
results of branch conditions in the cipher. In this chapter we provide several im-
plementations where the leakage in the conditional instructions present in RSA are
exploited using time as a side channel.

In Chap. 10, we highlight some of the important countermeasures that have been
proposed for time-driven attacks. These countermeasures differ in how they elimi-
nate leakage, the location in the system that they are applied, and the performance
overhead.
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Chapter 2
Modern Cryptography

The art of cryptographic algorithms is an ever evolving field. Initiating from prehis-
toric times, the main objective of cryptographic algorithms have been to protect and
allow usage of information in a legal manner. Encryption is a process of converting a
plaintext message into a piece of random-looking text, often called ciphertext. The ci-
phertext, ideally, should contain or transfer no information to the curious third party,
often referred to as the adversary. In order to allow the intended receiver to obtain
back the message from the ciphertext, every encryption algorithm is reversible. Thus,
the inverse operation of obtaining back the plaintext from the ciphertext, is called
decryption. According to the wisdom in cryptography, the algorithms for encryption
and decryption are always published and known to even the adversary. Then what
does the security rely on? The mappings (from plaintext to ciphertext and vice versa)
depends on an information called the key, which is hidden from the attacker. While
the goal of cryptography is to design and construct such ciphering algorithms, the
objective of cryptanalysis is to develop techniques to obtain the key more efficiently
than making a random guess on the key. There are different classes of cryptographic
algorithms, depending on their objectives. While secrecy is the obvious require-
ment, there are other important goals too; for example, algorithms to guarantee the
integrity of information, or methods to ensure that one cannot deny a commitment
to a transaction (often called the property of nonrepudiation). Then there are algo-
rithms which ensures that authenticity is maintained in a communication, and legal
parties can trust with whom they are communicating. In this book we mainly target
cryptographic algorithms, with respect to secrecy of data. But often these construc-
tions can be used for achieving the other requirements, namely authentication and
nonrepudiation. Hash functions, which are used for integrity checks are not in the
scope of this book.

2.1 Types of Encryption Algorithms

For ciphers, there is an encryption key (Ka) and a decryption key (Kb), which are
equal for certain classes of algorithms (called symmetric-key ciphers) and different
for the other class (called asymmetric-key ciphers). The scenario of a cryptographic
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Fig. 2.1 Secret key cryptosystem model

communication is illustrated in Fig. 2.1. The encryptor uses a key Ka and the decryp-
tor a key Kb, where depending on the equality of Ka and Kb there are two important
classes of cryptographic algorithms. More precisely, the two classes of ciphers are:

• Private-key (or symmetric) ciphers: These ciphers have the same key shared
between the sender and the receiver. Thus, referring to Fig. 2.1 Ka = Kb.

• Public-key (or asymmetric) ciphers: In these ciphers we have Ka �= Kb. The
encryption key and the decryption keys are different.

As in symmetric-key or private-key algorithms both the encryptor and decryptor use
the same key, it must somehow be securely exchanged before secret key commu-
nication can begin. The key exchange is a major bottleneck and for n-parties in a
network, the number of key exchanges required can grow quite fast (nC2 ways).
However, these algorithms are often fast and are used for bulk data encryption. Two
important subclasses of symmetric-key algorithms are block ciphers and stream ci-
phers. Block ciphers, as the name suggest operates on fixed blocks or chunks of data,
while stream ciphers operate on bits or few bits of data (thus the encryption takes
place like a stream!). The Advanced Encryption Standard (AES) is a very popular
block cipher, while Trivium is a popular stream cipher.

Public-key algorithms, on the other hand, provide a nice solution to the key-
exchange problem. In such algorithms, as we discussed the encryption and decryption
keys are different. The algorithms have a key pair, consisting of (i) Public key, which
can be freely distributed and is used to encrypt messages. In Fig. 2.1, this is denoted
by the key Ka , and (ii) Private key, which must be kept secret and is used to decrypt
messages. The decryption key is denoted by Kb in the Fig. 2.1.

In the public key or asymmetric ciphers, the two parties—often called Alice and
Bob—are communicating with each other and have their own key pair. They distribute
their public keys freely. Mallory (or the adversary) has the knowledge of not only
the encryption function, the decryption function, and the ciphertext, but also has the
capability to encrypt the messages using Bob’s public key. However, she is unaware
of the secret decryption key, which is the private key of the algorithm. The security
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of these classes of algorithms rely on the assumption that it is computationally hard
or complex to obtain the private key from the public information. Doing so would
imply that the adversary solves a mathematical problem which is widely believed
to be difficult. It may be noted that we do not have any proofs for their hardness;
however, we are unaware of any efficient techniques to solve them. The elegance of
constructing these ciphers lies in the fact that the public keys and private keys still
have to be related in the sense, that they perform the invertible operations to obtain
the message back. This is achieved through a class of magical functions, which are
called one-way functions. These functions are easy to compute in one direction,
while computing the inverse from the output is believed to be a difficult problem.
RSA is a famous public-key algorithm for this class of ciphers.

Example 2.1 This cipher is called the famous RSA algorithm (Rivest Shamir Adle-
man). Let n = pq, where p and q are properly chosen and large prime numbers. Here
the proper choice of p and q are to ensure that factorization of n is mathematically
complex. The plaintexts and ciphertexts are P = C = Zn, the keys are Ka = {n, a}
and Kb = {b, p, q}, such that ab ≡ 1 mod φ(n). The encryption and decryption
functions are defined as, ∀x ∈ P , eKa

(x) = y = xa mod n and dKb
(y) = yb mod n.

Both symmetric-key ciphers and asymmetric-key ciphers are widely studied. We
provide a quick overview on some facts, which we use in the book.

2.2 Block Ciphers: An Important Family of Symmetric-Key
Ciphers

The book develops a general theory for time-driven cache attacks on block ciphers.
The theory can be applied to any cipher with an iterative structure that is imple-
mented with look-up tables. To test the theory we selected few ciphers, like AES,
CAMELLIA, and CLEFIA. AES was chosen because it is the world wide standard.
It has a substitution permutation network (SPN) structure and the implementation
generally used has 5 large tables of 1024 bytes. The first four tables are invoked 36
times per 128-bit encryption, while the last table is invoked 16 times. Many of the
latest CPUs support dedicated instructions for AES [1], on which cache attacks fail.
Besides SPN, most cipher designs follow the Feistel structure (Fig. 2.2). The figure
shows the rth round of a Feistel block cipher. The block is divided into two parts, Lr

(Left) and Rr (Right), which are recursively computed as Lr = Rr−1 ⊕ F(Lr−1, kr ),
and Rr = Lr−1. The transformation F is composed of several nonlinear transforma-
tions or S-Boxes, and combine the round key kr with a portion of the block. The
reversibility of the round does not depend on whether the nonlinear layer F is in-
vertible or not. The rounds are repeated for certain number of iterations to ensure
sufficient security margin against known attacks.

We chose CAMELLIA as a representative of these ciphers. The third cipher we
chose is CLEFIA, which has a generalized Feistel structure [2] and a round function
which is conceptually similar to that ofAES. Further, unlike theAES implementation
considered, CLEFIA and CAMELLIA implementations used small tables of 256
bytes. This section provides a brief description of each cipher algorithm.
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Fig. 2.2 Feistel structure of a
block cipher

Lr−1

kr

Rr−1

F

Lr Rr

2.2.1 AES

In 2001, the National Institute of Standards and Technology (NIST) recommended
the use of Rijndael as the AES [3]. AES is a symmetric-key block cipher and can
use key sizes of either 128, 192, or 256 bits to encrypt and decrypt 128-bit blocks.
We summarize the AES-128 standard, which uses a key size of 128 bits. The input
to AES-128 is arranged in a 4 × 4 matrix of bytes called state. The state undergoes
a series of transformations in ten rounds during the encryption process.

Algorithm 2.1 presents the AES-128 algorithm. The first operation on the input is
the AddRoundKeys, which serves to provide the initial randomness by mixing the
input key. The state is then subjected to nine rounds to further increase the diffusion
and confusion in the cipher [4]. Each round comprises four operations on the state:
SubBytes, ShiftRows, MixColumns, and AddRoundKeys. The state is then sub-
jected to a final round, which has all operations except the MixColumns operation.

The four AES operations are defined as follows:
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• AddRoundKeys : Each element in the state is subjected to a bitwise ex-or with
a 128-bit round key. The round key is generated from the secret key by a key
expansion algorithm as in Algorithm 2.2 [4].

• SubBytes : Each element in the state is replaced by an affine transformation of
its inverse in the field GF (28). For a byte si in the state, this operation is denoted
by S(si).

• ShiftRows : Provides a cyclic shift of the ith row in the state by i bytes toward
the left (where 0 ≤ i ≤ 3). That is, each byte in the ith row is cyclically shifted
to the left by i bytes.

• MixColumns : Provides a column-wise linear transformation of the state matrix.
Each column of the state matrix is considered as a polynomial of degree 3 with
coefficients in GF (28) and multiplied by the polynomial {03}α3 + {01}α2 +
{01}α + {02} mod (α4 + 1). The combination of ShiftRows and MixColumns
provide the necessary diffusion for the cipher.

Key Expansion Algorithm [3] takes the secret key as input and generates round
keys for 11 AddRoundKeys operations performed in AES. Key expansion as in
Algorithm 2.2 uses two operations ROTWORD and SUBWORD which performs
cyclic shift and substituition of four bytes (B0, B1, B2, B3) as

ROTWORD(B0, B1, B2, B3) = (B1, B2, B3, B0) (2.1)
and

SUBWORD(B0, B1, B2, B3) = (SubBytes(B0), SubBytes(B1), SubBytes(B2),

SubBytes(B3)) (2.2)
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In addition to this, AES involves a round constant term that is defined as
RCon[1], · · · , RCon[10] as constants in hexadecimal before the key expansion
Algorithm 2.2.

Starting from the 4 × 4 byte state, Fig. 2.3 shows the transformation it undergoes
in a round (for 1 ≤ r ≤ 9).

2.2.1.1 Software Implementations of AES

Of all operations, the SubBytes is the most difficult to implement. On 8-bit micro-
controllers, a 256-byte look-up table is ideal to perform this operation. The table
provides the necessary flexibility in terms of content, small footprint, and speed. For
32-bit platforms, more efficient implementations can be built using larger tables. We
give a brief description of this method, which is known as T -table implementations.
T -table implementations were first proposed in [5] and has been adopted by several
crypto-libraries such as OpenSSL1.

Consider four look-up tables defined as follows:

T0[z] =

⎡

⎢⎢⎢⎢⎢⎣

02 • S(z)

S(z)

S(z)

03 • S(z)

⎤

⎥⎥⎥⎥⎥⎦
; T1[z] =

⎡

⎢⎢⎢⎢⎢⎣

03 • S(z)

02 • S(z)

S(z)

S(z)

⎤

⎥⎥⎥⎥⎥⎦
; T2[z] =

⎡

⎢⎢⎢⎢⎢⎣

S(z)

03 • S(z)

02 • S(z)

S(z)

⎤

⎥⎥⎥⎥⎥⎦
;

T3[z] =

⎡

⎢⎢⎢⎢⎢⎣

S(z)

S(z)

03 • S(z)

02 • S(z)

⎤

⎥⎥⎥⎥⎥⎦
(2.3)

Each table is of 1024 bytes mapping a byte z of the state to a 32-bit value. Using
these tables, the first nine AES rounds can be expressed as follows

s(r+1) =T0[s(r)
0 ] ⊕ T1[s(r)

5 ] ⊕ T2[s(r)
10 ] ⊕ T3[s(r)

15 ] ⊕ [k(r)
0 k

(r)
1 k

(r)
2 k

(r)
3 ]T ‖

T0[s(r)
4 ] ⊕ T1[s(r)

9 ] ⊕ T2[s(r)
14 ] ⊕ T3[s(r)

3 ] ⊕ [k(r)
4 k

(r)
5 k

(r)
6 k

(r)
7 ]T ‖ (2.4)

T0[s(r)
8 ] ⊕ T1[s(r)

13 ] ⊕ T2[s(r)
2 ] ⊕ T3[s(r)

7 ] ⊕ [k(r)
8 k

(r)
9 k

(r)
10 k

(r)
11 ]T ‖

T0[s(r)
12 ] ⊕ T1[s(r)

1 ] ⊕ T2[s(r)
6 ] ⊕ T3[s(r)

11 ] ⊕ [k(r)
12 k

(r)
13 k

(r)
14 k

(r)
15 ]T

A byte of the state in the current round (s(r)) is denoted s
(r)
i and the next round state

is denoted s(r+1), where 0 ≤ r ≤ 9 and 0 ≤ i ≤ 15. The final round cannot use these
tables due to the absence of the MixColumns operation.

1 http://www.openssl.org.
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Fig. 2.3 Transformations of
the state in a round of AES
(1 ≤ r ≤ 9)
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SubByte

ShiftRows
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si for 0 ≤ i ≤ 15 is the elements of the state

where ki for 0 ≤ i ≤ 15 is the round key

AddRoundKey

where si = S(si) for 0 ≤ i ≤ 15
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2.2.2 CLEFIA

CLEFIA is a 128-bit block cipher developed by Sony [6] and is currently incorporated
in ISO/IEC 29192-2 as a light-weight block cipher standard. The specification [6, 7]
defines three key lengths of 128, 192, and 256 bits. This book considers 128-bit keys
though the results are valid for the other key sizes also. The structure of CLEFIA
is shown in Fig. 2.4. The input has 16 bytes, P0 to P15, grouped into four byte
words. There are 18 rounds, and in each round, the first and third words are fed into
nonlinear functions F0 and F1 respectively. The output of F0 and F1 are ex-ored
with the second and fourth words. Additionally, the second and fourth words are also
whitened at the beginning and end of the encryption. The F functions take four input
bytes and four round keys. The nonlinearity in the F functions are due to two 256
element s-boxes S0 and S1. Matrices M0 and M1 diffuse the outputs of the s-boxes.
They are defined as follows:

M0 =

⎛

⎜⎜⎜⎜⎜⎝

1 2 4 6

2 1 6 4

4 6 1 2

6 4 2 1

⎞

⎟⎟⎟⎟⎟⎠
M1 =

⎛

⎜⎜⎜⎜⎜⎝

1 8 2 A

8 1 A 2

2 A 1 8

A 2 8 1

⎞

⎟⎟⎟⎟⎟⎠
(2.5)

The design of the s-boxes S0 and S1 differs. S0 is composed of four s-boxes SS0,
SS1, SS2, and SS3; each of 16 bytes. The output of S0 is given by :

βl = SS2[SS0[αl] ⊕ 2 · SS1[αh]]

βh = SS3[SS1[αh] ⊕ 2 · SS0[αl]] (2.6)

where β = (βh|βl), α = (αh|αl), and β = S0[α]. The output of S1 for the input byte
α is given by g((f (α))−1), where g and f are affine transforms and the inverse is
found in the field GF (28).

The CLEFIA encryption algorithm has four whitening keys WK0, WK1, WK2,
and WK3; and 36 round keys RK0, . . . , RK35. Key expansion is a two-step process.
First, a 128-bit intermediate key L is generated from the secret key K using a GFN

function [7]. From this, the round keys and whitening keys are generated as shown
below:

Step 1: WK0|WK1|WK2|WK3 ← K

Step 2: For i ← 0 to 8

T ← L ⊕ (CON24+4i |CON24+4i+1|CON24+4i+2|CON24+4i+3)

L ← Σ(L)

if i is odd: T ← T ⊕ K

RK4i|RK4i + 1|RK4i + 2|RK4i + 3 ← T
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Fig. 2.4 CLEFIA block diagram

Fig. 2.5 A round of CLEFIA

F 0 F 1

32 32 32 32

Xi,0 − Xi,3
RKi0−3 RKi + 10−3

Xi,0 − Xi,3 Xi+1,0 − Xi+1,3 Xi+1,0 − Xi+1,3

Yi+1,0 − Yi+1,3Yi+1,0 − Yi+1,3Yi,0 − Yi,3Yi,0 − Yi,3

The function Σ , known as the double swap function, rearranges the bits of L.

Σ(L) ← L(7···63)|L(121···127)|L(0···6)|L(64···120) (2.7)

In the later part, thirty-six 32-bit constant values CONi (24 ≤ i < 60) are used.
Just like AES, CLEFIA can be implemented with T -tables. The T -table imple-

mentation for CLEFIA is in the Sect. 2.2.2.1.

2.2.2.1 T-Table Implementation of CLEFIA

A round of CLEFIA has 128-bit input and produces 128-bit output. Each input and
output is grouped as four words as shown in Fig. 2.5. The function F0 is defined as
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follows,

F0 :

⎡

⎢⎢⎢⎢⎢⎣

Zi,0

Zi,1

Zi,2

Zi,3

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1 2 4 6

2 1 6 4

4 6 1 2

6 4 2 1

⎤

⎥⎥⎥⎥⎥⎦
×

⎡

⎢⎢⎢⎢⎢⎣

S0(Xi,0 ⊕ RKi,0)

S1(Xi,1 ⊕ RKi,1)

S0(Xi,2 ⊕ RKi,2)

S1(Xi,3 ⊕ RKi,3)

⎤

⎥⎥⎥⎥⎥⎦

where S0 and S1 are CLEFIA’s 8 × 8 s-boxes. Xi,k and Zi,k represent a byte of the
input and output word respectively (0 ≤ k ≤ 3), while RKi,k is a byte of the round
key. The matrix multiplication is in a finite field.

Consider four look-up tables as follows which map an input byte (x) to a 32-bit
word.

T0[x] ← (6 · S0(x)|4 · S0(x)|2 · S0(x)|1 · S0(x))

T1[x] ← (4 · S1(x)|6 · S1(x)|1 · S1(x)|2 · S1(x))

T2[x] ← (2 · S0(x)|1 · S0(x)|6 · S0(x)|4 · S0(x))

T3[x] ← (1 · S1(x)|2 · S1(x)|4 · S1(x)|6 · S1(x)).

Then,

(Zi,3|Zi,2|Zi,1|Zi,0) =T0[Xi,0 ⊕ RKi,0] ⊕ T1[Xi,1 ⊕ RKi,1]

⊕ T2[Xi,2 ⊕ RKi,2] ⊕ T3[Xi,3 ⊕ RKi,3]

The function F1 is defined as follows:

F1 :

⎡

⎢⎢⎢⎢⎢⎣

Zi+1,0

Zi+1,1

Zi+1,2

Zi+1,3

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1 8 2 A

8 1 A 2

2 A 1 8

A 2 8 1

⎤

⎥⎥⎥⎥⎥⎦
×

⎡

⎢⎢⎢⎢⎢⎣

S1(Xi+1,0 ⊕ RKi+1,0)

S0(Xi+1,1 ⊕ RKi+1,1)

S1(Xi+1,2 ⊕ RKi+1,2)

S0(Xi+1,3 ⊕ RKi+1,3)

⎤

⎥⎥⎥⎥⎥⎦

The function F1 can be implemented using four tables as shown below. Each table
maps the 8-bit input x to a 32-bit output.

T4[x] ← (A · S1(x)|2 · S1(x)|8 · S1(x)|1 · S1(x))

T5[x] ← (2 · S0(x)|A · S0(x)|1 · S0(x)|8 · S0(x))

T6[x] ← (8 · S1(x)|1 · S1(x)|A · S1(x)|2 · S1(x))

T7[x] ← (1 · S0(x)|8 · S0(x)|2 · S0(x)|A · S0(x))
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Then,

(Zi+1,3|Zi+1,2|Zi+1,1|Zi+1,0) =T4[Xi+1,0 ⊕ RKi+1,0]

⊕ T5[Xi+1,1 ⊕ RKi+1,1]

⊕ T6[Xi+1,2 ⊕ RKi+1,2]

⊕ T7[Xi+1,3 ⊕ RKi+1,3].

The output of the round is

(Yi,0 · · · Yi,3) ← (Zi,0 · · · Zi,3) ⊕ (X
′
i,0 · · · X′

i,3)

(Y
′
i,0 · · · Y ′

i,3) ← (Xi+1,0 · · · Xi+1,3)

(Yi+1,0 · · · Yi+1,3) ← (Zi+1,0 · · · Zi+1,3) ⊕ (X
′
i+1,0 · · · X′

i+1,3)

(Y
′
i+1,0 · · · Y ′

i+1,3) ← (Xi,0 · · · Xi,3).

In a similar manner, all rounds of CLEFIA can be implemented. Thus reducing
the implementation to a series of memory accesses intertwined with ex-ors.

2.2.3 CAMELLIA

CAMELLIA is the 128-bit block cipher that was jointly developed by Mitsubishi
and NTT in 2000 [8]. Since the cipher has been made available under a royalty-free
license, it has been certified for use by the European Union and Japan. It has also
become part of the OpenSSL project, and incorporated in Mozilla’s Network Security
Services (NSS modules). Support for CAMELLIA has been added to several security
libraries as well as Mozilla’s popular web browser, Firefox.

The 128-bit block cipher CAMELLIA has a Feistel structure as shown in
Fig. 2.6. The 16 bytes plaintext input is grouped in two words of 8 bytes each:
x = (x1‖x2‖ · · · ‖x8) and y = (y1‖y2‖ · · · ‖y8). There are 18 rounds in all, broken
up into groups of 6 each. After the 6th and the 12th rounds, there are two FL/FL−1

function layers. In each round, there is an F function, which is a combination of key
addition, substitution (S), and permutation (P ). The substitution is done by using
four s-boxes, whereas, the P function is implemented by using a diffusion matrix.
Figure 2.7 shows the permutation operation and the diffusion matrix. The diffusion
matrix also has an inverse depicted in the figure.

Each round has an addition of a round key. The ith round uses the round key k(i).
Each of these round keys are of 64 bits. Additionally, whitening keys kw1 and kw2
are applied at the start of encryption, while kw3 and kw4 are applied at the end of
encryption.
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Fig. 2.6 Structure of CAMELLIA

Fig. 2.7 CAMELLIA’s
diffusion layer and its inverse ⎛
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2.3 Classical Cryptanalysis

A cryptanalytic attack is a procedure through which an attacker gains information
about the secret decryption key. Attacks are classified according to the level of a
priori knowledge available to the attacker.

A ciphertext-only attack is an attack where the cryptanalyst has access to cipher-
texts generated using a given key but has no access to the corresponding plaintexts
or the key. A known-plaintext attack is an attack where the cryptanalyst has access
to both ciphertexts and the corresponding plaintexts but not the key.
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A chosen-plaintext attack (CPA) is an attack where the cryptanalyst can choose
plaintexts to be encrypted and has access to the resulting ciphertexts, again their
purpose being to determine the key.

A chosen-ciphertext attack (CCA) is an attack in which the cryptanalyst
can choose ciphertexts, apart from the challenge ciphertext and can obtain the
corresponding plaintext. The attacker has access to the decryption device.

In case of CPA and CCA, adversaries can make a bounded number of queries to
its encryption or decryption device. The encryption device is often called an oracle;
meaning it is like a black-box without details like in an algorithm of how an input is
transformed or used to obtain the output. Although this may seem a bit hypothetical,
but there are enough real life instances where such encryption and decryption oracles
can be obtained.

In the next section, we discuss one form of classical cryptanalysis of block ciphers,
namely differential attacks, which is used in developing some of the cache attacks
described in the book.

2.3.1 Classical Cryptanalysis of Block Ciphers

Block ciphers have been subjected to several forms of classical cryptanalysis; namely
linear cryptanalysis, differential cryptanalysis, impossible differential attacks, re-
lated key attacks, boomerang attacks, square attacks are some popular cryptanalysis
techniques. In this book, we study how microarchitectural features like cache memo-
ries and the accompanying hardware increases leakage when an encryption program
runs on this platform. These attacks, often called as side-channel attacks (SCA)
exploit additional leakage through timing information, and combine with classical
methods, like differential attacks to provide efficient attack techniques. In this sec-
tion, we provide a quick overview on the ideas of differential cryptanalysis, which
will be useful for other attacks. Interested readers may refer [9] for ideas on other
forms of cryptanalysis, which may (or may not) lead to more efficient cache attacks.

2.3.2 The Idea of Differential in Block Ciphers

Differential cryptanalysis is a chosen plain text attack and the attack is based on
the information of the ex-or of two inputs, and the ex-or of corresponding outputs.
Consider, a cipher expressed as c = m ⊕ k, where m, k, and c are the plaintext,
key, and the ciphertext blocks respectively, each of size b-bits. We know this is a
secured cipher if the key is randomly and uniquely chosen for every encryption. The
attacker has no information about the plaintext from the ciphertext. However, if the
key is used twice for two encryptions there is a leakage of information. It is trivial
to note, c0 ⊕ c1 = m0 ⊕ m1, thus showing that the differential (or, the difference
which is computed useing ex-ors between two blocks) does not depend on the key,
and thus the key (although unknown) does not hide the plaintext from the attacker!
The differential is often denoted by Δ(c) = c0 ⊕ c1. Thus, in brevity we can state
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Fig. 2.8 Illustration of a differential attack on a toy cipher

Table 2.1 The S-Box description

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

s[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Δ(c) = Δ(m) for the above equality. It may be noted that if the key mixing was done
by some other reversible process (like modular integer addition), the differential
would be accordingly modified (by using modular integer subtraction). Let us see
how we can use this fact to cryptanalyze block ciphers with S-Boxes.

In the Fig. 2.8, a two round encryption is depicted where the plaintext m is
transformed by mixing (ex-oring) with the keys, k0, k1, and k2 along with substitution
which occurs due to the nonlinear S-Boxes. Let us denote the S-Box mapping by
S, and thus an input x is transformed to an output which is S[x]. The mapping we
choose for illustration is that of the block cipher PRESENT[10]. For convenience
we present the mapping in Table 2.1.

From the notion of differentials we know that ex-oring with the key has no effect
on the differential. However, the S-Box being a nonlinear layer prevents passing of
the ex-or differential. Thus, the attacker can guess k2 and obtain the value of x, for
two different encryptions. We denote this by saying that c0 gives x0, while c1 gives
x1. One can perform the inverse S-Boxes (which have to be invertible!), and obtain
w0 and w1. However, the uncertainty of k1 prevents us from computing the values
of v0 and v1. However, we know Δ(w) = w0 ⊕ w1 = v0 ⊕ v1 = Δ(v). Likewise, if
the attacker chooses Δ(m) = m0 ⊕ m1, she can compute Δ(u), however the S-Box
prevents from determining Δ(v).

So, differential cryptanalysis performs a differential analysis of the S-Box. Con-
sider, the Table 2.2, where the input differential i⊕j , for two inputs i and j , is chosen
to be F. The output differential, S[i] ⊕ S[j ] is computed, and its frequency is ob-
served. It may be seen that some values do not occur in the output differential. Good
design practice in the PRESENT S-Box ensures that the probability distribution is
uniform, meaning the differentials, namely E, 4, 1, and F which occurs in the output
occurs with the same probability, i.e., 1

4 . The attacker can thus choose the values
of m0 and m1, such that Δ(m) = F , and thus Δ(u) = F . Due to the differential
property of the S-Box we know that in 4 out of 16 cases, the output differentials can
be E, 4, 1, and F. Thus, Δ(w) is also any one of the above choices. The attacker also
guesses k2, and obtains the value of Δ(w) by inverting the S-Box on the values x0

and x1, obtained by guessing the key k3. It is clear that those guesses which provide
Δ(w) any other value, but E, 4, 1, F, can be eliminated as wrong keys. However, the
differential property of the S-Box cannot distinguish the keys which lead to Δ(w)
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Table 2.2 Differential
analysis of the S-Box

i j S[i] S[j ] S[i] ⊕ S[j ]

0 F C 2 E

1 E 5 1 4

2 D 6 7 1

3 C B 4 F

4 B 9 8 1

5 A 0 F F

6 9 A E 4

7 8 D 3 E

8 7 3 D E

9 6 E A 4

A 5 F 0 F

B 4 8 9 1

C 3 4 B F

D 2 7 6 1

E 1 1 5 4

F 0 2 C E

equal to the above four values. This approximately eliminates 3/4 of the keys! This
simple example shows the power of differential cryptanalysis, and can be used to
distinguish the wrong keys from the correct ones.

In real life the block ciphers are cascades of substitution and permutations, and
thus often referred to as SPN (Substitution Permutation Network) ciphers. However,
the above discussion of differential cryptanalysis can be conceptually applied even
for such a construction. In such a case, for a four-round cipher as shown in Fig. 2.9,
an input–output differential is found for three rounds of the cipher which occurs with
a very high probability. It is often defined as a differential trail, Δi → Δo, where
Δi and Δo are the input differential and output differential after the third round. The
output differential also should ensure it is of low weight, meaning that it disturbs
or affects less number of S-Boxes of the final round. The attacker can then guess a
part of the last round key, corresponding to the disturbed S-Boxes, and then decrypt
a portion of the ciphertext to check the differential at the output of the third round.
It is expected that for the correct key the differential should be equal to Δo, with a
very high probability. It may be noted that the efficiency of such an attack compared
to a brute force attack is because it is a divide-and-conquer strategy, and thus can be
successful by guessing portions of the key.
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Fig. 2.9 The SPN block
cipher
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2.4 Asymmetric-Key Ciphers

The book also deals with attacks on asymmetric-key ciphers also known as public-key
ciphers. These algorithms are often computation intensive and operate on large finite
fields. For efficient design several field operation algorithms have been developed for
supporting multiplication, inverse, exponentiation etc., and have been implemented
in software libraries. The next section provides a quick overview on some of the
commonly known techniques which are employed to realize the ciphers, and are
hence targeted for demonstrating timing attacks. We focus on RSA, as it is still one
of the most popular and utilized public-key algorithms. Further more, many of the
attack techniques that we discuss in the book can be extended to other well known
public-key algorithms, like elliptic curve cryptosystems.

2.5 RSA: An Asymmetric-Key Algorithm

RSA works by considering two keys: a public key is known to every one whereas a
private key is secret. Encryption of a message is performed using the public key, but
decryption requires the knowledge of the private key. All the operations are done mod
n, where n is the product of two large distinct prime numbers p and q. The values
of p and q are, however, private and hence not disclosed to all. The encryption
key, which is public is a value b, where 1 ≤ b ≤ φ(n) and φ(n) is the Euler’s
totient function. Very simply put, Euler’s totient function or phi function, φ(n), is an
arithmetic function that counts the positive integers less than or equal to n that are
relatively prime to n. The decryption key is a private value a, which is selected such
that ab ≡ 1 mod φ(n). The owner of the private key (p, q, a) publishes the value
(b, n), which is the public key.

The encryptor chooses a message x, where x ∈ Zn. It may be mentioned that Zn =
{0, 1, . . . , n − 1}. The encryption process is computing the cipher as y ≡ xb mod n

using the public key b. Since the decryptor knows the value of a, which is the private
key, he computes the value of x from y by computing ya ≡ (xb)a mod n ≡ x mod n.
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The security of RSA is based on the assumption that decryption can be performed
only by the knowledge of the private key b. However, to obtain the private information
from the public value a requires one to compute the modular inverse of a modulo
φ(n). It is believed that to obtain φ(n) from n requires the knowledge of the prime
factors of n, namely p and q. The security of RSA is thus based on the hardness
assumption of factorization of large n. Thus, the underlying operation to perform
RSA encryption and decryption is modular exponentiation, i.e., y ≡ xb mod n,
where b is typically 1024 bits or 2048 bits large. This is achieved by the popular
square and multiply algorithm.

2.5.1 Square and Multiply Algorithm to Perform Exponentiation

In this section, we present the square and multiply algorithm to perform modular
exponentiation. We present the decryption algorithm, which uses the decryption key,
denoted as k = a. We focus on the decryption algorithm as that is a natural target
for an attacker, as the secret key is involved in the computation. The key is an m-bit
key, denoted as k = (km−1, km−2 · · · k0), where km−1 = 1.

This algorithm, as we later elaborate in the book, is naturally vulnerable against
SCA. The reason being that the operations, namely squaring and multiplication,
have different fingerprints on the side-channel leakage. For example, with respect
to a timing attack, both requires different number of clock cycles to execute. We
can observe that if a key bit is one, then a multiplication is performed, else not. The
attacker hence tries to exploit this conditional property on the key bits to devise an
attack. In the literature, there are several ways of performing a square and multiply
algorithm to achieve exponentiation. One of the most popular techniques is called
Montgomery Ladder, which is explained in the Algorithm 2.4.

It may be observed that in the Montgomery’s Ladder, irrespective of the key bit,
a multiplication and squaring is always performed. Thus, the design is naturally
resistant against some SCA, which are possible over the naïve square and multiply
algorithm.
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Fig. 2.10 Lampson’s
confinement problem
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2.6 Confinement Problem and Covert Channels

Now that we have reviewed the essential components in cryptography, we move to
side channels and how they covertly leak information about an executing application.

Consider a client using the services of a server. The client provides an input which
is operated on by the server using some stored secret. In an untrusted environment, the
client should ensure that the server does not communicate its input to a collaborator
(the attacker), while the secret stored in the server should not be revealed to the
client. Additionally no third-party should gain any information about the transactions
between the client and server. This is the confinement problem as defined by Lampson
in 1973 [10] and pictorially represented in Fig. 2.10.

Generally, the system can ensure that the server does not communicate with
the collaborator by disabling writing to files, shared memories, and other inter-
process communication (IPC) protocols. The server’s secret can be protected by
implementing memory protection using schemes such as paging and access control.
In spite of these protection schemes, there still exists indirect paths by which data
can be communicated. These indirect paths are not meant for communication, hence
known as covert channels. They are of interest in the domain of computer security
because they allow programs to bypass security policies of the system. They are all
the more relevant in the cloud computing environments where such untrusting parties
sharing resources are common. Covert channels can either be intended (where a nexus
exists between the server and the collaborator) or unintended (where a third party
obtains information about the computations). Covert channels are generally noisy,
but information theory can be used to devise an encoding, which will allow data to
get through reliably no matter how small the signal is, provided it is not zero [10].

An example of a covert channel was illustrated by Schaefer et al. in [11]. Consider
the server and collaborator sharing a CPU. The client can signal information to the
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collaborator by the amount of time it holds the CPU. For instance, holding the CPU
for 10, 20, or 30 μs can be used to represent a 0, 1, or 2 respectively [11]. This forms
an intentional covert channel between the two cooperating processes (the client and
the collaborator). Over the years several covert channels have been discovered such
as the rate at which a program performs paging [10, 12], CPU scheduling [13], disk
scheduling [13, 14], and cache memory usage [15, 16].

Covert channels do not always have to be intentional. There can also be unin-
tentional covert channels, which results in transfer of information about a program
execution to a third party. The program is unaware of these transfers. Such uninten-
tional covert channels occur due to physical attributes of a device such as the power
consumption and electromagnetic radiation, as well as execution time. These unin-
tentional covert channels are commonly known as side channels. In 1996, Kocher
showed that a timing side channel can be used to reveal the secret key of a cipher to an
adversary [17]. Later, power consumption of the device was used for the same pur-
pose [18]. These works that came to be known as SCA (side-channel attacks), kindled
interest in the academic community and led to a new domain of cryptographic re-
search; targeting implementations of ciphers rather than just the algorithm. The next
section surveys SCA against ciphers that use unintentional covert timing channels.
This class of attacks is called timing attacks.

2.7 Formal Analysis of Side-Channel Attacks

Since Shannon’s benchmark paper in [19], there has been significant progress in the
mathematical treatment given to cryptography. Ciphers, such as the three discussed
in the previous section, underwent rigorous analysis with strong attack models such
as adversaries who know the cipher algorithm, the input, as well as the output. The
only secret being the cipher’s key. All ciphers standardized and in use today have
bounded security against these attack models.

The advent of SCA in [17] introduced a stronger (yet practical) attack model.
Here, the adversary has access to side-channel information leakage of the encrypting
device in addition to the input, output, and cipher algorithm. The mathematical
tools developed so far failed to model these attack classes. It was not until 2004
that new models were developed by Micali and Reyzin to analyze cryptography
in the presence of side-channel leakage [20]. This they called physical observable
cryptography. The new theory was enhanced by the works of Standaert [21–24] and
by Backes and Kopf [25, 26, 27] and used to provide a fair evaluation and comparison
of ciphers in the presence of side-channel leakage. This has led to the development of
a new class of cryptographic algorithms and countermeasures with provable security
in the presence of leakages (for example [28, 29, 30]). The algorithms currently
available are inefficient to implement. The hope is that the tools and models will lead
to practically realizable ciphers with provable resistance against SCA. In this section
we present briefly the formal notions in side-channel analysis.
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Let Ek be a cipher having a secret key k chosen uniformly from the set K m

for some positive integer m. Let Ẽk be an implementation of Ek on a device. A q-
limited side-channel key recovery adversary is a statistical program, which can make
at-most q queries to Ẽk and monitor the leakage through channels such as power-
consumption, timing, or electromagnetic radiation of the device. To quantify leakage,
a leakage function L( · ) is defined that mathematically abstracts the characteristics of
the side channel and the measurement setup. For example, it is well-known that power
consumption can be modeled in terms of Hamming weight or Hamming distances
for CMOS devices.

The q-limited side-channel key recovery adversary follows a divide-and-conquer
strategy by splitting k into smaller parts for example k = (k1‖k2‖k3‖ · · · ‖km), where
k1, k2, · · · , km ∈ K , and each key part is targeted independently. Further, the
leakage partitions the key space K into equivalence classes such that the SCA
cannot distinguish between two keys in the same class. The goal of the adversary is
to guess a key class with nonnegligible probability. To do so, typically the attack has
two phases. An online phase in which the q side-channel leakages are collected and
an offline phase in which the leakages are analyzed using statistical distinguishers
in order to obtain a ranking of the keys in K in an order of their likelihood.

There are two metrics by which the success of the attack can be measured. The
first defines the oth order success rate as the probability that the correct key is ranked
among the top o keys. For example, if G = (g1, g2, · · · go, go+1, · · · , g|K |) is the
ordered sequence of keys ranked from most likely to least likely, then the probability
that the correct value of the key is in g1, g2 · · · , go is the oth order success rate of the
attack. Alternatively, guessing entropy [31] can be used as a metric to evaluate the
success of an attack. This measures the average number of guesses that are required
before obtaining the correct key. For example, if the correct key is present in the j th
location in the ranking G then the guessing entropy is j . The second metric uses
information-theoretic metrics to determine for example H[K|L], i.e., the entropy of
the key given the leakage. This should be much less than H[K] for a strong attack.

This book shows how timing attacks can be modeled by analyzing the cipher’s
memory access patterns. The mathematical framework thus developed is used to
evaluate ciphers for their resistance against timing attacks and choose implementation
strategies for the ciphers.

2.8 Conclusion

This chapter provided an overview of various symmetric and asymmetric encryption
schemes. Classical cryptanalytic techniques were dwelt upon, and side channels and
their formal analysis were introduced. To a side-channel attacker, it is not just the
enciphering algorithm and their implementations that are important, but the system
and CPU architecture is also crucial. The next chapter provides an overview of
modern CPUs and the few components in them that have been used to develop SCA.
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Chapter 3
Superscalar Processors, Cache Memories,
and Branch Predictors

Memory accesses and branches are arguably the biggest performance bottlenecks in
a program. To mitigate their effect on the performance, modern superscalar micro-
processors incorporate cache memories and branch predictors in their architecture.
While cache memories bridge the performance gap between the processor and the
main memory, branch predictors make predictions about branch destinations to re-
duce the overhead of branches in the program. The pitfall of these components is that
they result in information leakage through side channels, which have been used to
break crypto-systems. This book provides an analysis of the attacks that occur due to
these components. This chapter provides a brief overview of superscalar processors,
its memory organization, cache memories, and branch predictors [1–3].

3.1 Superscalar Processors

In this section, superscalar processors and features such as speculation and out-of-
order execution are discussed. Figure 3.1 shows a block diagram of a superscalar
processor. A superscalar processor can be thought of as a pipeline with several
stages; each stage doing a specific job. In every clock cycle, multiple instructions are
fetched from the instruction cache into an instruction/decode buffer. The dispatch
unit then scrutinizes the instructions in the buffer and attempts to issue them to an
appropriate functional unit (such as integer arithmetic logic units (ALU), floating
point units (FPU), branch unit, etc.). The issue is done provided the functional unit
is available and the operands used by the instruction are up-to-date. It may be noted
that the instructions can be issued to the functional units out-of-order (i.e., in an
order that does not strictly follow the program flow). Consequently, the result from
the functional unit is obtained out-of-order. This is stored in a reorder buffer before
it is retired (i.e., the processor registers updated). An instruction is retired if and only
if all instructions preceding it have retired. Instructions can even also be executed
speculatively, that is, before a branch can be taken.

Figure 3.2 shows an example of how instructions generally flow in a processor
having a five stage pipeline. In first stage (IF), instructions are fetched from the
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Fig. 3.1 Superscalar processor architecture

instruction cache. The second stage (ID) decodes instructions. The third stage (OF),
fetches operands required, while the fourth stage (IE) executes the instructions. The
result of the instructions are written back in final stage (WB). Several instructions are
simultaneously operated upon in the processor. While one is in the IE stage, others
are in the IF, ID, OF, and WB stages. Each stage is small and completes its task fast.
This allows the processor to operate at high clock frequencies.

Modern processors can have over 30 pipeline stages. This deeply pipelined execu-
tion is possible because instructions are generally executed in a predictable sequence.
The processor can, therefore, fetch and decode instructions much ahead of time. This
nice flow in the instruction stream is broken by branches in the program. Branch in-
structions break the sequential flow requiring instructions to be executed from some
arbitrary branch destination. A branch instruction requires the entire pipeline to be
flushed. All instructions in various stages of execution would need to be aborted and
new instructions from the branch destination fetched. This has significant overheads
because as many as 100 instructions could concurrently be present in different exe-
cution stages of the pipeline. Branch predictors are used to reduce this overhead by
predicting branch target destinations and avoid flushing the pipeline. Section 3.3 has
more details.

A functional unit of interest in timing attacks is the load-store unit (especially the
load part), which handles all memory accesses made by the program. Each load or
store has three operations. The first is an address generation (which generates the
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effective address from where data are to be loaded or stored). Next, the address is
translated from a virtual address to a physical one using a translation look aside-
buffer (TLB). The final operation either loads or stores data to or from the memory.
For a load instruction, the loaded data are updated into a register only after the
ordering has completed. Load instructions can be pipelined, executed speculatively,
and out-of-order. Additionally, multiple load instructions can be issued in parallel if
the processor supports multiple load-store units.

In order to extract the best performance out of a superscalar processor, the memory
subsystem must match the performance of the processor. The next section briefly
describes memory subsystems and branch prediction logic in superscalar processors.

3.2 Memory Hierarchy and Cache Memory

Modern superscalar CPU architectures are plagued with the von Neumann bottleneck
due to the high speed with which CPUs process instructions and the comparative low
speed of memory access. The possibility of using high-speed memory technologies
that match CPU processing speeds is restricted by cost factors. To mitigate this speed
difference, superscalar CPU architectures are built with memory as a hierarchy of
levels, with small and fast memories close to the processor and large, slower, less
expensive memories below it. A memory stores a subset of the data that is present in
the memory below it, while the lowest memory level (generally main memory that
uses low-cost capacitive DRAMs) contains all the data. The aim is to provide the
user with large cheap memories, while providing access at processor speeds.

Memories close to the processor are called cache memories and are built with
SRAM technology, which offers high access speeds, but are large and expensive.
Depending on the data it contains, cache memories are categorized as either data,
instruction, or unified (that store both data and instructions). Cache memories are
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also categorized based on their closeness to the processor as L1, L2, and L3, with
L1 being the closest to the processor and L3 the farthest. Most modern desktop and
server processors have dedicated L1 data and L1 instruction caches, and a larger
unified L2 cache memory. Some servers also contain an L3 cache before the main-
memory (Fig. 3.3). The L1 caches data present in L2, while L2 caches data present
in L3 or the main memory.

Cache memories work by exploiting the principle of locality, which states that
programs access a small portion of their address space in any given time instant. The
entire memory space of the processor is divided into blocks, typically of 64 or 128
contiguous bytes. A memory access results in a cache hit if the data are available in
the cache memory. For example, an L1-data cache hit is obtained if the data accessed
are available in the L1-data cache memory. In this case, the data are available to the
processor quickly and there are no delays. A cache miss occurs if the data accessed are
not available in the cache memory. In this case the block containing the data is loaded
into the cache from a memory lower in the hierarchy. This is a slow process during
which the processor may stall. There are three types of cache misses: compulsory
misses, capacity misses, and conflict misses. Compulsory misses are cache misses
caused by the first access to a block that has never been used in the cache. Capacity
misses occur when blocks are evicted and then later reloaded into the cache. This
occurs when the cache cannot contain all the blocks needed during execution of a
program. Conflict misses occur when one block replaces another in the cache.

3.2.1 Organization of Cache Memory

The cache memory is organized into lines with each line capable of holding a block
of memory. Suppose each block has a capacity to store 2δ words, and there are 2b

lines in the cache, then at most 2b+δ words can be stored in the cache. An address
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Fig. 3.4 Direct mapped cache
memory with 2b = 4

Blocks in Main Memory

Lines in Cache Memory

translation mechanism is required to determine which cache line a block should get
stored into. In the most simple approach, every 2b-th memory block gets mapped
into the same cache line. This mapping is called direct-mapping and is depicted in
Fig. 3.4.

The address translation mechanism computes two components: the word address
Aword and the line address Aline. If A is the address of the data that is to be accessed
then

Aword = A mod 2δ

Aline = A/2δ� mod 2b .

Note that the size of the address Aword is δ bits while the size of the line address
is b bits. Problems arise due to the many-to-one mapping from blocks to lines (as
seen in Fig. 3.4). The cache controller needs to know which block is present in a
cache line before it can decide if a hit or a miss has occurred. This is done by using
an identifier called the tag. The identifier denoted Atag for the address A is given by

Atag = A/2δ�/2b� .

Thus, every line in the cache has an associated tag as shown in Fig. 3.5. For every
memory access, the tag for the address (Atag) is compared with the tag stored in the
cache. A match results in a cache hit, otherwise a cache miss occurs.

Time-driven cache attacks on block ciphers monitor these hits and misses that
occur due to look-up tables used in the implementation. A look-up table is defined
as a global array in a program. For example, the C construct for a look-up table is as
follows.

const unsigned char T0[256]={0x63, 0x7C, 0x77, ... };
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Assuming that the base address for T0 is 0x804af40, Table 3.1 shows how the
table gets mapped for a 4KB direct-mapped cache with a cache line size of 64 bytes.
Every block in the table maps to a distinct cache line provided that the table has
lesser blocks than the lines in the cache.

Table 3.1 Mapping of Table T0 to a direct-mapped cache of size 4KB (2δ = 64 and 2b = 64)

Elements Address line Tag

T0[0] to T0[63] 0x804af40 to 0x804af7f 61 0x804a

T0[64] to T0[127] 0x804af80 to 0x804afbf 62 0x804a

T0[128] to T0[191] 0x804afc0 to 0x804b0ff 63 0x804a

T0[192] to T0[255] 0x804b000 to 0x804b03f 0 0x804b

The drawback of the direct mapped scheme is poor cache utilization and cache
thrashing. Consider a program which continuously reads data from addresses A and
then A′. The addresses are such that they map into the same line in the cache (i.e.,
Aline = A′

line). Thus every memory access would result in a cache miss, considerably
slowing down the program even though the other lines in the cache are unused. This
is called cache thrashing.

An improved address translation scheme divides the cache into 2s sets. Each set
groups w = 2b/2s cache lines. A block now maps to a set instead of a line and can
be present in any of the w cache lines in the set. A cache that uses such an address
translation scheme is called a w−way set associative cache. The address translation
for such a scheme is defined as follows,
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Aword = A mod 2δ

Aset = A/2δ� mod 2s

Atag = A/2δ�/2s�
If w = 2, the thrashing in the previous example is eliminated as the data corre-

sponding to the addresses A and A′ can simultaneously reside in the cache. However,
the problem arises again if a program is executed that makes continuous accesses to
three or more data from different addresses that share the same cache set.

3.2.2 Improving Cache Performance for Superscalar Processors

As seen in the previous section, a poorly designed cache can slow down a program
instead of accelerating it. Therefore, it is important to understand the effect of the
cache memory in a program’s execution. The average memory access time is often
used as a metric for the purpose. For a system with a single level of cache memory,
the metric is defined as follows,

Average memory access time = Hit time + Miss Rate × Miss Penalty,

where, Hit time is the time to hit in the cache, while Miss Penalty is the time
required to replace the block from memory (i.e., the miss time). Miss Rate is the
fraction of the memory accesses that miss the cache.

Improving cache performance can be done by reducing hit time, reducing or
hiding miss penalty, and/or reducing miss rate. To certain extent basic parameters in
the cache design can be tuned to improve cache performance. The cache size (2b+δ),
for example, should be large enough to provide temporal locality for the program,
yet be small enough to prevent extensive degradation of hit time. Similarly, other
cache parameters such as the associativity (w), block size (2b), and number of levels
can be tuned.

Besides tuning the basic parameters in the cache, other micro-architectural tech-
niques are available to improve performance of cache memories. These are generally
incorporated in modern superscalar microprocessors. The remaining of the section
summarizes some of the important techniques.

• Wide cache interfaces. The data bus interface in these caches is capable of trans-
ferring multiple contiguous words at a time. For example, two words to an entire
line can be transferred simultaneously. This helps in reducing multicycle accesses,
thus reducing on average the hit time. Wide cache interfaces are especially suited
for instruction caches and L2 and L3 level cache memories, where this feature
allows the entire cache line to be transferred efficiently.

• Multiaccess cache. Single access cache memories can handle one read or one write
per clock cycle. This becomes a bottleneck in superscalar processors, which are
capable of multiple loads or stores in a clock cycle. In such cases multiaccess cache
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memories are an advantage as they allow multiple accesses in a clock cycle, thus
preventing stalls in the processor. There are various ways in which multi-access
cache memories can be realized. We enumerate some of the methods.
– True Multiporting. Uses dual-ported memory to store the tags and data. How-

ever the size of the cache increases significantly and the hit time is also
affected.

– Multiple Cache Copies. Mirrors cache memories so that each mirror holds an
identical copy of the data and can handle a single access. Thus n mirrors can
support n accesses simultaneously. In addition to the large size, a significant
drawback is that stores require all mirrors to be updated in order to maintain
coherency.

– Overclocking. The cache is clockedx times faster than the processor. Therefore,
a single cycle of the processor can service x accesses to the cache.

– Multibanked caches. The address space is partitioned into multiple banks. Bank
1 caches addresses from partition 1, Bank 2 caches addresses from partition 2,
and so on. Each bank can service one memory access per clock cycle. Thus,
if there are n partitions, n memory accesses can be serviced together provided
they go to different banks. Two simultaneous accesses to the same bank causes
a conflict and results in a stall. Additionally a crossbar switch is required to
channel requests to the appropriate bank and another crossbar switch is required
to channel the result to the appropriate port.

• Sub-blocks. The cache line is broken into several sub-blocks. Each sub-block has
a separate valid bit. On a cache miss, only the required sub-block needs to be
fetched. Similarly, for stores, only the valid sub-blocks need to be stored. The
others can be ignored thereby reducing the miss penalty.

• Critical word first. During a cache miss, the required word in the block is fetched
first, thus allowing the processor to restart early. This reduces the miss penalty.

• Write Buffers. A write buffer is used to hold data before it is written back into the
cache. This reduces the latency for the write and also allows the cache to service
other read requests while the store is taking place.

• Non-blocking or lockup free caches. In conventional caches while a miss is being
serviced, a second access to the cache is stalled. One remedy is to buffer future
misses, while allowing the cache to continue servicing hits. A better alternative is
to allow multiple misses to be overlapped. This is a nonblocking cache that helps
increasing the cache bandwidth.

• Pipelined caches. This allows a new request to be serviced before the previous is
completed. Thus increasing the cache bandwidth.

• Victim Caches. These are small fully associative caches that store blocks recently
evicted from the L1 cache. They are accessed on a miss in parallel with the lower
level cache. This avoids lower level cache access and reduces the number of cache
misses as it is fully associative.

• Prefetching Cache. If programs follow strictly the principle of locality, then cache
misses can be considerably reduced. However, most programs occasionally ac-
cess data that are not spatially local. This will create additional cache misses. One
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remedy is to load data into the cache before it is actually required, thereby reduc-
ing the miss rate. This is called prefetching and can be done either in software
or automatically by the hardware. Software prefetching requires that prefetch in-
structions be inserted into the program that would initiate a load of a block into
the cache. However, unlike normal loads, the instruction does not stall.
Hardware prefetching uses a prefetcher that monitors the memory access patterns
of the executing program and predicts the future data the program will access.
This datum is loaded into the cache before the program accesses the data, thus
reducing the miss latency. Hardware prefetchers are categorized as sequential
prefetchers and stride prefetchers depending on the sequence of memory accesses.
A sequential prefetcher tracks consecutive blocks accessed by the program, while
a stride prefetcher looks for accesses with regular strides that are not necessarily
consecutive.
Implementing a hardware prefetcher requires a memory reference prediction table,
comprising of three fields. The first is the instruction address of the load, which
is used as a tag field for selecting an entry of the table. The second field contains
the previous instruction address of the load, while the third has the stride value.
In order to prefetch, the previous address is added to the stride value in order to
obtain a predicted address. If the data corresponding to the predicted address is
not in the cache, it is loaded from the memory lower in the hierarchy.

3.3 Branch Prediction Unit

A branch in a program causes its control flow to deviate from a sequential execution.
Branch instructions can either be unconditional or conditional. In an unconditional
branch instruction, the control flow of the program changes from its sequential flow
unconditionally. The next instruction executed is not the next in the instruction se-
quence. In the case of a conditional branch instruction, the control flow changes
only if the condition specified in the instruction is satisfied. The conditions are eval-
uated only when the branch instruction reaches the execute stage of the processor.
By then, several more instructions have entered the processor pipeline and are in
various stages of execution. If the branch is not taken, execution flows normally and
no overheads are incurred. However, if the branch is taken, all instructions in the
pipeline would need to be flushed and new instructions from the branch destination
be fetched. This leads to significant overheads.

The Branch Prediction Unit (BPU) plays an important role in reducing this over-
head. Much before the branch condition is evaluated, the BPU guesses the probable
execution path of the program and causes the processor to fetch instructions from
the branch target. This avoids the pipeline flush, saving critical clock cycles. The
prediction is made based on historic information about the branches in the program.
Figure 3.6 shows the effect of the branch predictor in saving clock cycles.

Like all predictors, the BPU’s prediction is not always correct. It could result
in a misprediction, where the target address is not the same as the predicted target.
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Fig. 3.6 Branch predictors can reduce clock cycles by predicting the branch target. The figures
show an example of the working of a branch predictor in a processor with a five-stage pipeline.
The first column in the figures (100,104,...) are the memory addresses, while the second are the
instructions (instr1, instr2, .... instrx1, instrx2,....). Without the predictor, the JNZ (jump if not zero)
instruction causes the pipeline to be flushed and four clock cycles wasted. On the other hand, a
processor with a branch predictor that predicts the branch target (PC = 200) correctly would save
these clock cycles

This would cause overheads as the pipeline needs to be flushed. An efficient branch
prediction algorithm is one where such mispredictions are minimized.

There has been considerable research in developing the “ideal” branch prediction
algorithm; one which has no mispredictions. The algorithms developed are based on
either static or dynamic schemes. The next section discusses these schemes.
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3.3.1 Static Branch Prediction

Some of the static branch prediction schemes are listed below:

• Whenever a branch instruction is present, predict that the branch is always taken.
Alternatively, the prediction could always be not taken.

• Predict depending on the opcode. For instance, opcode X would always result in
a prediction that the branch is taken, while opcode Y would always result in a
prediction that the branch is not taken.

• Branches that jump forward in the program are always predicted not taken, while
branches that jump back are always taken.

The drawback of these approaches is that they do not perform well when the executing
program has hierarchical loop statements or when there is an irregularity in the branch
behavior. In such situations, the dynamic branch prediction strategies perform better.

3.3.2 Dynamic Branch Prediction Schemes

Dynamic prediction schemes store significant amount of information on the run-
time instruction execution and use this information to predict the outcome of branch
instructions. This section describes some of the most common dynamic predictors.

3.3.2.1 1-bit Branch predictor

This predictor is also known as last-time predictor and is arguably the simplest
form of dynamic branch prediction. Every time a branch instruction is executed, the
predictor saves the result—either taken or not taken. This stored result is used to
make a prediction the next time the branch instruction is fetched.

The predictor hardware requires a table containing the address of the branch
instruction and a bit, which signifies branch taken or not taken. This bit is updated
every time the branch instruction is executed. The automaton for the one bit predictor
is shown in Fig. 3.7. The automaton has two states—one predicts branches to be taken
and the other predicts branches to be not taken. The transitions are marked by the
output of the last branch statement.

3.3.2.2 Bimodal Predictor

In the 1-bit branch predictor discussed above, every misprediction would change the
result of the prediction. In a bimodal predictor on the other hand, two consecutive
mispredictions are required to change the result of the prediction. Figure 3.8 shows
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Fig. 3.7 Dynamic 1-bit predictor state machine

not_taken

not_taken

not_taken

taken

taken

taken

not_taken

taken

S0/not taken S1/not taken

S3/taken S2/taken

Fig. 3.8 Dynamic 2-bit predictor state machine

the state machine for a bimodal predictor (also called a 2-bit predictor), which predicts
branches as either taken or not taken.

The state machine has four states S0, S1, S2, and S3, each having a predicted
output. The arrows represent whether a branch is taken or not, while the label inside
the state denotes the prediction (which is the output of the predictor). The original
Intel Pentium used this form of prediction.
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3.3.2.3 Two-Level Adaptive Predictor

Conditional branches that are taken in a regular recurring pattern are not predicted
well by the bimodal predictor. In such cases a two-level adaptive predictor works
better. The predictor remembers the last k occurrences of a branch instruction and
uses an s-bit prediction function (such as an s-bit predictor) for each of the 2k

history of patterns. The first level in the two level adaptive predictor uses a branch
history register. This is a shift register of size k, which stores the history of the last
k branches—either taken or not taken. The branch history register indexes into a
second level called pattern history table, which can hold 2k entries, each s bits wide.
An s-bit prediction function is used to make a prediction based on the last s branches.
Figure 3.9 illustrates the two level predictor.

When a conditional branch say B is getting predicted,

• content of the k bit history register is used as address to the pattern history table.
Let Sc be the contents of the pattern history table.

• Sc is fed to the s-bit prediction decision function (such as the s-bit predictor),
which outputs the predicted value λ(Sc).

To take an example, consider the case when k = 2, which means that the last two
occurrences of the branch are stored in the branch history register. The register
therefore takes 4 values (00, 01, 10, and 11), which indexes into the 0th, 1st, 2nd,
and 3rd entry in the pattern history table. The contents of the pattern history table is
fed to a bimodal predictor.

Now consider a branch sequence is 0011001100. Further, assume that s is 2 and
uses a 2 bit predictor function. The 00 entry would predict 1, the 01 entry would
predict 1, the 10 entry would predict 0, and the 11 entry would predict 0.
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3.3.3 Branch Target Buffers

Branch target buffers (BTB) is a cache in the processor that stores branch targets.
Each BTB entry is primarily composed of tag bits, the target address of the branch,
status bits indicating if the branch is taken or not taken. Whenever a branch instruction
is encountered, a part of the instruction address (PC—program counter) is used as
an index to the BTB location.

The BTB has limited size and thus can hold a limited number of branch targets.
If a new branch instruction is encountered that is not in the BTB, then an entry in the
BTB would be evicted. Figure 3.10 shows the structure of the BTB.

3.4 Conclusion

This chapter laid the foundation for superscalar processors, cache memories, and
branch prediction units. Timing attacks discussed from here on would rely signifi-
cantly on how these components operate when a cipher executes. In the next chapter,
we would demonstrate this by showing how the cache memories affect the cipher
execution and how they can be exploited to reveal information about the cipher’s
secret key.
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Chapter 4
Time-Driven Cache Attacks

When a load instruction incurs a cache-miss, a block of memory from the lower level
of the memory subsystem is loaded into a cache line. Consequently, the memory
access would require considerably more time and power, and has a characteristically
different electromagnetic radiation compared to when a cache-hit occurs. Figure 4.1,
for instance, shows the power consumption trace for eight memory load instructions
on a PowerPC processor. The loads that result in cache misses are easily distinguish-
able from the cache hits. These indirect manifestations of a memory access can be
used by an attacker to gain considerable insight about the application currently being
executed. In this chapter, we show how information about the secret key of a cipher
can be gleaned from the execution time of a block cipher. We start the chapter with
a simple illustration showing how information can be obtained from memory access
patterns before discussing attacks on ciphers.

4.1 A Simple Illustration

Consider a program having a look-up table T and a function called AccessT, which
takes as input two parameters x1 and x2. The function accesses the table T twice—at
locations k1 ⊕ x1 and k2 ⊕ x2 as shown in Listing 4.1, where k1 and k2 are a pair of
application specific secret data.

Suppose a malicious user in the system wants to obtain information about the se-
crets k1 and k2. However, she can only invoke AccessT and does not have sufficient
privileges to observe the internals of AccessT. For instance, AccessT can be a
system call executing in the operating system, while the malicious user has only user
level permissions. Since no direct channels to determine k1 and k2 are present, the
malicious user could resort to using indirect channels. For instance, the user could
invoke AccessT and observe the power consumption while the function executes.
These side-channels would indirectly provide information about the accesses made
to T .

Assuming that the cache memory does not contain any part of the look-up table
before the first invocation of AccessT, the first access at an offset (x1 ⊕ k1) in the
look-up table would result in a cache miss. Consequently, a memory block containing

© Springer International Publishing Switzerland 2015 53
C. Rebeiro et al., Timing Channels in Cryptography,
DOI 10.1007/978-3-319-12370-7_4



54 4 Time-Driven Cache Attacks

Fig. 4.1 The power
consumption trace of eight
load instructions in a
PowerPC processor. The first
and the fifth load resulted in a
cache miss, while the others
were cache hits

the data T [x1 ⊕ k1] would get loaded into a cache line. For instance, if the size of
the cache line is 32 bytes and each element in the table requires 1 byte then at most
32 = (32/1) elements of the look-up table are loaded into the cache.

Listing 4.1 function AccessT reads two locations from a look-up table

unsigned char T [256] = {0×33,0×65, · · ·};
unsigned char y;

unsigned char AccessT(unsigned char x1, unsigned char x2){
unsigned char k1 = load_secret1();
unsigned char k2 = load_secret2();

y= T [k1 ⊕ x1]⊕T [k2 ⊕ x2];

return y;
}

During the second access to table T at an offset (x2 ⊕ k2), a cache hit will arise
if (1) data corresponding to the first access still resides in the cache and (2) the
access at offsets (x1 ⊕ k1) and (x2 ⊕ k2) in the look-up table fall in the same memory
block. We call this a collision. This cache hit can be inferred by monitoring the
power consumption of the device. The cache hit implies that (x1 ⊕ k1) and (x2 ⊕ k2)
differ by at most 32 (for a cache line of 32 bytes). This indicates that (x1 ⊕ k1) and
(x2 ⊕ k2) differ by log2 32 = 5 least significant bits. We represent this relationship
as 〈x1 ⊕ k1〉 = 〈x2 ⊕ k2〉, where 〈z〉 is z � 5. Since the malicious user chooses x1

and x2, a relationship between k1 and k2 can be inferred as follows,

〈k1 ⊕ k2〉 = 〈x1 ⊕ x2〉 . (4.1)

For instance, if x1 and x2 are chosen as 0×45 and 0×c4 , respectively and the memory
block size is 32 bytes, then 〈k1 ⊕ k2〉 is 4. This is obtained as follows,

〈k1 ⊕ k2〉 = (x1 ⊕ x1) � log (32/1) (4.2)

= (0×45 ⊕ 0×c4) � 5

= 4
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This means that the value of the three most significant bits of k1 ⊕ k2 is 4. The set
of candidates are therefore {0×80, 0×81, 0×82, · · · 0×9f }. Only one value in the
candidate set is correct, all others are wrong.

In terms of the information gained, since k1 and k2 are defined as unsigned char
in Listing 4.1, each can take one of 28 different values. Together, the uncertainty of
k1 and k2 is 216 (or 16 bits). After observing the cache hit, the uncertainty of k1 and
k2 reduces. In the example taken above, with the 32 byte memory block size, the
uncertainty of k1 and k2 reduces to 213 (or 13 bits).

The amount by which the uncertainty reduces depends on the size of the look-
up table, the memory block size which is equivalent to the cache line size, and
the alignment of the table in memory. This reduction in uncertainty is discussed in
Sects. 4.1.1 and 4.1.2.

A cache miss could also be a source providing information about k1 and k2. A
cache miss in the second table access would indicate that the first and second memory
access to table T are to different memory blocks. Thus , 〈x1 ⊕ k1〉 �= 〈x2 ⊕ k2〉 and

〈k1 ⊕ k2〉 �= 〈x1 ⊕ x2〉 . (4.3)

In Listing 4.1, a cache miss in the second access would eliminate 32 values for
k1 ⊕ k2.

A cache miss, however, can also occur if the memory block corresponding to
T [x1 ⊕ k1] gets evicted from the cache before T [x2 ⊕ k2] is accessed. Thus unlike
a cache hit, which guarantees a collision, a cache miss does not always imply that
a collision has not occurred. Said differently, Eq. 4.3 may not always hold even if a
cache miss has occurred during the second access to table T .

4.1.1 Relation Between Size and Bits Revealed

The size of the memory block, look-up table, and the size of each element in the
table dictate the number of bits that get revealed. If N is the number of elements
in the look-up table, L the size of each memory block in terms of bytes and B the
number of bytes required to store each element in the look-up table, then the number
of elements in a memory block is L/B and the number of memory blocks occupied
by the table is (N × B)/L.

Power consumption traces of a cache hit determine collisions in a memory block.
Thus number of bits revealed is log2 ( N×B

L
). Since multiple elements of the table share

the same block, there is an ambiguity about which element was actually accessed
within the block. This results in multiple candidates of size L

B
. In Listing 4.1, N

is 256, B is 1 (since sizeof(unsigned char) = 1), and assume L to be 32. Thus, the
number of bits of k1 ⊕ k2 revealed is 3 and the number of candidates for k1 ⊕ k2

is 32. The number of bits revealed reduces as the size of the look-up table reduces.
The ideal case of zero bits revealed occurs when the look-up table fits within a single
memory block.
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Fig. 4.2 The alignment of a
table in memory could affect
the bits revealed. Each row in
the figure is a memory block,
while the shaded regions are
the look-up table of size l. In
the aligned table every block
has δ elements, while in an
unaligned table the first and
last block have fewer
elements

Memory Block

(a) Aligned Table

Memory Block

(b) Unaligned Table

4.1.2 Relation Between Alignment of Tables and Bits Revealed

A look-up table is said to be aligned if its base address is a multiple of the memory
block size. Figure 4.2a shows how an aligned table is placed in memory, while
Fig. 4.2b shows an unaligned look-up table. Each row in the figures indicates a
memory block. The alignment of the table depends considerably on the compiler
used to build the program’s executable. Some compilers align tables in order to
achieve better performance, while others do not align tables thus utilizing memory
better. If the tables are dynamically allocated, then the operating system’s memory
management scheme dictates the table’s alignment.

In an aligned table, all memory blocks loaded into the cache contain the same
number of elements of the look-up table. Thus the size of the candidate key set is
always L/B. This size is independent of which memory block is loaded into the
cache. In an unaligned table, the first and the last memory block of the table contain
lesser number of elements compared to the other blocks. Consequently, a cache hit
in the second access occurring due to a collision in either the first or the last memory
block would result in a candidate key set which is smaller than L/B.

For instance, let A be a memory address which is a multiple of the memory block
size. Assume that the table T in Listing 4.1 has the base address A + 31. Since
the table is of size 256 bytes, it occupies 8 memory blocks assuming each block is
of 32 bytes. The first memory block contains 1 element of the table, the last block
contains 15 elements, while all other memory blocks holding the table contain 16
elements. Consequently, the size of the candidate key set would be 1, 16, or 15
depending on which memory block had the collision.

4.1.3 Initial State of Cache Memory

In the discussion above, we assumed that no part of table T was present in the cache
before functionAccessTwas first invoked. In order to ensure this, the attacker could
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clear the cache of the contents of T before invoking AccessT. Some processors
have instructions that would allow parts of the cache to be flushed. Intel and AMD
x86 processors, for instance, have an instruction called clflush for the purpose. The
instruction takes a linear address and invalidates lines in all caches that contain the
address. Alternatively the attacker could fill the cache with its own data, thus evicting
all other data. This is done by allocating an array as large as the cache itself and then
accessing it. The access would load the array elements into the cache, thereby evicting
all other data.

4.2 Collisions from Execution Time

The previous section showed how power consumption of a processor can be used
to detect cache hits and misses. Power consumption side-channels are generally
suited for small embedded processors such as the PowerPC, where tapping into the
power lines is easy. In more complex processors, the noise in the power consumption
would significantly hinder the determination of a collision. Time-based side-channels
are generally preferred in such environments as they can be easily measured, do not
require physical colocation with the device, and do not require any special equipment.

In a timing side-channel microarchitectural events such as a cache hit and a miss
are distinguished using time measurements. Making these measurements requires a
highly precise clock source. Many microprocessors have such precise clocks in the
form of a time stamp counter. This is a highly precise low-overhead way to make
time measurements. In processors that do not have such counters, virtual time-stamp
counters (VTSCs) have been built to measure microarchitectural events. VTSCs
have a small loop that increments a counter continuously. Since the loop is small,
the counter is incremented at every clock cycle of the processor. The value of the
counter, therefore, gives a notion of time. Such ad hoc clocks are feasible because
time is only used to distinguish between microarchitectural events, the exact duration
of the events are not required. For instance, time side-channels just use the fact that
a cache miss takes more time than a cache hit. The exact duration of a cache miss
and cache hit is not important. In this section we discuss these two clock sources.

4.2.1 Clocks Using Hardware Time Stamp Counters

Intel machines since the Pentium have a 64-bit time-stamp counter register. The
register is made 0 when the processor resets and is monotonically incremented in
every clock cycle. Thus, on a 1 GHz machine, the counters could measure time
periods as low as a nanosecond. An instruction called rdtsc is used to read the time-
stamp counter. When rdtsc is invoked, the high-order 32 bits of the counter is loaded
into the edx register, while the low-order 32 bits is loaded into the eax register. The
following pseudoassembly code shows how the rdtsc instruction can be used to time
a load instruction.
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Listing 4.2 timestamp (using rdtsc to measure the time required for a load
instruction)

1 rdtsc ; read time stamp
2 mov time, eax ; move counter into variable
3 load ebx, (ebp) ; a load from memory
4 rdtsc ; read time stamp again
5 sub eax, time ; find the difference

The load instruction in line 3 loads the ebx register with contents pointed to by the
register ebp. The load instruction is sandwiched between two rdtsc instructions. The
first rdtsc records the counter value in the variable time before the load is carried
out, while the second rdtsc instruction records the counter value soon after the load
instruction. The difference between the two counter values gives the duration of the
load instruction. Since microarchitectural events last only for a few clock cycles, the
contents of the eax register is sufficient. The higher bits of the counter stored in the
edx register are generally not changed between the two rdtsc calls. The variable
time would be higher if there is a cache miss compared to a cache hit.

Several sources of error are possible in the time measurements described above.
A common source of error is from hardware interrupts that occur between the two
rdtsc instructions. This would result in a measurement that is significantly larger
than expected. Errors introduced by hardware interrupts can easily be eliminated
by using a threshold. Values above the threshold would most probably be due to a
hardware interrupt, therefore not considered. The value of the threshold should be
set just above the maximum cycles required for a load.

Besides interrupts, several microarchitectural features could cause errors. These
are subtle and more difficult to identify. The errors are considerably smaller, hence
cannot be identified by thresholds. One such source of error is the out-of-order exe-
cution of instructions that is present in all x86 machines from Pentium Pro onwards.
This feature allows instructions to be executed in an order that is different from that
specified by the source code. For instance, since the load instruction in Listing 4.3
takes considerable amount of time, it may be performed earlier. This could potentially
result in the first rdtsc instruction being performed after the load has completed. If
this happened, the time measurement would not take the load into account.

In order to keep the rdtsc instruction from being performed out-of-order, a seri-
alizing instruction is required. This instruction waits until all preceding instructions
complete. One such serializing instruction is the cpuid, which is normally used to
identify the processor on which the program is executed. The cpuid instruction can
be used to ensure that rdtsc is executed in-order. Listing 4.3 shows the time measure-
ment using an rdtsc instruction that is serialized. Each rdtsc instruction is preceded
and followed by a cpuid instruction. The proceeding cpuid instruction ensures that
previous instructions are completed, while the cpuid instruction that follows ensures
that no instruction is executed before the time-stamp counter is read for the second
time. Newer x86 processors have an instruction rdtscp that reads the time-stamp
counter and is a serialized instruction by itself.
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Listing 4.3 timestamp (using rdtsc serialized rdtsc to measure the time required for
a load instruction)

1 cpuid ; ensure preceding instructions complete
2 rdtsc ; read time stamp
3 cpuid ; ensure preceding instructions complete
4 mov time, eax ; move counter into variable
5 load ebx, (ebp) ; a load from memory
6 cpuid ; ensure preceding instructions complete
7 rdtsc ; read time stamp again
8 cpuid ; ensure preceding instructions complete
9 sub eax, time ; find the difference

Another source of error occurs in processors whose clock frequency is scaled de-
pending on the work load. A processor that is lightly loaded runs at a lower clock
frequency in order to save energy. Its clock frequency is increased automatically as
the load of the processor increases in order to boost performance. This scaling of
frequency could induce errors in the measured cycle count. It should, therefore, be
ensured that the processor is sufficiently warmed up so that it runs at the maximum
clock frequency before any measurements are made.

Systems can prevent the user space programs from using rdtsc and rdtscp in-
structions. However, high-precision timing measurements can still be made by using
VTSCs. The next section discusses such counters.

4.2.2 Clocks with Virtual Time-Stamp Counters

To build a VTSC, two threads (A and B) are required, each running on a separate
core of the processor and sharing a memory address CC, which mimics a time-stamp
register. Thread A initializes one of the processor’s general purpose register to 0, then
increments it in an infinite loop, and copies the result to CC. The shared variable CC

should be defined volatile to ensure timely copying. The loop would thus have an
add instruction followed by a store. Assuming that no other process modifies CC,
it would monotonically increment approximately once every clock cycle just like a
hardware time-stamp counter. To use CC, thread B would read it before and after
the instructions it wishes to measure.

Listing 4.4 shows an example of the VTSC to time an addition. The function
vtsc_thread runs in a separate thread and increments the global volatile variable
CC. This shared variable is read from the function measure before and after the
addition is done. As in the case of rdtsc, the instruction cpuid may be added before
and after CC is read to ensure serialized execution.
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Listing 4.4 timestamp (using a virtualized time stamp counter to time an addition)

1

2 volatile unsigned long long CC;
3

4 void vtsc_thread(void *ptr)
5 {
6 while(1) CC++;
7 }
8

9 unsigned int measure(x, y)
10 {
11 t1 = CC;
12 z = x + y;
13 t2 = CC;
14

15 return (t2 - t1);
16 }

4.2.3 Distinguishing Cache Hit and Miss Events Using Time

Now that we have established how to measure time accurately, we look at how to use
time to distinguish microarchitectural events such as a cache hit and a cache miss.
We go back to Listing 4.1. The malicious user can invoke AccessT with chosen
inputs and monitor the execution time required. A longer execution time would likely
be due to a cache miss in the second access to the table T , while a shorter execution
time would indicate a cache hit. To identify the cache hit, x1 is fixed and different
values of x2 are chosen in each invocation of AccessT. The range of x2 is 0 to 255.
The values of x2 that results in shorter execution time is likely to be due to a cache
hit in the second access to table T.

However, things are not so straightforward. First, we first observe that in a sys-
tem there are several microarchitectural components working simultaneously, each
affecting execution time. This adds noise to the measurements. Since the difference
between a cache hit and a miss is often just a few clock cycles, the noise would have a
significant effect. The noise is due to several factors such as interrupts, direct memory
access (DMA), instruction cache misses, activities in other processor cores, etc.

The noise can be reduced considerably by invoking AccessT several times with
the same value of x2 and then finding the average execution time. However, the
noise is not uniform. For instance, a burst of network activity would momentarily
add noise. This would affect some values of x2 more than others. To avoid this, we
randomize the order in which values of x2 are chosen in the invocations of AccessT.

When a function is invoked repeatedly, the initial invocations take considerably
more time. This is because some components in the system need to adjust to the
new instructions. For instance, the RAM needs to be loaded with the new code,
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the instruction cache needs to be filled with the new instructions, and the branch
predictors needs to learn about the branches in the program. To avoid the initial
overheads, we let the system have a warm up period by ignoring the first couple
of invocations of AccessT. The warm up period also ensures that the processor
frequency is scaled up to its maximum. Later invocations of AccessT would then
be executed at the maximum frequency. Listing 4.5 shows how this is done.

Listing 4.5 Function FindK monitors execution time of AccessT to determine
〈k1 ⊕ k2〉

FindK(unsigned char x1, unsigned char x2){
m = size of table in terms of number of blocks
s = number of bits needed to address elements in a memory block
T = {0};
C = {0};
x1 = 0×45;
i = 0;

while(i < 2n){
x2 = random()%256;
flushcache();
t1 = timestamp();
AccessT(x1, x2);
t2 = timestamp();

i = i+ 1;
if (i < 200 ) continue; /* the warm up */
b = (x1 ⊕ x2)>>s;
T [b] = T [b]+(t2− t1);
C[b] = C [b]+1;

}

for (0≤ j < m){
D[j] = (T[j /C[j])] ;

}

return j for which D is minimum;
}

In the implementation

• m stores the number of memory blocks occupied by the look-up table. If the
number of elements in the table is N , the size of each memory block is L , and
size of each element in the table is B, then m = (N × B)/L. For simplicity, we
assume that the table is aligned to a block. In AccessT, for instance, there are
256 elements in table T , with each element occupying 1 byte. If we assume a
memory block size of 64 bytes, then m = 4.

• s contains the number of bits needed to address elements in a memory block. This
is equal to log2 (L/B). In the example configuration above s = log2 64/1 = 6.

• n determines the number of times the loop is run. As would be seen later in this
chapter, as n increases, the probability of detecting the collision also increases.
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Table 4.1 Average execution
time for AccessT with
〈x1 ⊕ x2〉 in clock cycles on
an Intel i7 Haswell Processor
running at 3 GHz

〈x1 ⊕ x2〉 Average execution time
(in clock cycles)

0 484

1 483

2 446

3 457

Fig. 4.3 Accuracy with
which a cache hit is identified
in AccessT with different
clock sources. Large number
of measurements along with a
precise clock source can
accurately identify cache hit
events in the L1 data cache

 20

 30

 40

 50

 60

 70

 80

 90

 100

28 29 210 211 212 213 214 215 216 217

%
 A

cc
ur

ac
y

Number of Measurements

serialized rdtsc
rdtsc
vtsc

• T is an array of size m , which accumulates the execution time for each block in
the table.

• C is an array of size m , which counts the number of times a block in T is accessed
in the second memory access.

• D computes the average execution time for each T . The index of the block
corresponding to the minimum D is returned.

• flushcache is a function that invalidates the contents of the look-up table in
the cache memory.

If k1 ⊕ k2 is 0 × 94, the two most significant bits is 2. Table 4.1 shows the average
execution time for each of value of 〈x1 ⊕x2〉. When 〈x1 ⊕x2〉 = 2, a cache hit occurs
in the second access to the table T . All other values of 〈x1 ⊕ x2〉 results in a cache
miss. As a result, the execution time for AccessT when 〈x1 ⊕ x2〉 = 2 is slightly
faster than the remaining. We, therefore, can infer that 〈k1 ⊕ k2〉 is 2.

The accuracy with which the cache hit is detected depends on several factors.
The first is the penalty incurred by a cache miss. A small miss penalty would be
more difficult to identify. The miss penalty depends on the system architecture and
the level of the cache. Second, the precision with which timing measurements are
made also critically affects the accuracy of a cache hit detection. The clock source
should be precise enough to measure microvariations in execution time. The third
factor affecting accuracy is the number of measurements that are considered while
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computing the average execution time. A larger number of measurements would
help eliminate noise to a greater extent. Figure 4.3 shows the accuracy with which
the cache hit in AccessT is determined on an Intel i7 Haswell machine. As one
would expect, the serialized rdtsc instruction provides the best accuracy when large
number of measurements are made. With 217 measurements for instance, cache hits
are determined with an accuracy of about 99 %

4.3 Timing Attacks on Block Ciphers Based on Internal
Collisions

Now that we have seen how time can be used to distinguish cache hits from misses,
we show how it can be used to retrieve the secret key from a block cipher. We discuss
this with AES (Advanced Encryption Standard) as an example. The 128-bit version
of the AES cipher takes a plaintext block of 128 bits as input and a 128-bit secret
key. Encryption starts with a key whitening followed by ten rounds. Each round
except the last has four operations: SubBytes, ShiftRows, MixColumns, and
AddRoundKeys. The last round does not have the MixColumns operation but has
the three other operations. The SubBytes operation performs nonlinear transfor-
mations on the input, thereby adding confusion. The ShiftRows and MixColumns
diffuse bits of the input. Details of the AES algorithm are present in Sect. 2.2.1.

Several implementations of AES are present. In the most common implementa-
tion, five 1024-byte look-up tables called T0, T1, T2, T3, T4 are used. The tables
T0 to T3 are used in the first nine rounds. These tables abstract the SubBytes,
ShiftRows, and MixColumns operations as shown in Sect. 2.2.1.1. Table T4 is
exclusively used in the tenth round and abstracts the SubBytes and MixColumns
operations. Listing 4.6 shows the first round of the code. This consists of 16 accesses
to the tables.

Listing 4.6 First round of AES implementation

y0 = T0[s0]⊕T1[s5]⊕T2[s10]⊕T3[s15]⊕ [k(1)
0 k(1)

1 k(1)
2 k(1)

3 ]T

y1 = T0[s4]⊕T1[s9]⊕T2[s14]⊕T3[s3]⊕ [k(1)
4 k(1)

5 k(1)
6 k(1)

7 ]T

y2 = T0[s8]⊕T1[s13]⊕T2[s2]⊕T3[s7]⊕ [k(1)
8 k(1)

9 k(1)
10 k(1)

11 ]T

y3 = T0[s12]⊕T1[s1]⊕T2[s6]⊕T3[s11]⊕ [k(1)
12 k(1)

13 k(1)
14 k(1)

15 ]T

return y;
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Algorithm 4.1: Strategy in a Time-Driven Attack for AES
Output: The value of ka ⊕ kb for b (b > a)

1 begin
2 da ← random value in the range [0, 255].
3 for ρ number of times do

4 x ← (x1 x2 da xm) where xa = da, xi
R

[0, 255], 1 ≤ i ≤ m and i = a.
5 t ← Time(Encrypt using x).
6 Compute db from x.
7 t db

← t db
+ t

8 c db
← c db

+ 1
9 end

10 tavg db
← t db

/ c db
.

11 tavg ← average encryption time for all encryptions.
12 return argmax

da⊕db

(|tavg db
− tavg|).

13 end

←

In the first round, si has the form xi ⊕ ki , where 1 ≤ i ≤ 16. We see a similarity
between Listings 4.1 and that of 4.6—both have loads from look-up tables that depend
on the secret key. While the former has two key related table loads, the latter has 16; 4
to each look-up table. The time-driven attack in Listing 4.5 can therefore be extended
to determine collisions between pairs of table accesses in AES. Algorithm 4.1 gives
a high level overview.

To determine a collision between sa and sb (1 ≤ a < b ≤ 16) that access the
table, the adversary keeps xa constant, thereby fixing the table access made by sa . For
each of the memory blocks of the table accessible by sb = (xb ⊕ kb), she determines
the average execution time. Of all the average execution time computed, exactly one
corresponds to a collision with sa . This will have a distinctively different execution
time compared to the others. If this value is identified, then we have found the
collision. The collision reveals bits of 〈ka ⊕ kb〉 as follows:

〈sa〉 = 〈sb〉
〈xa ⊕ ka〉 = 〈xb ⊕ kb〉 (4.4)

〈ka ⊕ kb〉 = 〈xa ⊕ xb〉
Algorithm 4.1 selects a value of da uniformly from the set 0 to 255 (line 2) and a
plaintext x is chosen such that the value of da is fixed. The value of 〈db〉 is then
computed from x and an encryption is invoked and timed. Lines 7 and 8 of the
algorithm classifies the time. It comprises of a list of average timing corresponding to
each line occupied by 〈db〉 (i.e., the top log2 l bits of db), Line 11 computes the overall
average encryption time. The algorithm returns the value of 〈da ⊕ db〉, which has
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maximum deviation in time from the average case. An important requirement is that
the remaining plaintext bytes (other than da and db) be sufficiently random in order
to build the timing distribution. Algorithm 4.1 can be parallelized. That is for a fixed
value of a, 〈ka ⊕ kb〉 can be determined simultaneously for multiple values of b. In
the parallel version multiple tavg〈db〉 are measured (one for each b). Consequently,
the algorithm would return a set 〈da ⊕ db〉.

Each look-up table in theAES implementation has 256 elements and each element
occupies 4 bytes. On a system with a 64-byte memory block, the table would occupy
16 memory blocks with each memory block containing 16 elements. The timing
side-channels essentially identifies a collision in a memory block. It would therefore
reveal 4 bits. The keys ka and kb are bytes and have a combined entropy of 16 bits.
The attack would reduce this entropy to 16 − 4 = 12 bits.

Each look-up table used in the first round of AES is accessed four times. At most
three collisions in each table can, therefore, be obtained. The AES implementation
uses four look-up tables in the first round, therefore a maximum of 12 collisions are
obtained. Each collision reveals 4 bits. In all 48 bits is revealed. Consequently, the
entropy of the 128-bit AES key reduces to 80 bits.

The drawback of the attack is that it is highly sensitive to the initial state of
the cache. A cache memory which is not cleaned at the start of encryption would
either render the attack ineffective or adversely affect its efficiency. In section 4.4
we describe another timing attack that can reveal more bits about the keys and is not
sensitive to the initial cache state.

4.3.1 Max, Min, or Max Deviation

Intuitively, a collision caused by a cache hit should result in a faster execution. Finding
the collision using Algorithm 4.1 should have, therefore, identified the minimum
average execution time. However in the algorithm, we chose to select the one with
the maximum deviation from average. The reason for this is that in certain cases the
collision could increase the execution time instead of reducing it.

This being said, the choice of maximum, minimum, or max deviation depends on
the system and the cipher implementation. The attacker would try different choices
to boost her success in obtaining the secret key. Chapter 6 provides the reason for
this.
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4.4 Time-Driven Attack Based on Induced Cache Miss

Suppose the function AccessT in Listing 4.1 were to be called twice with the same
inputs and in quick succession. The first call may cause cache misses to occur due
to the look-up table accesses. This would load part of the table into the cache. The
second call to AccessT , on the other hand, would mostly incur cache hits, as a
result is much faster. If a single block of the table is evicted from the cache in between
invocations, then the second call toAccessTwould incur a cache miss if the evicted
block is accessed. However, a no cache miss is likely to occur if the evicted block is
not accessed. The attack works as follows.

1. For inputs x1 and x2 , invoke AccessT.
2. Evict a cache line (say c) occupied by the table.
3. Invoke AccessT again with the same inputs and this time monitor the execution

time.

A longer execution time would possibly be due to a cache miss that occurred. Since
the invocations were made in quick succession, it is highly likely that the cache miss
is due to the memory block at an offset c in the table being accessed. We thus know
that at least one of the two accesses made to the table T were possibly to the memory
block c. Therefore,

〈c〉 = 〈x1 ⊕ k1〉
or (4.5)

〈c〉 = 〈x2 ⊕ k2〉
Thus,

〈k1〉 = 〈x1 ⊕ c〉
or (4.6)

〈k1〉 = 〈x2 ⊕ c〉
We can determine which of these two equations is correct by changing the values of
either x1 or x2 and checking if the cache miss persists. Listing 4.7 shows how it is
done.
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Listing 4.7 Function FindK monitors execution time of AccessT to determine
〈k1〉

FindK2(unsigned char x1, unsigned char x2){
m = size of table in terms of number of blocks
s = number of bits needed to address elements in a memory block
T = {0};
C = {0};
i = 0;

while(i < 2n){
x2 = random()%256;
x1 = random()%256;
line = random()%256;
AccessT(x1, x2); /* First Invocation */
flushline(line);
t1 = timestamp();
AccessT(x1, x2); /* Second Invocation */
t2 = timestamp();

i = i+ 1;
if (i < 200) continue; /* the warm up */

k1 = (x1⊕ line)>> s;
T [k1] =T [k1]+(t2 − t1);
C[k1] =C[k1]+1;

}

for (0 ≤ j ≤ m){
D[j] = (T[j]/C[j]);

}

return j for which D is minimum;
}

Details of the implementation are as follows:

• m stores the number of memory blocks occupied by the look-up table. For sim-
plicity, we assume that the table is aligned to a block. In AccessT for instance,
there are 256 elements in table T . If we assume a memory block size of 64 bytes,
then m = 4.

• s contains the number of bits needed to address elements in a memory block. In
AccessT, each element in the table requires one byte. On a system with a 64-byte
memory block s = log2 (64/1) = 6.

• T is an array of size m, which accumulates the execution time for each block in
the table.

• C is an array of size m, which counts the number of times a block in T is accessed
in the second memory access.

• flushline is a function which invalidates the cache line that holds the element
T [line].
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Fig. 4.4 Number of keys
successfully determined in
attacks on AES versus the
number of measurements
made. The induced cache
miss technique is much more
effective. As seen, it finds all
keys correctly with
significantly lesser number of
timing measurements

 0

 2

 4

 6

 8

 10

 12

 14

 16

210 211 212 213 214 215 216 217 218 219 220 221

%
 A

cc
ur

ac
y

Number of Measurements

Induced Cache Miss
Internal Collision

(a) Intel i7 Haswell

 0

 2

 4

 6

 8

 10

 12

 14

 16

210 211 212 213 214 215 216 217 218 219 220 221

%
 A

cc
ur

ac
y

Number of Measurements

Induced Cache Miss
Internal Collision

(b) Intel Atom

The function FuncK2 selects random values for x1 and x2 and invokes AccessT
twice with these inputs. Another random value line is generated. This is used in the
function flushline to evict a line from the cache, thereby potentially inducing
a cache miss in the second invocation of AccessT. This invocation is timed and
the loop is repeated several times. The value of 〈k1〉 is one that has the minimum
execution time.

Working of flushline. The function flushline takes an input line and
evicts T [line] from the cache if present. To be able to do this, flushline needs
to know the cache sets which hold T . This is often not directly possible, since T is
not accessible in function FuncK2. There are, however, indirect ways of obtaining
the base address of T .

Consider that the adversary has an array as large as the cache memory. She first
accesses all elements in the array. This would load the entire array into the cache.
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She then invokes AccessT several times with different values of x1 and x2, hoping
that the entire table T gets loaded into the cache. The accesses made to T would
evict parts of the array from the cache. She then accesses the array again but this
time times the accesses. The data in the array that take longer to load are possibly
due to those evicted by T . She can thus identify the sets in the cache that hold T .

4.5 Results

Figure 4.4a shows the success in determining bits of the AES key on an Intel i7
Haswell system while Fig. 4.4b shows results on the Intel Atom system. The figures
show that the induced cache miss is much better exploiting leakage compared to the
using internal collisions.

4.6 Conclusion

Making accurate timing measurement is probably the most important step in a timing
attack. The clocks used for making the measurements must be accurate enough to
distinguish between microarchitectural events in the microprocessor, such as a cache
hit and miss. This chapter described two ways to implement high precision clocks,
namely using the in built rdtsc instruction and by software timestamp counters called
VTSCs. These clock sources are used to analyze the memory access patterns of AES.
The cache hits and misses identified from the AES execution is then used to develop
two time-driven cache attacks that recover the AES secret key. Though the attacks
work considerably well, the number of key bits they reveal is restricted by the size
of the cache line. In the next chapter we discuss how cipher properties can be used
to obtain more bits of the secret key.
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Chapter 5
Advanced Time-Driven Cache Attacks
on Block Ciphers

In Chapter 4 we saw how an adversary can use the execution time of the Advanced
Encryption Standard (AES) block cipher to obtain information about the secret key.
The number of key bits that the adversary determines is however restricted by the
size of the cache line. If a cache line holds 2δ elements of a look-up table used in
AES, then at least δ bits of the key are hidden from the adversary. In this chapter,
we discuss how properties of the block cipher along with timing side channels can
be used to determine more key bits. The chapter begins with a second round time-
driven cache attack on AES and then dwells into differential cache attacks on Feistel
ciphers.

5.1 Second Round Attack on AES

The attack on AES discussed in Sect. 4.3 is able to determine relations of the
form 〈k(0)

i ⊕ k
(0)
j 〉 using collisions in the first round. The key bytes k

(0)
i and k

(0)
j

(0 ≤ i, j < 15) are whitening key bytes. On a system with a 64-byte cache line, the
entropy of the 128-bit AES key reduces to 80 bits (for details see Sect. 4.3). The sec-
ond attack described in Section 4.4 performs better. It retrieves 4 bits of each of the
16 key bytes thus reducing the entropy of the AES key to (128− (4×16)) = 64 bits.
In order to reduce the entropy further, Aciiçmez, Schindler, and Koç suggest
targeting the second round of AES instead of the first [1]. Here we provide the
basic second round attack technique. The attack considerably depends on the AES
specification. Readers should refer Sect. 2.2.1 wherever needed.

Let a tilde over the symbol represent a guess. For instance, k̃
(0)
i is a guess for the

whitening key byte k(0)
i , where 0 ≤ i ≤ 15. If there is a collision between the states

s
(0)
0 in the first round and s

(1)
0 in the second round (i.e., the first access to table T0 in

the first and second rounds respectively), then Eq. 5.1 is obtained. In the equation y0

is the index of the first access to the table T0 in the second round.

〈s(0)
0 〉 = 〈s(1)

0 〉 (5.1)

〈x0 ⊕ k
(0)
0 〉 = 〈y0 ⊕ k

(1)
0 〉
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Using the AES algorithm (Sect. 2.2.1), y0 can be written in terms of the plaintext
and whitening key as follows.

y0 = 2 · S(x0 ⊕ k̃
(0)
0 ) ⊕ 3 · S(x5 ⊕ k̃

(0)
5 ) ⊕ S(x10 ⊕ k̃

(0)
10 ) ⊕ S(x15 ⊕ k̃

(0)
15 ) (5.2)

Further, from the key expansion algorithm

k
(1)
0 = k

(0)
0 ⊕ S(k̃(0)

13 ) ⊕ 1 (5.3)

Substituting Eqs. 5.2 and 5.3 in Eq. 5.1, we obtain

〈x0〉 = 〈2 · S(x0 ⊕ k̃
(0)
0 ) ⊕ 3 · S(x5 ⊕ k̃

(0)
5 ) ⊕ S(x10 ⊕ k̃

(0)
10 ) ⊕ S(x15 ⊕ k̃

(0)
15 ) ⊕ S(k̃(0)

13 ⊕ 1〉
(5.4)

There are five unknown key bytes involved: k̃
(0)
0 , k̃

(0)
5 , k̃

(0)
10 , k̃

(0)
13 , and k̃

(0)
15 . These

collectively take 240 different values. For each of these values a set is created (thus
there are 240 sets). A random plaintext is chosen and the encryption time is found.
This encryption time is added into all sets which satisfy Eq. 5.1 for the corresponding
plaintext and key guess. The measurement is repeated several times with different
plaintexts after which the average time in each of the 240 key sets is found. The set
in which the average time is the least corresponds to the correct key. Unlike the first
round attacks, all bits of the five keys are obtained this way. In a same way other
collisions between the first and second round can be used to determine the remaining
key bytes.

The reason for the attack to work is as follows. The adversary chooses plaintexts
randomly. Some of these plaintexts cause collisions between states s

(0)
0 and s

(1)
0 while

others do not. Further, each plaintext will satisfy Eq. 5.1 for the correct key as well
as for several wrong keys. Two cases arise,

• The execution time collected in a wrong key set may or may not correspond to
collision between s

(0)
0 and s

(1)
0 .

• The execution time in the set corresponding to the correct key always corresponds
to collisions.

Thus, on average, the encryption time added to the correct set will have one cache
miss less compared to the encryption time added to a wrong set. The smaller number
of cache misses in the correct set will result in a smaller average execution time. This
is used to distinguish the correct key.

5.2 Differential Cache Attacks on Feistel Ciphers

We now discuss attacks on Feistel ciphers that have a substitution–permutation (SP)-
round function. These ciphers have a Feistel structure, with each round having a
substitution followed by a permutation operation. This class of ciphers are of growing
interest because they combine useful properties of SPN networks (like fast diffusion)
with that of Feistel structures (like identical encryption and decryption). Notable
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Fig. 5.1 Two rounds of a Feistel structure with SP-round function

block ciphers that have this structure are CAMELLIA [2], CLEFIA [3], and SMS4
[4]. The cipher E2 [5] is a deviant with an SPS round function (i.e., a permutation
layer sandwiched between two substitution layers). To understand the working of the
attack, we discuss with respect to a two-round Feistel structure having a SP-round
function as shown in Fig. 5.1.

Let x and y be the arms of the Feistel structure with each arm having mn bits. The
SP function, F , splits the inputx intom equal parts (for examplex = (x1|x2| · · · |xm)),
each of n bits. The function F can be represented as

z = P(S1(x1 ⊕ rk1
1), S2(x2 ⊕ rk1

2), . . . , Sm(xm ⊕ rk1
m)) , (5.5)

where S1 to Sm are the substitution functions (s-boxes), P the permutation function
that provides diffusion, and rk1

i (for 1 ≤ i ≤ m) are n bit round key parts. The
s-boxes in the F function are generally implemented as look-up tables in software.
The number of tables used depends on the number of different s-boxes present in
the cipher. Each table would have 2n elements and occupy 2l memory blocks (where
l = n − v and 2v is the number of elements in a cache line).

Suppose the cache is initially clean and y is chosen such that all table accesses in
the second round result in collisions, the following equality is obtained.

〈xi ⊕ rk1
i 〉 = 〈zi ⊕ yi ⊕ rk2

i 〉 1 ≤ i ≤ m , (5.6)

where 〈 〉 represents the most significant l bits, indicating the memory blocks occupied
by the table.

Equation 5.6 can be deduced by monitoring the execution time using Algo-
rithm 4.1. A cache hit in the first round can be determined by mapping da ← xi

and db ← xj for 1 ≤ i < j ≤ m in the algorithm provided xi and xj access the
same table. If there are g tables used in the F function, then there are a minimum of
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Fig. 5.2 The inverse of the
permutation layer is used to
obtain differences at the
output of the s-box
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g misses and a maximum of m − g collisions that can be obtained in the first round
(assuming a clean cache at the start of encryption). The state in which x results in
the maximum collisions in the first round is known as the one-round colliding state.

A cache hit in the second round is obtained by choosing x so that a one-round
colliding state is obtained and then mapping yj (1 ≤ j ≤ m) to db in Algorithm 4.1,
while xj is mapped to a corresponding da . Additionally x has to be kept constant. Thus
Eq. 5.6 can be obtained with two invocations of Algorithm 4.1; the first invocation
obtains collisions in the first round and the second invocation obtains collisions in
the second round. In all 2ρ encryptions are required to be monitored—where ρ is
the number of iterations of the loop in Algorithm 4.1.

Now consider another input x ′ = (x ′
1|x ′

2| · · · x ′
m) such that x ′ �= x. Let x ′ result

in the s-box output z′, and y ′ the corresponding input which causes collisions in the
second round. These collisions would result in the following equalities:

〈x ′
i ⊕ k1

i 〉 = 〈z′
i ⊕ y ′

i ⊕ rk2
i 〉 where 1 ≤ i ≤ m. (5.7)

Adding Eqs. (5.6) and (5.7) we obtain

〈xi ⊕ x ′
i ⊕ yi ⊕ y ′

i〉 = 〈zi ⊕ z′
i〉. (5.8)

Thus the differences in the inputs Δxi = xi ⊕ x ′
i and Δyi = yi ⊕ y ′

i can be used to
determine the output difference of the F function in the first round.

For Eq. 5.7, ρ encryptions are sufficient (or 1 invocation of Algorithm 4.1 because
the collisions in the first round can be established for free using the previously
determined equalities 〈rk1

i ⊕ rk1
j 〉 = 〈xi ⊕ xj 〉, 1 ≤ i < j ≤ m. Thus in total, 3ρ

encryptions are needed to obtain Eq. 5.8.
In order to derive candidates for the round key rk1, we use the inverse of the

permutation layer (Fig. 5.2), which can be represented as m functions having the
form wj = LT −1

j (z), where 1 ≤ j ≤ m. For the input difference Δx, the collisions
in the second round would reveal 〈Δzi〉 (for all 1 ≤ i ≤ m). These can be used in
LT −1

j (·) to obtain few bits of Δwj (for all 1 ≤ j ≤ m); the output difference of the
s-box. The input difference and the partial output difference of the s-box is then used
to reduce the key space of rk1

j .
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Expected Number of Candidate Keys For any of the n×n s-boxes in Fig. 5.1, the
total number of output differences for a given input difference is 2n−1. Let ob be the
number of bits of Δwj that gets revealed by the application of LT −1

j (·). The number
of bits ob can have a minimum value of 0 and a maximum of l. The possible number
of output differences of the s-box gets reduced to 2n−ob−1. This reduces the set of
candidate keys for k1

j from 2n to Nb. On average Nb is

Nb = 2(n−ob) . (5.9)

5.3 Differential Cache Attack on CLEFIA

Now that we have developed the theory behind differential cache attacks, we show
how it can be used on the block cipher CLEFIA.

CLEFIA is a 128-bit block cipher and a standard for lightweight encryption. It has
a double Feistel structure and uses two F functions named F0 and F1 (Sect. 2.2.2).
Analysis of the CLEFIA algorithm shows that the knowledge of any set of four round
keys (RK4i, RK4i + 1, RK4i + 2, RK4i + 3), where i mod 2 = 0, is sufficient to
revert CLEFIA’s key expansion process and obtain the secret key. In the differential
cache attack on CLEFIA that we describe here, round keys RK0, RK1, RK2, and
RK3 are determined from which K is obtained.

The attack on CLEFIA comprises three steps. First RK0 and RK1 are determined,
then WK0 ⊕RK2 and WK1 ⊕RK3, and finally RK4 and RK5. With these round
keys, CLEFIA’s key expansion algorithm is used to obtain 57 bits of (RK2|RK3).
In all, obtaining the 121 bits of the round keys RK0, RK1, RK2, and RK3 requires
214 collisions.

5.3.1 Differential Properties of CLEFIA’s F Functions

The attack uses the following observations on the F functions:

• Matrices M0 and M1 in the F functions do not attain complete diffusion in all
bits of the output. If the five most significant bits (MSBs) of the input of each
byte of the matrices M0 and M1 are known then few bits of the output can be
computed (see Fig. 2.4). In particular three MSBs of each byte in M0’s output
and two MSBs of each byte in M1’s output are computable. Since M0 and M1
are self inverting matrices, the inverse of the above statement also holds. That is,
given five MSBs of each byte of the output, three MSBs of the input in M0 and
two MSBs of the input in M1 is computable.

• For a pair of inputs, the non-linearity in the s-boxes causes several (60 % in S0 and
50 % in S1) of the possible input difference–output difference combinations to be
invalid. Additionally, for a valid combination, S0 has 1.28 choices on average for
the inputs to the s-box, while S1 has 1.007.
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If the inputs to an s-box is (xi ⊕ k) and (x ′
i ⊕ k), then the ex-or difference is (xi ⊕x ′

i).
This is known to the adversary. Additionally, on a system with a 32-byte cache line,
the cache traces reveal three bit differences per byte of the output of each s-box of
F0. For the remaining five bits of each output, there are 32 possible input difference–
output differences for each s-box resulting in an average of 32 key (k) candidates
for each byte. Similarly there are about 64 choices for each key byte in F1. We now
show how these differential properties of CLEFIA are used in the recovery of the
round keys.

5.3.2 Determining RK0 and RK1

The equations for the indices to the tables in the first round is given by:

I10
s0 = P0 ⊕ RK00 I11

s0 = P2 ⊕ RK02

I12
s0 = P9 ⊕ RK11 I13

s0 = P11 ⊕ RK13

I10
s1 = P1 ⊕ RK01 I11

s1 = P3 ⊕ RK03

I12
s1 = P8 ⊕ RK10 I13

s1 = P10 ⊕ RK12

(5.10)

where Iαi
sβ denotes the index to the (i + 1)th access to table sβ in round α.

If we make the assumption that no part of the table is present in cache before
the start of encryption, then the first access to each table, i.e., I10

s0 and I10
s1, results

in cache misses. Keeping P0 and P1 fixed and by varying the other bytes in Algo-
rithm 4.1, collisions can be determined for all table accesses in the first round. Such
a state of the cipher is called a one-round colliding state.

In the second round, the indices to the tables S0 and S1 in F0 are given by
equations in (5.11), where P(0···3) indicates the concatenation of P0, P1, P2, and P3.

I20
s0 = P4 ⊕ WK00 ⊕ F0(RK0, P(0···3))0 ⊕ RK20

I20
s1 = P5 ⊕ WK01 ⊕ F0(RK0, P(0···3))1 ⊕ RK21 (5.11)

I21
s0 = P6 ⊕ WK02 ⊕ F0(RK0, P(0···3))2 ⊕ RK22

I21
s1 = P7 ⊕ WK03 ⊕ F0(RK0, P(0···3))3 ⊕ RK23

Starting from the one-round colliding state, four collisions are forced in F0 of
the second round by varying, P4, P5, P6, and P7. This results in identifying five
collisions in table S0 (three in the first round and two in the second). The MSBs of
the indices to the table are all the same, i.e., 〈I10

s0〉 = 〈I11
s0〉 = 〈I20

s0〉 = 〈I21
s0〉. We

therefore get the following equalities:

〈P0 ⊕ P4〉 = 〈F0(RK0, P(0···3))0 ⊕ RK00 ⊕ WK00 ⊕ RK20〉 (5.12)
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〈P2 ⊕ P6〉 = 〈F0(RK0, P(0···3))2 ⊕ RK02 ⊕ WK02 ⊕ RK22〉
Similarly the five cache hits in table S1 result in the following equalities:

〈P1 ⊕ P5〉 = 〈F0(RK0, P(0···3))1 ⊕ RK01 ⊕ WK01 ⊕ RK21〉 (5.13)

〈P3 ⊕ P7〉 = 〈F0(RK0, P(0···3))3 ⊕ RK03 ⊕ WK03 ⊕ RK23〉
For another plaintext Q, with Q0 �= P0 and Q1 �= P1, equations similar to (5.12)
and (5.13) can be obtained by tracing cache collisions in the first and second rounds.
These are shown in Eq. 5.14, where 0 ≤ i < 4.

〈Qi ⊕ Q4+i〉 = 〈F0(RK0, Q(0···3))i ⊕ RK0i ⊕ WK0i ⊕ RK2i〉 (5.14)

From Eqs. 5.12, 5.13, and 5.14, and the fact that 〈P0 ⊕ P2 ⊕ P4 ⊕ P6〉 = 〈Q0 ⊕
Q2 ⊕ Q4 ⊕ Q6〉, and 〈P1 ⊕ P3 ⊕ P5 ⊕ P7〉 = 〈Q1 ⊕ Q3 ⊕ Q5 ⊕ Q7〉 the following
equations are generated:

〈P0 ⊕ P4 ⊕ Q0 ⊕ Q4〉 = 〈F0(RK0, P(0···3))0 ⊕ F0(RK0, Q(0···3))0〉
〈P1 ⊕ P5 ⊕ Q1 ⊕ Q5〉 = 〈F0(RK0, P(0···3))1 ⊕ F0(RK0, Q(0···3))1〉 (5.15)

〈P2 ⊕ P6 ⊕ Q2 ⊕ Q6〉 = 〈F0(RK0, P(0···3))2 ⊕ F0(RK0, Q(0···3))2〉
〈P3 ⊕ P7 ⊕ Q3 ⊕ Q7〉 = 〈F0(RK0, P(0···3))3 ⊕ F0(RK0, Q(0···3))3

It is now possible to apply the differential properties of the F functions to derive
possible key candidates. Considering just two blocks of plaintexts, P and Q, would
result in 32 candidate key values (on average) for each byte of RK0. In order to
identify a single key with probability greater than 1/2, cache hits in four plaintexts
must be considered, and the intersection between all possible candidate key sets must
be found.

In a similar way round key RK1 can be determined by analyzing cache hits in
F1. The set of equations that should satisfy RK1 is shown below, where 0 ≤ i < 4.

〈P8+i ⊕ P12+i ⊕ Q8+i ⊕ Q12+i〉 = 〈F1(RK0, P(8···11))i ⊕ F1(RK0, Q(8···11))i〉
Due to the matrix M1, which only reveals two bits of the difference of outputs in
each s-box, six plaintext blocks are required instead of four.

5.3.3 Determining WK0 ⊕ RK2 and WK1 ⊕ RK3

A cache hit in the first table accesses in the third round can be found by varying
byte P8 for S0 (and P9 for S1) (Fig. 2.4). The cause of this cache hit could be
collisions with any of the eight previous accesses to that table. To reduce the number
of “causes” that result in cache hits, the plaintext bytes are chosen in a way such that
the first two rounds have only one cache miss in each table (i.e., the first accesses).
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Such a state of the cipher is called the two-round colliding state. The two-round
colliding state has 14 cache hits in the first two rounds. Such a state is obtained by
first obtaining the one-round colliding state and then varying bytes P4 to P7 and P12

to P15 independently until eight cache hits in the second round are also obtained.
The third round first access cache hit caused by changing P8 (or P9) starting

from the two-round colliding state has three causes. The first two causes are due
to collisions with S0 table accesses in F1 in round two. The third cause is due to
collisions with S0 accesses in F0; this is of interest and is estimated to occur once
every three collisions. The uninteresting cache hits due to the first two reasons are
caused by the changing P8, which in turn changes Y1-1 (Fig. 2.4). On obtaining a
cache hit in the first table access in the third round, it is required to identify whether
the hit is interesting. This is done by changing the value of P12 (or P13) and re-
doing the encryption. If a cache hit still occurs in round three, then with significant
probability it is of interest.

Similar cache hits for the other F0 table accesses in round three can be obtained.
With these collisions the following equalities are satisfied for a pair of plaintexts P

and Q.

〈Pi ⊕ Qi ⊕ P8+i ⊕ Q8+i〉 =〈F0(RK2, WK0 ⊕ P(4···7) ⊕ Y0-1P )i

⊕ F0(RK2, WK0 ⊕ Q(4···7) ⊕ Y0-1Q)i〉,
where 0 ≤ i < 4, and Y0-1 is as defined in Fig. 2.4. Y0-1 can be computed using the
RK0 found in the first step of the attack. Differential properties of the F0 function
and four plaintext blocks can be used to completely determine RK2 ⊕ WK0.

Finding WK1 ⊕ RK3 In a similar manner RK3 ⊕ WK1 can be found in less than
212 invocations of Algorithm 4.1 by considering collisions in F1 in round three and
varying plaintext bytes P(0...3). The difference equations that is to be satisfied is given
by the following (where 0 ≤ i < 4) :

〈Pi ⊕ Qi ⊕ P8+i ⊕ Q8+i〉 =〈F1(RK3, WK1 ⊕ P(12···15) ⊕ Y1-1P )i

⊕ F1(RK3, WK1 ⊕ Q(12···15) ⊕ Y1-1Q)i〉

5.3.4 Determining RK4 and RK5

RK4 and RK5 can be determined in 213 invocations of Algorithm 4.1 using the same
idea as the second step of the attack. To find RK4, a two-round colliding state is first
obtained from which cache hits in F0 of the fourth round is forced by varying the
fourth word of the plaintext. RK4 can be determined from this using the equations:

〈Pi ⊕ Qi ⊕ P12+i ⊕ Q12+i ⊕ Y1-1P
i ⊕ Y1-1Q

i 〉
= 〈F0(RK4, X0-3P )i ⊕ F0(RK4, X0-3Q)i〉,
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where Y1-1P , Y1-1Q, X0-3P , and X0-3Q are computed from previously determined
round keys and 0 ≤ i < 4. Similarly, RK5 is determined by cache hits in F1 in the
4th round. The equalities for determining RK5 are :

〈P4+i ⊕ Q4+i ⊕ P8+i ⊕ Q8+i ⊕ Y0-1P
i ⊕ Y0-1Q

i 〉
= 〈F1(RK5, X1-3P )i ⊕ F1(RK5, X1-3Q)i〉

5.3.5 Determining RK2 and RK3

In the key expansion algorithm, if i = 0 then T = (RK0|RK1|RK2|RK3), and T =
L⊕(CON24|CON25|CON26|CON27). Sixty-four bits of the key dependent constant
L can be computed using the values of RK0 and RK1, which were determined in
the first step of the attack.

(L0|L1) = (RK0|RK1) ⊕ (CON24|CON25) (5.16)

The double swap operation on L places 57 known bits of L in the lower bit
positions. This is given by L′

(0···56) = L(7···63). Again, in the key expansion algo-
rithm, if i = 1, then T = (RK4|RK5|RK6|RK7). This is represented as T =
L′ ⊕ (CON28|CON29|CON30|CON31) ⊕ (WK0|WK1|WK2|WK3). Therefore,

WK0|WK1(0···24) = L′
(0···56) ⊕ (CON28|CON29(0···24)) ⊕ (RK4|RK5) (5.17)

Using RK4 and RK5 that were determined in the third step of the attack, the whole
of WK0 and 25 bits of WK1 can be determined. Then the result from the second
step of the attack is used to obtain 57 bits of (RK2|RK3). Thus 121 out of the 128
bits of (RK0|RK1|RK2|RK3) is retrieved.

5.4 Conclusion

Using properties of block ciphers along with information leakage from timing chan-
nels lead to deadly attacks. This chapter showed how properties of AES and CLEFIA
can be used to build efficient time-driven cache attacks. The attack on AES for in-
stance requires just 216 time measurements to reveal all bits of the secret key. These
attacks must be prevented with as little overheads as possible and with guarantees
of security. To do so, we would require an in depth analysis of the attack and the
leakage in the timing channels. The next chapter builds a framework to study the
information leakage from cache memories. The framework is used to build efficient
implementations of block ciphers that are secure against this class of timing attacks.
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Chapter 6
A Formal Analysis of Time-Driven
Cache Attacks

Chapter 4 introduced two forms of time-driven cache attacks. It showed how the
system configuration, number of measurements taken, and the attack algorithm can
adversely affect an adversary’s success. In this chapter we build a formal framework
to analyze time-driven cache attacks on block ciphers. The framework is used to
determine the causes of information leakage in modern cache memories. The frame-
work shows that in these memories, there are two causes of information leakage.
The first is due to the number of cache misses that occur during the encryption while
the second is due to microarchitectural features in the cache such as nonblocking,
pipelined, out-of-order, and parallel servicing of cache misses. The framework is used
to evaluate commonly used block ciphers and identify the best way to implement
them.

6.1 Memory Access Model for a Block Cipher

A block cipher takes as input a plaintext block (typically 64 or 128 bits) and encrypts
it with a secret key to produce a ciphertext. Typically block ciphers first subject the
plaintext to a key whitening phase where a secret key is added. These are the keys a
side-channel adversary tries to recover. The whitening phase is followed by a number
of iterations called rounds. Each round has three operations: key mixing, substitution,
and permutation. Key mixing modifies the intermediate state of the cipher by adding
secret data to it. Permutation permutes bits in the state, while substitution adds
randomness to the state. Figure 6.1 shows a typical block cipher structure.

When speed of encryption is important, the bottleneck comes from the substitu-
tion operation. To improve speeds, developers implement the substitution operations
using look-up tables, denoted T in Fig. 6.1. In some block cipher implementations,
further speed-ups are achieved by huge tables that implement both the substitution
and permutation. These tables are known as T -tables. For instance, see the imple-
mentation of Advanced Encryption Standard (AES) in Sect. 2.2.1.1 and CLEFIA in
Sect. 2.2.2.1 use T -tables.
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Fig. 6.1 Typical iterative
block cipher structure. Each
round comprises functions
that perform key mixing,
substitution, and permutation
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Most block cipher implementations can be mapped to the structure shown in
Fig. 6.1 using five parameters. Table 6.1 shows these parameters while Table 6.2
shows some examples of block cipher implementations mapped to this structure. In
later sections we use this model of the block cipher to analyze time-driven cache
attacks.

6.2 Cache Misses in a Block Cipher

A block cipher execution makes several memory accesses during its execution due
to the load and store instructions. However, when cache attacks are considered, we
are only interested in the memory loads or stores of key related data—for instance
when the memory location accessed depends on the key. The cache hits or misses
that occurs as a result leaks information about the secret key. In block ciphers such
as in Fig. 6.1, such key related memory accesses occur due to the loads from the
look-up tables. In this section we mathematically analyze the cache misses that occur
due to such memory loads.

Suppose the cipher’s memory model (Table 6.1) has g look-up tables denoted
T1, T2, . . . , Tg , each occupying l memory blocks and accessed m times per round in
γ rounds. We define the set Si on the look-up table Ti (where 1 ≤ i ≤ g) as follows:

Definition 6.1 Let Si be a set of sequences defined as Si = {(pi,1, pi,2, . . . , pi,γ ) |
where pi,r is the number of cache misses due to Ti that occur in the rth round of an
encryption and 1 ≤ r ≤ γ }.
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Table 6.1 Memory access parameters of a block cipher

γ Number of rounds in the cipher. Each round has a layer of substitution,

permutation, and key mixing

g Number of look-up tables used in the implementation. This includes the

look-up tables implemented as T -tables

m Number of key related look-ups per look-up table per round

l Number of memory blocks required to hold a table (table size).

We assume that all look-up tables are of the same size

2δ Number of elements in the table sharing a memory block

Table 6.2 Memory access
parameters of popular block
cipher implementations

g γ m l 2δ T -tables

CLEFIAa 2 18 4 4 64 No

CAMELLIAb 4 18 2 4 64 No

DESc 8 16 1 4 16 Yes

AESd 4 9 4 16 16 Yes

DES Data Encryption Standard, AES Advanced Encryption Standard
a Reference Code 1.0.0, http://www.sony.net/Products/cryptography/clefia
b PolarSSL 1.1.1, http://polarssl.org/
c OpenSSL 0.9.8a, http://www.openssl.org. The last round is not considered in the model because
it uses a different table. However all empirical results reported in this work include the last round
as well
d In all cases we assume a cache memory with a cache line size of 64 bytes. Therefore, in bytes the
look-up table has size 64 · l and number of elements 2δ · l

For instance, a possible element in Si is {4, 3, 4, 1, 0, . . . , 0}. This means that due
to table Ti there were four cache misses in the first round, three in the second, four
in the third round, and so on.

The number of cache misses in the m accesses to look-up table Ti in each round
of the cipher are discrete random variables. We denote them by (Pm

i,1, Pm
i,2, . . . , Pm

i,γ ).
Any sequence in Si satisfies the following properties:

• If we assume that the contents of the cache is flushed before encryption then at
least one cache miss due to Ti will occur in the first round. Further if we assume
no conflict misses during encryption, then a memory block once loaded into the
cache would remain in the cache till the encryption completes.
With these assumptions, the minimum number of cache misses that occur in the
first round due to table Ti is 1. In this case, the first load from the table results in
a compulsory miss. All other accesses to Ti in the round are cache hits. The lower
bound for Pm

i,1 is therefore 1.
• In rounds other than the first, all accesses to table Ti may result in cache hits.

Thus the minimum number of cache misses in the round is 0. In other words, the
lower bound for Pm

i,r (2 ≤ r ≤ γ ) is 0.
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• The number of cache misses in the round due to Ti is limited by its size (i.e., l) and
the number of accesses made to the table in the round (m): Pm

i,r ≤ minimum(l, m)
(1 ≤ r ≤ γ ).

• The sum of all elements in the sequence is limited by l—the size of Ti . That is,∑γ

r=1 pi,r ≤ l.

The following theorem computes the probability of obtaining pi,r cache misses in
the rth round for table Ti .

Theorem 6.1 Let Qi,r be a discrete random variable denoting the number of cache
misses due to table Ti that have occurred before the start of round r (i.e., in rounds
1 to r − 1). Three cases arise:

• When r = 1 then Qi,1 = 0 and Pr[Pm
i,1 = 0] = 0 .

• When r > 1 then

Pr[Pm
i,r = 0|Qi,r = qi,r ] = (qi,r

l

)m
.

• Otherwise,

Pr[Pm
i,r = p|Qi,r = q] = 1

lm

(
l − q

p

) p∑

j=1

(−1)p−j

(
p

j

) [
(j + q)m − qm

]
.

(In this above equation we have denoted pi,r by p and qi,r by q for simplicity of
notation.)

where q = qi,r = pi,1 + pi,2 · · · + pi,r−1 and qi,1 = 0; and p = pi,r can take values
from 0 to the minimum of m and l − qi,r .

Proof . Since we assume that the cache is flushed before starting the encryption, in
the first round (r = 1), Pm

i,1 = 0 is not possible because at least one compulsory
cache miss will occur.

Assuming no conflicts, when r > 1, no cache misses will occur if the table
accesses were made to blocks that were previously accessed, so data would be read
from the cache. Each of the m accesses in the round are therefore cache hits and can
take qi,r possible values.

The third case determines the probability of obtaining p cache misses in the rth
round given that the previous r −1 rounds resulted in q cache misses. The summand
when j = p, counts the number of ways m memory accesses can be made to (p+q)
memory blocks of table Ti , ensuring that there is at least 1 and at most p cache
misses. Since we require exactly p cache misses (and not at most), we use the
inclusion–exclusion principle to exclude the other events. �

Let si = (pi,1, pi,2, · · · , pi,γ ) ∈ Si be a particular sequence of cache misses. Then,

Pr[Si = si] =
γ∏

r=1

Pr[Pm
i,r = pi,r | Qi,r = qi,r ] , (6.1)
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where Si is a random variable denoting the event of obtaining si from Si . This
equation gives us the probability of obtaining a particular sequence of cache misses
during the encryption from a single look-up table.

If multiple tables are used in the cipher, then the Cartesian product (S1 × S2 ×
· · · × Sg) is used to represent the cache misses in all tables. Take for example the
((4, 3, 1, 0, 0, . . . ) × (5, 2, 0, 1, 1, . . . )). This means that in the first round, table one
had four cache misses and table two five. In the second round, table one had three
cache misses and table two five, and so on. The number of tables in the implementa-
tion is 2 (or g = 2). Since accesses to each table in the cipher is independent of the
others we can write

Pr[(s1, s2, . . . , sg)] =
g∏

i=1

Pr[Si = si] , (6.2)

where (s1, s2, . . . , sg) ∈ (S1 × S2 × · · · × Sg).
The expected number of cache misses that occur during an encryption when a

single table is used (i.e., g = 1), is determined from Eq. 6.1. This is given by,

μavg =
∑

s1∈S1

Pr[S1 = s1]
( γ∑

r=1

p1,r
)

when g = 1 . (6.3)

When multiple tables are present (i.e., g > 1), Eq. 6.2 can be used to find the expected
number of cache misses as shown below

μavg =
∑

s∈S1×S2×···Sg

Pr[s]
[ γ∑

r=1

( g∑

i=1

pi,r
)]

when g > 1. (6.4)

Equation 6.4 considers the cache misses in each table. In the next section we use
Eqs. 6.1 and 6.2 to approximate the difference in execution times between two
encryptions.

6.3 Average Execution Time of a Block Cipher

For memory intensive programs, the time to service cache misses largely dominates
execution time. Block ciphers implemented with look-up tables fall into this category
of programs. Due to this reason execution time of a block cipher can be estimated
from the number of misses that have occurred in the cache.

Memory loads when there is a cache miss takes considerably longer than those
that have a cache hit. Due to this, modern computer systems have several microarchi-
tectural acceleration techniques incorporated in the cache—such as parallelization
pipelining, nonblocking, and out-of-order servicing of cache misses. Parallelization
and pipelining allow multiple cache misses to be serviced simultaneously, while out-
of-order loading allows memory accesses to be performed in a sequence not strictly
specified by the program. Nonblocking memory accesses allow other memory ac-
cesses to be done while a cache miss is being serviced (these architectural features
are discussed in Sect. 3.2.2).
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Fig. 6.2 Execution overheads for servicing cache misses on an Intel Dual Core processor (P6100).
Related loads cannot be parallelized; therefore, the cache misses cannot be accelerated. Unrelated
loads from memory are parallelizable; therefore, the time to service cache misses is less

To show how these microarchitectural techniques affect execution time we con-
sider two programs. The programs make a series of memory loads, each load to
a different memory location. In the first program, the address of a location loaded
depends on the data read in the previous load (relative loads). In the second program,
the memory loads are from independent locations (independent loads). We flush the
cache each time to ensure that the required data is not present in the cache. Thus,
the execution time for these programs depend mostly on the time required to service
cache misses. Figure 6.2 shows the results on an Intel Dual Core (P6100) platform.
The x-axis has the number of cache misses. This is equal to the number of loads,
since the flushed cache ensures that every load to the table is a cache miss. The y-
axis has the execution time for the program. In the case where the loads are related,
memory loads cannot be parallelized or pipelined, or performed out of order. These
accesses take longer compared to unrelated loads which can be accelerated by these
microarchitectural features in the cache.

These two programs can be related to the memory loads made by block ciphers. In
a typical block cipher implementation (such as the model in Fig. 6.1), each round has
several memory accesses. The accesses within a single round are unrelated to each
other. On the other hand, the diffusion layer in the cipher causes the data accessed
in a round to be dependent on the previous round accesses. Due to this pattern of
memory accesses, the following observations can be made.

1. Cache misses within a single round of the cipher can be accelerated due to the
parallelism, pipelining, and out-of-order features in the cache.

2. Cache misses across rounds are done sequentially due to data dependencies.
3. The nonblocking feature in the cache allows hits within a single round to be done

while the cache-misses are being serviced thus hiding the hit time.

For the block cipher, the time required to execute cache misses in one round com-
prising pr cache misses can be estimated as (α +β(pr )). The constant α is the initial
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latency for the first cache miss and β is the time required to service a cache miss.
These constants are CPU-specific and also vary from one core in the system to an-
other. In Fig. 6.2, the initial latency (α) was found to be approximately 180 and β,
the slope of the line, was 16.

The total time required for servicing cache misses in the cipher is the sum of the
time required for servicing cache misses in each round. The expected time to service
cache misses is given as follows.

t̂avg =
∑

s∈S1×S2×···×Sg

Pr[s]
( γ∑

r=1

t̂r ,g
)

, (6.5)

where t̂r ,g is the expected time taken for servicing cache misses from g tables in
round r (1 ≤ r ≤ γ )1. This is given by

t̂r ,g =
⎧
⎨

⎩

(
α + β(

∑g

i=1 pi,r )
)

if
∑g

i=1 pi,r �= 0

0 otherwise

pi,r is the number of cache misses in round r due to table Ti . Note that t̂r ,g is zero
when all memory accesses in a round are cache hits. If in a round, even a single
memory access results in a cache miss, then there is the large initial latency of α

added to t̂r ,g for that round. Every subsequent cache miss causes the time to increase
by a factor of β.

6.3.1 Estimating the Difference of Means

The time-driven cache adversary uses Algorithm 4.1 to identify collisions in specific
memory accesses. When these collisions are detected, the following equation is
satisfied.

〈ka ⊕ da〉 = 〈kb ⊕ db〉 . (6.6)

The collision results in an average execution time which is visibly different from the
average case. If t̂collision is the execution time when a collision is present, then the
difference between the two expectations acts as a distinguisher. This is called the
DOM or difference of means and is given by the following equation.

d̂ = t̂collision − t̂avg . (6.7)

When Eq. 6.6 is satisfied, every encryption would have a collision during the memory
load T [kb ⊕ db]. We refer to this as the ever-present collision.

1 It may be noted that s has the form ((p1,1, p1,2, . . . , p1,γ ), (p2,1, p2,2, . . . , p2,γ ), . . . . . . ,
(pw,1, pw,2, . . . , pw,γ ))
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For an ever-present collision in round rc, the probability of obtaining cache misses
(Theorem 6.1) is affected. Out of the m accesses that are made to the look-up table in
that round, one always results in a cache hit due to the collision. Thus, the maximum
number of cache misses in round rc (i.e., upper bound for the random variable Pm

i,rc ,
defined in Sect. 6.2) is minimum(l, m−1) instead of minimum(l, m), where l is the
size of the table and m the number of accesses to the table in round rc.

The following corollary shows the probability of cache misses in a round, given
an ever-present collision.

Corollary 6.1 The probability of having pi,rc cache misses in a round comprising
of m memory accesses to table Ti , given that one of the m accesses always results
in a collision, is given by Pr[Pm

i,rc = pi,rc |Qi,rc = qi,rc , collision] = Pr[Pm−1
i,rc =

pi,rc |Qi,rc = qi,rc ] when m > 1, while Pr[P1
i,rc = 1|Qi,rc = qi,rc , collision] = 0

when m = 1.

Proof . There is a collision in round rc which is ever present. Therefore, when m = 1,
the probability of obtaining a cache miss is 0. Further, since we are only considering
cache misses and not cache hits, the ever-present collision when m > 1, will not
influence the probability. Therefore, obtaining pi,rc cache misses from m accesses
given the ever-present collision is as probable as having pi,rc cache misses from m−1
random table accesses.

Since the cache miss probabilities in round rc are affected by the ever-present
collision, the probability of cache misses of subsequent rounds is also affected. Thus
the effect of the ever-present collision spreads to the remaining rounds of the cipher
as well. Further, the forced collision only affects the cache misses in the concerned
table. For all other tables Theorem 6.1 still holds.

The estimation of t̂collision can be done in exactly the same way as t̂avg . However,
Corollary 6.1 has to be used for the round rc. All other rounds would still follow
Theorem 6.1.

6.4 DOM as a Security Metric

The time-driven adversary uses the difference between tcollision and tavg to determine
a collision. This difference is termed as the DOM (d). If |d| is large, the adversary
will find it easy to distinguish between tcollision and tavg thus would require lesser
measurements to identify the collision. As |d| decreases, it becomes increasingly dif-
ficult to distinguish between the two timings. The adversary may need more number
of measurements, and sophisticated analysis techniques to make out the difference.
To take an analogy, lets assume a scientist wants to distinguish between two colors.
If the colors are far apart in the electromagnetic spectrum (for instance blue and red),
then it would be easy to distinguish. He could probably do it with the naked eye. On
the other hand, if the colors were almost similar (two shades of yellow for instance),
then he would require more sophisticated tools, such as a spectrometer to make the
difference.



6.4 DOM as a Security Metric 89

We consider the absolute value of the DOM (|d|) as a metric to compare the
security of two cipher implementations. Larger the value of |d|, the more easier the
attack. Conversely, if |d| = 0, then the collision cannot be identified, there by the
attack will not be successful.

For a block cipher, the value of d is influenced by two factors.

F1 : The number of cache misses that occur during the execution of the cipher.
F2 : The influence of microarchitectural features in the cache such as pipelining,

parallelization, and out-of-order servicing of cache misses. These components
in the cache result in acceleration of memory accesses within a round.

The magnitude by which F1 and F2 affects the value of d depends on the imple-
mentation of the cipher, that is the parameters g, γ , m, and l (defined in Table 6.1).
We demonstrate the effect of the cipher implementation by using Eq. 6.7. For the
analysis we assume the values of (α, β) as (150, 16).

Figure 6.3a, b, and c plot the variation in the DOM, d̂ = t̂collision − t̂avg , with
size of table (l) for different γ , g, and m respectively. When l = 1, there is no
leakage because in every encryption the first memory access loads the entire table
into the cache and all subsequent memory accesses would result in cache hits, thus
d̂ = 0. For small values of l > 1, d̂ is large and gradually reduces as l increases.
For a particular value of l (other than 1), d̂ = 0. This is the ideal table size for the
cipher as it implies that the distributions cannot be distinguished. We denote this
value of l by lideal . Implementations of the cipher having l < lideal are called small-
table implementations while implementations having l > lideal are called large-table
implementations.

In small-table implementations, the size of the look-up table is small compared to
the number of accesses made to it. With significant probability the entire table gets
loaded into cache in every encryption. Thus every encryption will have the maximum
permissible cache misses (which is the number of memory blocks in the table l). Even
with a collision satisfied, l cache misses still occur. Thus F1 has no contribution in
the leakage and it is only F2 which causes the leakage. The ever-present cache hit
in round rc (1 ≤ rc ≤ γ ) restricts acceleration and results in t̂collision > t̂avg . As a
result d̂ is positive. This means that a cache hit due to the collision actually slowed
down the encryption. This is counter intuitive. Figure 6.4 shows an example of how
this could happen.

In large-table implementations, the probability that the entire table gets loaded
into cache is almost zero. When a collision is ever present, due to Eq. 6.6 being
satisfied, there is a reduction in the number of cache misses, which in turn results in
faster encryptions. Subsequently t̂collision is less than t̂avg and d̂ is negative. In this
case both F1 and F2 contribute to the information leakage. F2 affects d̂ in the positive
direction while F1 affects d̂ in the negative direction. However, the impact of the
reduced miss is higher compared to the acceleration obtained, thus F1 dominates F2.

When l = lideal , the effects of F1 and F2 cancel each other resulting in d̂ = 0,
therefore protected against this form of nonprofiled time-driven cache attacks. This
phenomenon was practically visualized on several modern microprocessors including
Intel Atom, Dual Core, Core 2 Duo, i3, and Pentium 4. However, on the older
Pentium 3 processors, the microarchitectural effects due to F2 were not observed.
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Fig. 6.3 The effect of
different cipher models on the
difference of means (d). All
graphs are plotted with the
size of the look-up tables on
the x-axis. The value of d
reduces as the look-up table
size increases
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6.5 Application of the Model

The model for predicting the DOM can be used to compare the security of cipher
implementations and also select the best way to implement a cipher. We com-
pare four standard block cipher implementations of AES, CLEFIA, data encryption
standard (DES), and CAMELLIA. In the second part of the section we evaluate var-
ious implementation options for CLEFIA and CAMELLIA with the aim of finding
implementations more resistant against time-driven cache attacks.
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Fig. 6.4 Example of collisions in a cipher that uses a small look-up table

The verification of the results are done using the Intel Xeon E5606 platform. Refer
to Table A.1 in the appendix for details on the system’s cache memory configuration.
However, the cache configuration alone is not sufficient to apply the model developed.
Additional parameters of α and β are required as well. The values of α and β found
are also depicted in the table for each platform.

6.5.1 Comparing Cipher Implementations

Figure 6.5 shows the DOM obtained for the four cipher implementations considered
in Table 6.2. Each implementation was analyzed theoretically to obtain the mod-
eled DOM for the platforms and then the empirical DOM was obtained after 220

measurements.
The histogram shows that the modeled DOM matches the empirical results closely.

The OpenSSL implementation of AES is the most secure against time-driven cache
attacks compared to the other cipher implementations analyzed as it has the smallest
absolute value of DOM. The security of the AES implementation is due to the large
number and size of tables, which are implemented as T -tables (Refer Sect. 2.2.1.1).
As seen in Fig. 6.3, large number and size of tables result in smaller DOM thus more
security. Further, the tables in OpenSSL’s AES implementation are T -tables, which
reduces the diffusion to just 16 ex-ors per round intertwined with the table accesses.
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Fig. 6.5 Difference of means obtained from the model and empirically for the cipher implementa-
tions in Table 6.2 on Intel Xeon 5606

The T-tables allow cache misses from one round to overlap with another, there by
resulting in smaller α (approximately 10). For α = 10, the value of lideal is close to
16, which is the size of the tables in OpenSSL AES on the Intel Xeon processors.
This close-to-ideal size of the tables further contributes to the small DOM.

6.5.2 Choosing the Right Implementation

In this part of the section we use the DOM model to judge the security of a set of
implementation options for CLEFIA and CAMELLIA, with the hope of obtaining
more secure implementations for these ciphers compared to their implementations
in Table 6.2. Tables 6.3 and 6.4 show the the DOM obtained from the mathematical
model for both platforms evaluated (E5606 and E5345). This DOM can be used to

Table 6.3 Implementation options for CLEFIA

No. la γ m w Table size (in bytes) Leaked bits DOM d̂

CL1b 4 18 4 2 256 2 27

CL2 8 18 4 2 512 3 25

CL3c 16 18 1 8 1024 4 −1

CL4 4 18 2 4 256 2 27

CL5 8 18 2 4 512 3 23

CL6 16 18 2 4 1024 4 10

DOM difference of means
a In all cases we assume a cache with a cache line of 64 bytes
b This corresponds to the reference implementation (Table 6.2)
c This corresponds to CLEFIA implemented with T -tables
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Table 6.4 Implementation options for CAMELLIA

No. la γ m w Table size (in bytes) Leaked bits DOM d̂

CA1b 4 18 2 4 256 2 36

CA2 8 18 2 4 512 3 31

CA3 16 18 2 4 1024 4 12

CA4 4 18 8 1 256 2 29

CA5 8 18 8 1 512 3 32

CA6 16 18 8 1 1024 4 31

DOM difference of means
a In all cases we assume a cache with a cache line of 64 bytes
b This corresponds to the reference implementation (Table 6.2)

relatively rank the implementations in the order of their security against nonprofiled
time-driven cache attacks. Stronger implementations are those with a DOM closer
to zero. For CLEFIA (Table 6.3), we can thus conclude that CL3 is the most secure
against and CL6 is the next best. The remaining implementations are insecure. For
CAMELLIA (Table 6.4), the implementation CA3 turns out to be most secure with
respect to the other implementations investigated.

To verify the correctness of the predictions, we subject the identified implemen-
tations to time-driven cache attacks using Algorithm 4.1. In all cases the first pair
of accesses to the same table were targeted. We gradually increase the number of

Fig. 6.6 Success of an attack
for various implementations
of CLEFIA (Table 6.3) and
CAMELLIA (Table 6.4) on
Intel Xeon 5606
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timing measurements made and determine the success rate with which the bits of
the ex-or of the key bytes are determined. Figure 6.6 shows this success percent-
age for CLEFIA and CAMELLIA on both platforms after performing 100 tests. As
predicted, CL3 and CL6 are the most secure implementation for CLEFIA, since
the attacker achieves minimum success in obtaining the key compared to the other
implementations. Similarly, the prediction CA3 for CAMELLIA is the most secure
as was predicted in Table 6.4.

6.6 Conclusion

The DOM is used as a distinguisher in time-driven cache attacks. The number of
cache misses that occur during the execution affects the DOM negatively, while mi-
croarchitectural components in the cache such as out-of-order, parallel, and pipelined
servicing of cache misses affect the DOM positively. Generally block ciphers im-
plemented with small look-up tables have a positive DOM while those with large
look-up tables have a negative DOM. It is also possible to implement the block ci-
pher with a DOM of 0 or close to 0. Such implementations would be more resistant
against time-driven cache attacks without the use of any explicit countermeasures.
These implementations provide security with no performance overheads.



Chapter 7
Profiled Time-Driven Cache Attacks on Block
Ciphers

In 2005, D. J. Bernstein developed a timing attack capable of retrieving theAdvanced
Encryption Standard (AES) secret key [4]. Unlike the previous attacks discussed so
far, Bernstein’s attack has two phases: a profiling phase followed by an attack phase.
During the profiling phase, the attacker learns the characteristics of the system by
building a timing profile called template using a key which is known to her. The
template captures all the timing characteristics when AES is executed. With this
template, any other secret key used in the AES implementation on that system can be
attacked. During the attack phase, another timing profile is built for the secret key. A
statistical comparison of this timing profile with the template reveals the secret key.
This chapter provides details of the attack and analyzes the information leaked.

7.1 Bernstein’s Cache Timing Attack

7.1.1 Building a Timing Profile

The AES input has 16 bytes as seen in Sect. 2.2.1. To build the timing profiles we first
start by choosing random inputs (say x = (x0 ‖ · · · ‖ xi ‖ · · · ‖ x15), 0 ≤ i ≤ 15),
invoking AES and measuring the execution time. This is repeated several times with
different inputs. We define 16 arrays denoted Ai (0 ≤ i ≤ 15) each of size 256,
which stores the average execution time. The element Ai[j ] (0 ≤ j ≤ 255) in an
array stores the average execution time when the ith byte of the plaintext was j . We
then find the overall average execution time (denoted tavg) and compute deviations
as follows: Di[j ] = Ai[j ] − tavg , where 0 ≤ i ≤ 15 and 0 ≤ j ≤ 255. The
ith deviation array (Di) is called the timing profile for the ith input byte. We thus
have 16 deviation arrays; one for each input byte. Algorithm 7.1 shows how the
templates are built for AES. The array T accumulates the encryption time, while
C counts the number of times a particular input is obtained. Figure 7.1 shows the
timing profile for the first plaintext byte of AES. It plots the value of x0 on the x-axis

© Springer International Publishing Switzerland 2015 95
C. Rebeiro et al., Timing Channels in Cryptography,
DOI 10.1007/978-3-319-12370-7_7
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Fig. 7.1 Timing profile for D0 vs. x0 for AES on an Intel Core 2 Duo (E7500)

and D0[x0] on the y-axis. To attack a key byte, two such timing profiles are required—
one for a known key and the other for the unknown key.
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7.1.2 Extracting Keys from Timing Profiles

There are 16 timing profiles created (D0, D1, . . . , D15)—one for each input byte.
Each vertical line in a timing profile provides an average execution time deviation
Di[j ], when the ith input byte is fixed at j and all other bytes vary randomly. As seen
in the AES specification (Algorithm 2.1), the ith input corresponds to the ith look-up
table access in the first round. This access is at an index s

(0)
i = xi ⊕k

(0)
i in the look-up

table. Thus the time deviation measures the deviation when s
(0)
i is fixed and all other

intermediate values in the cipher vary randomly. With respect to the look-up tables
in the implementation, the table access made by s

(0)
i is the only fixed operation in the

entire encryption. All other table look-up operations are at random locations. When
the average of several million encryptions are considered, the influence of all the
varying table accesses in the execution time cancel out leaving behind only the effect
of the constant table access. Thus, Di[s

(0)
i ] is a characteristic deviation of execution

time of s
(0)
i .

Now consider two timing profiles for the ith byte (0 ≤ i ≤ 15): one from a known
key (denoted k̂

(0)
i ) and another from an unknown key (denoted k̃

(0)
i ). The deviation

Di[s
(0)
i ] is an invariant and a characteristic of the element in the table accessed (i.e., at

index s
(0)
i ). There are two ways to access this element in the table using the i-th input

byte. Using the known key k̂
(0)
i the access can be obtained from x̂i ⊕ k̂

(0)
i for some

x̂i (0 ≤ x̂i ≤ 255). Second, using k̃
(0)
i the access can be obtained from x̃i ⊕ k̃

(0)
i for

some x̃i (0 ≤ x̃i ≤ 255). Thus with reference to the deviation of time, the following
relation would be met

Di[x̃i ⊕ k̃
(0)
i ] = Di[x̂i ⊕ k̂

(0)
i ] . (7.1)

With respect to the timing profiles, the invariant has shifted from x̂i in the timing
profile of the known key to x̃i in the timing profile of the unknown key. In the
attack we determine this shift and then compute the unknown key as follows: k̃

(0)
i =

x̃i ⊕ x̂i ⊕ k̃
(0)
i .

To determine the shift, the unknown key byte is guessed (say kguess) and for
every possible value of x (0 ≤ x ≤ 255), a correlation coefficient is computed as
follows:

CCkguess =
255∑

x=0

Di[x ⊕ k̂
(0)
i ] × Di[x ⊕ kguess] (7.2)

This equation essentially computes the correlation between the timing profile of the
known key and a shifted version of the timing profile of the unknown key. The shift
being kguess. There are thus 256 values of CCkguess (one for each kguess). The key
guess corresponding to the maximum value of CCkguess is most likely the unknown
secret byte of the key (k̃(0)

i ).
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7.2 Causes of Information Leakage

The vector Di , which represents a timing profile, has 256 different entries. The only
difference between each entry in the vector is that xi (0 ≤ i ≤ 15) changes. Each
xi represents a unique element in a look-up table that is accessed in the first round
during the cipher’s execution. The element is accessed at the index xi ⊕ k

(0)
i . Since

the look-up table has 256 entries, the vector Di represents execution time deviation
corresponding to each element in the table.

Timing variations in the profiles can be attributed due to two sources: intrablock
and interblock. Interblock sources cause timing variations between memory blocks.
In other words if two values of xi result in table accesses in different memory blocks,
the execution time is likely to be different. However, if the two values of xi fall in
the same memory block then they would have the same execution time. Thus inter-
block sources can only distinguish between accesses in the look-up table that fall in
different memory blocks.

Intrablock sources result in execution time of the cipher that is different for each
element in the table. Thus each value of xi is likely to have a different execution time
even if the corresponding access at the index xi ⊕ k

(0)
i are to adjacent elements in the

look-up table. Thus, intrablock sources can distinguish between every access made
to the look-up table.

During the final postprocessing phase, shifts between the template and the attack
profile are determined. The shift between the two profiles are used to determine k

(0)
i .

The shifts could take any value from 0 to 255. Consequently k
(0)
i can take values in

this range. However, shifts can only be identified if there are variations in the timing
profile. With inter-block sources, there is no timing variation within a memory block.
As a result, shifts in a memory block cannot be identified. As a result, attacker would
be able to identify only the most significant bits of k

(0)
i . With intrablock sources, each

value of xi is likely to have different execution time. Therefore, this source can be
used to identify all bits of k

(0)
i .

In the remainder of this section we discuss the various sources that affect the
average execution time. We discuss how an attack on OpenSSL’s implementation of
AES1, is primarily due to interblock sources, while an attack on an implementation
of CLEFIA2, is due to intrablock sources. As a result, the bits of the key recovered
from the AES attack are restricted to the higher bits. On the other hand, all bits of
CLEFIA’s key are recovered. This results in better success rates for the CLEFIA
attack.

Interblock Sources : A primary interblock source is conflict misses. These cache
misses occur due to memory accesses which evict recently accessed data, thus re-
sulting in misses. Conflict misses are ideally sporadic and occur at random cache

1 OpenSSL version 0.9.8a, http://www.openssl.org details present in Sect. 2.2.1.
2 CLEFIA Reference code, http://www.sony.net/Products/cryptography/clefia/download/data/clefa
_ref.c, details present in Sect. 2.2.1.

http://www.openssl.org
http://www.sony.net/Products/cryptography/clefia/download/data/clefa_ref.c
http://www.sony.net/Products/cryptography/clefia/download/data/clefa_ref.c
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Fig. 7.2 AES timing profiles for four key bytes after 227 encryptions on an Intel Core 2 Duo (E7500)
system

sets. Such conflict misses would cause random variations in the timing profiles, thus
not posing a threat. But as pointed out by Neve, Seifert, and Wang [1; 2], conflict
misses can also be periodic. Periodic conflict misses cause cache misses in the same
cache set at regular intervals of time. This periodic form of conflict misses affect
the average execution time, because they evict the same bytes from the cache in
every encryption. Additionally, a conflict miss requires servicing of a cache miss,
which takes considerably long time. Thus conflict misses have a large impact on the
information leakage.

Large look-up tables are more likely to be affected by conflict misses, since they
occupy a larger region of the cache memory. Thus the AES implementation, which
uses tables four times larger than the CLEFIA implementation, is more likely to be
affected by conflicts. This can be seen in the timing profiles for an AES attack (some
of the profiles are shown in Fig. 7.2). Each table in the AES implementation has 256
values spread over 16 contiguous memory blocks (depicted by the vertical grid in
Fig. 7.2), with each block holding 16 elements. Each point in the timing profile has
the characteristic time for the access to a unique element in the table. A conflict miss
will equally affect the characteristic time for all elements in a block. As a result of
this, the correlation in the final phase of the attack produces the same result for shifts
that are smaller than a memory block. Since each shift represents a key candidate,
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Table 7.1 Ten most likely keys obtained from the AES attack after 227 encryptions on an Intel Core
2 Duo (E7500) system

key Correct key Ten most likely keys for each byte
k(0)0 11 4e 47 41 4a 46 4c 48 45 4f 44
k(0)1 22 05 22 c2 2f ca 33 e1 06 23 c9
k(0)2 33 33 38 3b 3a 34 37 39 0c 3f a7
k(0)3 44 83 89 8a 81 41 8b 84 46 4b 4a
k(0)4 55 d1 de d9 a8 d0 d3 aa a5 a0 a1
k(0)5 66 8f 52 c3 7a 2b 50 1a 23 f6 4a
k(0)6 77 79 73 78 74 77 7e 7f 75 8d 8e
k(0)7 88 8e 87 8f 80 8a 86 89 8d 8b 88
k(0)8 99 99 39 83 90 ba 1e 7a af 70 13
k(0)9 aa b4 e2 7b e8 b1 c8 53 7a 79 bb
k(0)10 bb 65 57 5f b2 24 b6 60 25 5e 80
k(0)11 cc c6 c2 ce ca cb cc c1 c0 14 cf
k(0)12 dd 53 5b 50 52 49 58 5d 51 d1 48
k(0)13 ee 7c e0 4e 98 94 eb e5 d7 b3 3b
k(0)14 ff ea fd fb 3a e1 a4 e9 03 f1 ff
k(0)15 00 05 01 06 02 04 08 03 0a 00 0c

the key space is partitioned based on the size of the memory block, and all keys in
the same partition are ranked together. Table 7.1 shows the top ten candidate keys for
each byte for an AES attack. The third column is ordered from the most likely key
to the least likely of the ten keys. The correct key is represented in bold red, while
the keys which fall in the same cache line are emphasized in blue. As an example
consider the key k

(0)
6 , whose correct value is 77. The keys which map to the same

memory block are 70 to 7f . These have ranks which are close together. In most
cases the attack on AES fails to distinguish between these keys. This results in a low
success rate.

Another intersource of leakage is the hardware prefetcher. Most superscalar sys-
tems have a hardware prefetcher which anticipates future memory accesses and
prefetches them into the cache in order to reduce the miss rate. The prefetcher works
by detecting patterns in memory accesses. In cipher implementations, the interesting
memory accesses (i.e., to the look-up tables) are expected to be at random locations,
thus following no deterministic pattern. However, prefetchers are still capable of
prefetching parts of the look-up table albeit inefficiently. This can nevertheless result
in information leakage. A detailed analysis of this leakage source is done in Sect. 7.4.

Intrablock Sources : Microarchitectural components in the processor and memory
such as the cache banks may cause a small variation in execution time of the cipher.
Bernstein gives an example of how recently occurring stores to certain memory loca-
tions affect load time. Another example is loads from memory, which cause conflicts
in cache banks. The effects of these microarchitectural components in the timing pro-
file is more profound when the size of the look-up tables used in the implementation
is small. In such cases conflict misses are less likely and every encryption is likely
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Fig. 7.3 CLEFIA timing profiles for four key bytes after 227 encryptions on an Intel Core 2 Duo
(E7500) system

to have the same number of cache misses. Minor variations in execution time due to
the microarchitectural components become important. Some of these variations are
at the word level and not the block level. These can distinguish keys within a block.
Sources which cause such variations are called intrablock sources.

CLEFIA uses two small tables of 256 bytes (each occupying 4 memory blocks
and each block holding 64 elements). Every encryption is likely to load the entire
table into the cache. Also the effect of conflict misses is less due to the smaller tables.
Thus leakage due to microarchitectural features (including the prefetcher) becomes
important. This can be seen from the timing profiles for CLEFIA (Fig. 7.3), where
(unlike the AES profiles in Fig. 7.2), no distinct patterns are present that can identify
a memory block (each memory block is represented by the vertical grid lines). As
a consequence, the keys obtained from the correlation phase are not necessarily
ordered based on the memory blocks. This can be seen in Table 7.2 which shows
the ten most likely key candidates for an attack on CLEFIA ordered from the most
likely to the least likely of the ten. The correct key is represented in bold red and is
always ranked first for this particular trial, while keys which fall in the same block
are emphasized in blue. The smaller impact of interblock leakage sources is evident
from the results.
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Table 7.2 Ten most likely keys obtained from the CLEFIA attack after 227 encryptions on an Intel
Core 2 Duo (E7500) system

key Correct key Ten most likely keys for each byte
RK00 f4 f4 e2 c1 eb 52 18 e1 d7 14 44
RK01 d0 d0 52 f0 df 46 51 d8 44 f2 d7
RK03 6a 6a 5f 94 92 e8 48 6c 75 a9 b6
RK10 ca ca a7 5b 40 54 52 bf 58 51 53
RK11 7b 7b 46 db d1 c6 c4 52 56 8f 79
RK12 91 91 13 5a 8c f2 14 64 a8 f6 36
RK13 60 60 ab 07 68 c5 ec 9c 78 e9 16

RK20 ⊕WK00 fe fe f8 00 06 ec 14 11 1c f6 1b
RK21 ⊕WK01 57 57 51 62 a7 5a f7 64 24 e1 9f
RK22 ⊕WK02 3c 3c ea c5 eb 3d 8c be 92 11 ec
RK23 ⊕WK03 80 80 51 02 58 57 3c d8 89 10 74
RK30 ⊕WK10 6b 6b 7b 42 90 6f a3 56 d6 3d a9
RK31 ⊕WK11 40 40 4a b1 88 fd 92 16 2b 05 13
RK32 ⊕WK12 16 16 05 94 fd 45 6b b9 15 f8 6e
RK33 ⊕WK13 36 36 f2 42 a8 ad 86 80 c5 1b 34

RK40 7e 7e e0 fe e8 01 11 ff 07 1c 12
RK41 32 32 2f 34 26 38 31 35 3f 3e 29
RK42 50 50 5d 00 a0 81 f0 65 82 b0 03
RK43 e1 e1 0e 37 dc 63 cc c8 e5 89 77
RK50 eb eb 9b da 85 1e f8 3e fe 4c 99
RK51 11 11 24 e9 ef 33 93 cd 0e d2 17
RK52 47 47 37 92 f8 99 8c bb 34 b2 52
RK53 35 35 b7 38 7f e7 5f 31 e8 8b ed

Execution Time of Initial Rounds: The timing profile logs the variation in encryp-
tion time as a result of an access to a look-up table in the cipher’s implementation.
Besides this specific memory operation, all other operations done during the execu-
tion of the cipher can be considered as noise. The influence this operation has on
the execution time of the cipher can determine how efficiently a key is recovered.
A large influence implies that the execution time for the specific memory operation
significantly affects the total encryption time, which can be therefore easily distin-
guished. A small influence on the other hand implies that execution time for the
specific memory operation cannot be easily distinguished from the total encryption
time.

The specific memory operation is in the first round for the AES attack and in the
first three rounds for the CLEFIA attack. Thus the influence of the memory operations
in these rounds on the encryption time will determine how efficiently the key can be
recovered. Figure 7.4 shows the percentage influence in the encryption time for the
first nine rounds of CLEFIA and AES.

Due to the small tables used in the CLEFIA implementation, the first three rounds
of the cipher load the entire table into the cache. Subsequently, cache misses are most
likely in the first three rounds. These rounds will have both hits and misses, while
all remaining rounds will generally have only cache hits. As a result, over 95 % of
the variations in the encryption time are due to the first three rounds. Since these are
the rounds targeted during the attack, the variations due to memory operations from
these rounds significantly influence the encryption time and are easily captured.
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Fig. 7.4 Percentage of
encryption time by each
round of AES and CLEFIA
(only first nine rounds shown)
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AES on the other hand has large tables therefore cache misses are spread over a
larger number of rounds. As a result, the targeted round (the first round), makes up
only 25 % of the total encryption time. Thus time variations due to memory accesses
made in this round do not influence significantly the encryption time, thus difficult
to capture. This makes recovery of an AES key more difficult than that of a CLEFIA
key and more number of AES encryptions need to be monitored in order to recover
more bits of the key. In the next section we provide a generalized profiled time-driven
cache attack, in order to boost the success rate of the attacks without increasing the
number of encryptions required.

7.3 Quantifying Information Leakage in a Timing Profile

Bernstein’s attack uses correlation to determine the shift between the timing profile
for the known key and that of the unknown key. Each timing profile has 256 points
corresponding to xi ⊕ ki , where xi varies from 0 to 255. Variations in the values
at these points are characteristic features of the timing profile. These features are
matched during the correlation. The efficiency of the attack is determined by how
well features of one profile match with the other for the correct shift. An efficient
attack would give a correlation close to 1 when the right shift is applied, while a
correlation close to 0 when the shift is wrong.

The attack would fail if the correlation values obtained are the same irrespective of
the shifts in the timing profile. For instance, consider a constant time implementation
of a cipher. The average deviations in execution time would be zero irrespective of
the inputs. The timing profiles for the known key and unknown key would be just a
set of zeros. The correlation computed between these profiles is the same irrespective
of the shift applied. A constant time implementation would therefore be able to resist
the attack since the keys are not distinguishable. Thus the unique features in the
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Fig. 7.5 Cache profiles with single or multiple deviating distributions

timing profile influences the efficiency of the attack. More the unique features in the
profile, more efficient the attack. For instance, the timing profile in Fig. 7.5a is likely
to result in more efficient attacks than that of Fig. 7.5b, and less efficient attacks
compared to Figure 7.5c. As an other example, consider the attacks on AES and
CLEFIA. The AES timing profile, which is more influenced by interblock leakage
sources, has less unique features compared to the CLEFIA timing profile. As a result,
AES attacks are less efficient compared to CLEFIA attacks.

In order to quantify the unique features in a timing profile, the metric in Eq. 7.3
can be used.

L =
∑

∀pairs of

j and j ′

|D[j ] − D[j ′]| (7.3)

The index of the summation, j , ranges from 0 to 255. There are two parts in Eq. 7.3:
(a) the difference term and (b) the summation over all pairs of distributions in the
cache profile. The difference term quantifies how much one point in the profile
differs from another. When two points on the timing profile are the same, they
have a difference zero and cannot be distinguished. If the two points have different
values, the difference is positive, and they can be distinguished. The distinguishability
becomes easier as the difference between the points increase. The summation in
Eq. 7.3 quantifies cases where the profile has more variations in the distributions
leading to more information leakage. In the next section we show how the information
leaked through hardware prefetching can be analyzed.

7.4 Information Leakage due to Hardware Prefetching

One way to prevent Bernstein’s attack is to have the cipher execute at constant
time. There are various strategies that have been adopted to provide constant time
implementations. For example, the use of specialized instructions, such as Intel’s
AES-NI [3], eliminate memory-based look-up tables resulting in constant time
execution of the cipher. However, these instructions are specific for the AES block
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cipher, leaving a large number of other block ciphers still vulnerable. An alternate
direction is to build platforms which inherently protect against cache attacks. This
approach is more general and would be usable with a variety of ciphers.A step towards
this is to be able to compare the vulnerability of components in a computing platform.
In this section we analyze the information leakage due to sequential prefetching
algorithm; a prefetching algorithm in the cache memory.

The misses in cache memory have considerable overheads in the performance
of a program. In order to reduce these overheads many modern processors have
hardware that automatically prefetches data into the cache. The algorithms work by
predicting the memory locations accessed by a program. A commonly used predic-
tion algorithm called sequential prefetching, monitors memory accesses made and
prefetches subsequent blocks. Sequential prefetching is presented in Algorithm 7.2.
If ti is a memory address and ti+1 its subsequent address location, an access to ti
would automatically prefetch ti+1.

Each point in the timing profile (Di[j ]) corresponds to the deviation in average
execution time when a plaintext byte xi is kept constant. Owing to this constant, a
specific block in the look-up table (corresponding to the index xi ⊕ ki) is accessed in
every encryption that is considered in the average. Since all other inputs to the cipher
are random, and the randomness diffuses to every round, the other accesses to the
look-up tables are at random locations. With respect to the number of cache misses
that occur due to the look-up table, probability of a cache miss in the memory block
corresponding to the index xi ⊕ ki is one assuming that there are no conflict misses.

The probability of cache misses in all other memory blocks in the look-up table is
less than one, depending on wheather the block was accessed during the encryption.
In a cache memory that does not support prefetching, all these memory blocks have
an equal probability of being loaded into the cache. However, when prefetching is
present, the uniformity in the probability of a cache miss across all memory blocks of
the table is not true. Depending on the prefetching algorithm used, the probability of
obtaining a cache miss may vary from one memory block of the table to another. We
explain the behavior with respect to the sequential prefetching algorithm. We initially
assume that the table is isolated, which means that no memory access outside the
table can prefetch a memory block of the table. Later we will relax this assumption.

With respect to the sequential prefetcher in Algorithm 7.2, the memory blocks of
the table can be split into three categories (depicted in Fig. 7.6).
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Fig. 7.6 Prefetchable blocks
of a table used in a block
cipher

First block cannot be prefetched

Last block prefetches outside the table

l T1

• The first memory block of the table can never get prefetched because it would
require a memory access to a block preceding the first block. This is outside the
table boundary, therefore by our assumption, cannot prefetch any part of the table.

• All blocks of the table except the last, prefetch a memory block inside the table
(a valid prefetching by our assumption).

• An access to the last block of the table prefetches a memory block outside the
table boundary.

Since the number of cache misses that occur during the encryption have a significant
impact on the execution time, this difference in memory blocks results in nonconstant
time executions of the cipher and a timing profile which leaks information. In the
following discussion we understand the impact of this on the timing profile.

Assuming that the table occupies l memory blocks, and no conflict misses arise,
one of three scenarios occur depending on which memory block is accessed by the
fixed xi ⊕ ki .

• If the first memory block in the table is accessed by xi ⊕ki , then the second block
of the table is prefetched. Assuming a clean cache at the start of encryption, there
are l − 2 memory blocks remaining, which can result in cache misses. All these
l − 2 memory blocks are also prefetchable.

• If the last memory block in the table is accessed by xi ⊕ki , the prefetching is done
outside the table and will not affect the table accesses. In this case there are l − 1
cache misses that can still occur due to the look-up table and all these memory
blocks can be prefetched except for the first.

• If any other memory block other than the first and last is fixed by xi ⊕ ki , then
l − 2 cache misses can occur and l − 3 of these blocks can be prefetched.

These observations are summarized in Table 7.3 along with the average timing ex-
pected. When the first memory block is the invariant, the fastest execution is achieved
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Table 7.3 Cache misses in a table of size l used in a block cipher with sequential prefetching
enabled

Memory block of
table fixed

Number of cache
misses possible

Number of sequential
prefetching possible

Remarks on
average time

First l − 2 l − 2 t1

Any except first and
last

l − 2 l − 3 t2

Last l − 1 l − 2 t3

Comparison of the average timings : t1 < t2 < t3

Fig. 7.7 Prefetchable blocks
of two adjacent tables used in
a block cipher

First block cannot be prefetched

Last block prefetches outside the table

First block prefetched by previous table

l
T1

l T2

as it has the least number of cache misses possible and all memory blocks can be
prefetched. When the last memory block is the invariant, the slowest encryptions
occur because it has the most number of cache misses. Thus, prefetching causes
nonconstant encryption time to occur, which is captured in the timing profile.

Relaxing the Assumptions: The previous analysis was made under the assumption
that the table is isolated and other memory accesses made by the program do not
affect the prefetching in the table. In reality, however, this assumption would not
always hold. To show the effect we consider a block cipher implemented with two
tables T1 and T2 placed side-by-side in memory (as shown in Fig. 7.7). If xi ⊕ ki

accesses T1, then the last memory block prefetches the first memory block of T2.
Conversely, if xi ⊕ ki accesses T2, then the first memory block can be prefetched by
the last memory block of T1. This can cause a reduction in the leakage as there are
fewer variations in the encryption time.
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7.5 Conclusion

If an adversary is capable of learning the execution behavior of a cipher then she
can mount profiled attacks. These are typically the most powerful form of side-
channel attacks. The profiled time-driven cache attacks discussed in this chapter
is one such profiled attack. Leakage in profiled time-driven cache attacks are due
to several causes such as conflict misses, hardware prefetching, and differential
timing characteristics of memory loads. The leakage is also significantly affected by
the cipher implementation. This chapter analyzed information leakage in hardware
prefetching and showed how the information leaked in these attacks can be quantified.
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Chapter 8
Access-Driven Cache Attacks on Block Ciphers

Cache memories are a shared resource in a system. If a process running in a system
fetches a block of data into the cache, the data will remain in the cache memory
unless evicted. The eviction can be done by any process in the system and can result
in a covert timing channel. The channel was first discovered by Wray in [1] and
Hu in [2]. Attacks on cryptographic algorithms using the shared feature in cache
memories were suggested independently by Percival in [3] and Osvik, Shamir, and
Tromer in 2005 [4]. These attacks are known as access-driven attacks and use time
as a side channel instead of power or electromagnetic traces. We briefly describe
selected works in this category of cache attacks.

8.1 Access-Driven Attacks on Block Ciphers

Consider the T -table implementation for AES (Sect. 2.2.1.1). For the first round, the
table Tj is accessed at index s

(0)
i+j = (xi+j ⊕k

(0)
i+j ) for 0 ≤ j ≤ 3 and i ∈ {0, 4, 8, 12},

where xi+j is an input byte and k
(0)
i+j the corresponding whitening key byte. Suppose

the key byte k
(0)
i+j is guessed (the guess represented by k̃

(0)
i+j ), then a corresponding

index in table Tj can be computed as s̃
(0)
i+j = xi+j ⊕ k̃

(0)
i+j . If the guessed key is

correct (i.e., k
(0)
i+j = k̃

(0)
i+j ) then the computed index is also correct (i.e., s

(0)
i+j = s̃

(0)
i+j )

and vice versa.
In [4–6], Osvik, Tromer, and Shamir showed two methods that an adversary

monitoring the covert timing channels in cache memories can use to identify when the
following equality 〈s(0)

i+j 〉 = 〈s̃(0)
i+j 〉 holds. The methods evict+time and prime+probe

require that the adversary knows (or learns) the cache sets occupied by the table Tj .
We summarize the methods below:

Evict + Time: For every possible value of the table index (〈s̃(0)
i+j 〉) perform the

following operations:

1. Trigger an encryption (Algorithm 2.1) for a random input x.
2. For a guess of s̃

(0)
i+j , determine the memory address of Tj [s̃(0)

i+j ] and compute the
cache set it gets mapped into. Denote this cache set as M .
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After Cipher Execution After Spy Execution After Spy Execution After Cipher Execution
After Cipher Execution

Again
After Spy Execution

Again

EVICT+TIME PRIME+PROBE

cache set contains spy data
cache set contains cipher data

Fig. 8.1 Cache sets corresponding to table Tj for evict+time and prime+probe access driven attacks

3. Perform operations so that all data present in cache set M due to the first encryption
is evicted.

4. Trigger a second encryption with x again and time it.

Figure 8.1 shows the various stages of the cache sets used by the table Tj . There are
two possible outcomes after the second encryption:

• If 〈s(0)
i+j 〉 = 〈s̃(0)

i+j 〉 implying (〈k(0)
i+j 〉 = 〈k̃(0)

i+j 〉), then the cache set M is always
accessed by both encryptions (in steps 1 and 4). Particularly, the second encryption
would always (with probability = 1) result in a cache miss for the access Tj [s(0)

i+j ].
We call such a miss as an ever-present cache miss.

• If 〈s(0)
i+j 〉 �= 〈s̃(0)

i+j 〉 implying (〈k(0)
i+j 〉 �= 〈k̃(0)

i+j 〉), then for a value of x, the cache

set M is not accessed at Tj [s̃(0)
i+j ]. However, the set may be accessed by the other

memory accesses to Tj . Thus for the second encryption (in step 4), the probability
of a cache miss is ≤ 1 for the access Tj [s(0)

i+j ].

If several values of x are considered, the ever-present cache miss at Tj [s(0)
i+j ] when

〈s(0)
i+j 〉 = 〈s̃(0)

i+j 〉, would cause a slight increase in the expected encryption time com-

pared to when 〈s(0)
i+j 〉 �= 〈s̃(0)

i+j 〉 where the cache miss at Tj [s(0)
i+j ] is not always present.

This difference in time can be detected by an adversary to determine the correct value
of 〈s(0)

i+j 〉 there by obtaining 〈k(0)
i+j 〉 (from the known values of the plaintext).

In [7], Bogdanov, Eisenbarth, and Paar use the Evict+Time strategy to mount a
differential cache-collision attack on AES. The main idea of the attack is to choose
pairs of plaintexts such that they cause wide collisions. Wide collisions in AES are
explained using Fig. 8.2. Plaintexts P1 and P2 are chosen randomly as inputs to AES
in such a way that

• Values on the main diagonals A = {ai} and E = {ei}, 0 ≤ i ≤ 4 are chosen
randomly and independently of each other such that ∃i, ai �= ei .

• The remaining bytes of P1 and P2 are chosen randomly and are made pairwise
equal.
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Input to AES

Sub Bytes, Shift row, Mix column
of Round 1

Sub Bytes, Shift row
of Round 2

Mix column
of Round 2

Round 1

Input to Round 2

Fig. 8.2 Wide collisions in AES

From Fig. 8.2, P ′
1 and P ′

2 are the outputs of the first round. It is observed that in both
of them, only the bytes in the first column varies. The other bytes are the same. If
we trace the inputs to the third round, the values of first column of P ′′′

1 and P ′′′
2 are

pairwise equal which leads to fiveAES s-box operations (one in the second round and
four in the third), which possess either pair wisely equal or pair wisely distinct values.

Wide collision can only be observed when a′
0 = e′

0. The evict+time technique is
used to identify plaintext pairs with wide collisions. An existence of a wide collision
would cause on average the second encryption to be faster by a margin of five
compared to when there is no wide collision. The wide collisions are then used to
construct a set of four nonlinear equations, which when solved reveal bytes of the key.

Prime + Probe: In the evict+time method, the time for the memory access to
Tj [s(0)

i+j ] (where 0 ≤ j ≤ 3 and i ∈ {0, 4, 8, 12}) gets reflected in the total exe-
cution time of the cipher, thus leading to the attack. However, this technique delivers
a low success due to the presence of additional memory accesses and other code that
executes during the encryption. Further, there is considerable noise from sources
such as instruction scheduling, conditional branches, and cache contention thus re-
sulting in a low signal-to-noise ratio (SNR). In the prime+probe method, smaller
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codes are timed thus leading to a attacks that are more successful. The steps involved
in the prime+probe is as follows:

1. Define an array A as large as the cache memory and read a value of A for every
memory block (thus filling the entire cache with A).

2. Trigger an encryption with a random input x.
3. For a guess of 〈s̃(0)

i+j 〉, determine the cache set that Tj [〈s̃(0)
i+j 〉] gets mapped into.

Denote this cache set as M .
4. Access A at indices which get mapped to the cache set M and time the individual

accesses. Figure 8.1 shows the various stages of the cache sets used by the table Tj .

If 〈s̃(0)
i+j 〉 is correct (i.e., 〈s̃(0)

i+j 〉 = 〈s(0)
i+j 〉), then A′s data present in the cache set M

would be evicted with probability = 1 during the encryption in step 2. However, this
probability can be less than one if 〈s̃(0)

i+j 〉 is incorrect. Further, an eviction of A′s data
at M would result in a cache miss in the fourth step; identified by a longer memory
access time. However, if A′s data at M is not evicted, then the last step would have
a cache hit therefore a shorter access time. The correct 〈s̃(0)

i+j 〉 (thus 〈k̃(0)
i 〉, again

assuming that the plaintext is known) can therefore be identified by repeating the
four steps with several inputs.

8.1.1 Second Round Access-Driven Attack on AES

For a table with l ·2δ elements, each element has an entropy n = δ + log2 l, where 2δ

is the number of elements in the table sharing a memory block and l is the number
of memory blocks occupied by the table. The first round attack can reveal at most
log2 l bits of each key byte. In order to reveal the entire key byte, the second round
of AES needs to be targeted [4–6].

Consider the first table access in the second round. From Algorithm 2.1, Fig. 2.3,
and the key scheduling algorithm of AES, this is

s
(1)
0 = 2 · S[x0 ⊕ k

(0)
0 ] ⊕ 3 · S[x5 ⊕ k

(0)
5 ] ⊕ S[x10 ⊕ k

(0)
10 ] ⊕ S[x15 ⊕ k

(0)
15 ]

⊕ k
(0)
0 ⊕ S(k(0)

13 ) ⊕ 1 . (8.1)

The value of 〈s(1)
0 〉 is affected by keys k

(0)
0 , k

(0)
5 , k

(0)
10 , k

(0)
13 , and k

(0)
15 each occupying

one byte. The first round attack reveals log2 l bits of each of these key bytes leaving
δ bits unknown, Thus there is a space of 5 · 2δ keys that need to be searched. The
evict+time or prime+probe methods can be used along with Eq. 8.1 to identify the
correct key from this key space.

8.1.2 A Last Round Access-Driven Attack on AES

As described in Sect. 2.2.1.1, the last round of some implementations of AES use
a different table (called T4). This table is exclusively used in the last round and
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can lead to ciphertext only attacks. A byte of the ciphertext can be expressed as
yi = k

(10)
i ⊕S(s(9)

i ) where 0 ≤ i ≤ 15 (here we have ignored the last round ShiftRows
operation as it does not affect the attack complexity). Thus k

(10)
i = yi ⊕ S(s(9)

i ).
Evict+time or prime+probe methods can be used to determine 〈S(s(9)

i )〉, and therefore
〈k(10)

i 〉 can be determined.
Neve and Seifert in [8] developed two ways to determine all bits of k

(10)
i . The first

method called the nonelimination method, is based on the fact that for a given value
of yi , the input to the SubBytes in the last round (i.e., s

(9)
i ) is fixed. This implies that

the cache set accessed for a given yi is always the same. Now consider that yi = t1
corresponds to s

(9)
i = o1, where 0 ≤ t1, o1 ≤ 255. Similarly yi = t2 corresponds to

s
(9)
i = o2, where 0 ≤ t2, o2 ≤ 255. Thus,

t1 = k
(10)
i ⊕ S(o1)

t2 = k
(10)
i ⊕ S(o2) (8.2)

The access attack reveals 〈o1〉 and 〈o2〉. This leaves 2δ possible key options for k
(10)
i .

This key space can then be reduced by using the relation t1 ⊕ t2 = S(o1) ⊕ S(o2)
obtained from Eq. 8.2. Further reduction of key space is possible by considering
different pairs of values for yi . The authors in [8] estimate that 186 pairs are required
to uniquely identify the correct key.

The second method is based on eliminating incorrect values of s
(9)
i . It uses the fact

that the table T4 is accessed only 16 times and not all memory blocks of the table are
likely to be accessed during the encryption. The memory blocks not accessed can
be detected by the evict+time or the prime+probe methods. It is certain that S(s(9)

i )
is not one of the values in the unaccessed blocks. Thus if n blocks of T4 are not
accessed during the encryption, then n · 2δ values of s

(9)
i can be eliminated. By using

different inputs to the cipher, more values of s
(9)
i can be eliminated until a unique

value is obtained. This corresponds to a unique value of k
(10)
i .

8.2 Asynchronous Access-Driven Attacks

The access-driven attacks discussed so far were synchronous, wherein it is assumed
that the adversary can trigger an encryption. A less restrictive form of the attack is
the asynchronous mode, where a nonprivileged adversary running concurrently in
an independent user space, needs only to monitor the cache activity to determine
cache sets accessed by the executing cipher. No triggering of encryption is required.
Instead, the only requirements is that the adversary executes in the same processor
and concurrently with the cipher. Asynchronous access driven attacks were pioneered
by Percival in [3], who demonstrated an attack on RSA. Osvik et al. and Neve
then explored the feasibility of asynchronous attacks on AES [4–6, 8], though the
practicality of the work remains unclear. Aciiçmez et al. [9] were the first to present a
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practical asynchronous access-driven using instruction caches on OpenSSL’s DSA,
while [10] demonstrated the first practical asynchronous attack on AES.

In an asynchronous attack, the adversary runs a spy process which periodically
reads or writes data into cache lines and monitors the time it takes. An eviction of
the spy’s data by another process (such as an executing cipher) from the cache will
result in a longer memory access time due to the cache miss that occurs. This gives
clues about the memory access patterns of the cipher process. Such leakages are
also possible when the spy and cipher are executing in different security zones. For
instance, in cloud computing virtualized environments [11], several users share the
same hardware, albeit in different security zones.

A system vulnerable to such asynchronous attacks utilizes at least one of the
following features in the computer system: symmetrical multithreading [3; 6] or
preemptive operating system (OS) scheduler [8; 10].

Symmetrical multithreading allows multiple processes to execute simultaneously on
a single processor. The hardware resources including the cache memories are shared
between the processes. The cache memory acts as a covert channel transmitting
information about the memory access patterns of the cipher.

Preemptive OS Scheduling divides CPU time into equally spaced intervals called
slices. At the beginning of a slice, a process gets allocated to the CPU and executes
until it voluntarily relinquishes the CPU or the time slice completes. A new process
may then get allocated to the CPU by a process known as context switching. In [8],
Neve and Seifert suggest that spy processes can exploit such schedulers to obtain
covert information about a cipher’s execution, though no explicit details about the
construction were given. In [12], Tsafrir, Etsion, and Feitelson present a practical
malicious code that can exploit context switching in OS schedulers. The intuition
is that the malicious code starts executing at the beginning of a slice, but yields
the processor before the slice completes. Another process is then scheduled for the
remaining time interval in the slice. The authors show several applications of the
malicious code such as denial of services, bypassing profiling and administrative
polices, etc. Bangerter, Gullasch, and Krenn use such a malicious code to develop a
fine grained access-driven cache timing attack in [10]. In the next section we show
how the OS scheduler can be used monopolize the system. The find grained attack
on AES is then described.

8.3 Secretly Monopolizing the CPU scheduler

Computer systems are governed by two clocks—hardware clocks drive the instruc-
tion cycle while the operating system clocks control the system activity, measure
time passage, provide timing services, and maintain control. Unlike the hardware
clock, whose resolution is determined by the processor frequency (and hence cannot
be tuned), the system clock frequency is determined by the OS at boot-up.
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Clock resolution in the OS clock has a strong influence on scheduling. In [12], it is
shown how these clocks can be tricked to allow a malicious code to secretly consume
a large percentage of the CPU cycles without any accounting. The phenomenon is
called “cheat” attack and exploits two paradigms of some OS schedulers.

• CPU usage is accounted by periodic sampling interrupts.
• Processes that use less CPU have higher priority.

A periodic hardware clock interrupt termed as tick is used for measuring CPU us-
age. This accounting information is mostly used by priority-based schedulers for
calculating priority of processes. When a tick occurs, the process executing is billed
for the entire interval since the previous tick. The schedulers rely on this periodic
sampling interrupts of a low-precision clock to account for the CPU usage. Due to
this coarse granularity of the periodic sampling the billing may not be accurate, thus
leading to the inaccurate information being used by the scheduler. This inaccuracy
is exploited in the cheat attack procedure.

The exact time for which the process is scheduled to run is the quantum of a
process. The effective quantum can have widely varying values and may or may not
be greater than a clock tick, though CPU usage is accounted only at the clock ticks.
Thus when a clock tick occurs the running process gets billed in integral multiples of
the periodic sampling interval. If a quantum is shorter than the tick duration, then the
process has higher probability of not getting billed. So for processes having intervals
of quanta shorter than a clock tick, many smaller quanta can consume arbitrarily
small CPU cycles remaining unbilled, while if a short quanta includes a clock tick
then it gets overbilled by the entire tick duration though actually consuming a small
fraction of the periodic interval. Similarly, the situation is true for bigger quanta.
Since the probability that a quantum includes a tick is proportional to its duration,
on average the overbilling and underbilling effect tends to cancel out to provide
reasonably accurate billing.

If a process maliciously manages to exploit this coarse granularity phenomenon
for accounting the CPU usage then it never gets billed. The cheat process thus
performs the following:

• Schedules to run just after the tick occurs.
• Finishes its work within the fraction of the tick duration.

These are repeated over several ticks. Thus the cheat process makes sure that it is
never scheduled when the periodic tick occurs. This work demonstrates the working
principles of a cheat program in which a process at user level is not only capable
of consuming any percentage of the CPU but also the accounting of this extra CPU
usage does not get reflected in the monitoring tools since other processes gets billed
instead of the consuming process.

As shown in Fig. 8.3, when a tick occurs, the OS performs billing and allows
the pending process having highest priority to execute in the CPU. Thus the cheat
process can easily take control over the CPU just after a clock tick occurs. In order to
avoid billing, if the cheat process is capable of preempting itself using a fine-grained
timer of high frequency before the next tick occurs, then it successfully prevents itself
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from getting billed. Thus the OS is forced to believe that the malicious process is
consistently sleeping. This illusion increases the priority of the malicious code from
the OS perspective. The policy for the recent schedulers is such that it always assign
a higher priority to processes that have lower CPU usage and thus their requests
of consuming CPU cycles are serviced first. Thus for a malicious process which
is accounted as sleeping, it is easy to be fired just after a periodic clock interrupt
occurs.

In order to prevent itself from getting billed the process constructs a fine-grained
timing measurement mechanism by reading the values of a timestamp counter. The
timestamp counter is read using the “rdtsc” assembly call, which returns the value
of the hardware timestamp counter. This assembly call can be made from the user
level and returns the timestamp of the system in clock cycles.

Listing 8.1 illustrates a C code implementation of the cheat program. The sub-
routine get_cycles enables the user to read the timestamp counter value using a rdtsc
assembly call. The assembly call is explained in details in Sect. 4.2.1. The interval
between two consecutive ticks is determined using subroutine cycles_per_tick. The
interval is observed for 1000 such measurements and is averaged to obtain a precise
value of the number of clock cycles per tick. A zero sleep is inserted in the function
which wakes up the process at the next clock interrupt.

These subroutines are actually used by the cheat_attack which successfully steals
a fraction of CPU cycles without getting billed. The cheat process continuously
polls to see that whether it has consumed more that the fraction it actually wants
to consume. The attack code continuously iterates over the while loop and checks
whether the desired fraction is over. When the counter crosses the limit, the process
blocks itself till the next tick by calling nanosleep function with zero time. While
it polls to check for the desired interval, additionally it executes some short work
side-by-side. Thus when the desired fraction of the periodic interrupt has been used
by the cheat_attack it preempts itself and allows other processes to run.
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Listing 8.1 Simple C implementation of cheat program

#define _POSIX_C_SOURCE 199309
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
struct timespec zero = {0,0}; // sleep for zero ns before

// the next tick
typedef unsigned int cycle_t; // unsigned 32 bit integer to store

// the clock cycles

// returns the value of the timestamp
// counter in number of clock cycles
inline cycle_t get_cycles()
{

cycle_t ret;
asm volatile("rdtsc" : "=A" (ret));
return ret;

}

//calculating the number of clock cycles per clock tick
cycle_t cycles_per_tick()
{

int i;
nanosleep(&zero,0); // sync with tick
cycle_t start = get_cycles();
for(i=0 ; i<1000 ; i++) // measures cycles for 1000 ticks

nanosleep(&zero,0);
return (get_cycles() - start)/1000; // measure average cycles

// between clock ticks
}

//Subroutine for the Attack
void cheat_attack( double fraction )
{

cycle_t work, tick_start, now;
work = fraction * cycles_per_tick(); // clock cycles to be

// consumed within a
tick duration

nanosleep(&zero,0); // sync with tick
tick_start = get_cycles(); // timestamp counter at the

// start of tick
// poll continuously to check

// whether the desired fraction is consumed
while( 1 ) {

now = get_cycles();
if( now - tick_start >= work ) {

nanosleep(&zero,0); // avoid bill
tick_start = get_cycles();

}
// do some short work here...
system("gcc test.c -o t1"); // compiling a test process
system("./t1"); // calling a test process to run

}

}

int main()
{

cheat_attack(0.95); // calling the cheat attack with the
// desired fraction

}
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But the above implementation has certain drawbacks as in the cheat process polls
continuously to check whether the desired interval has expired. This continuous
polling leads to a significant overhead for the cheat process. The following subsec-
tion provides a brief discussion on a server–client setup which shows a significant
improvement upon the previous strategy.

8.3.1 Cheat Server

The cheat server is a machine with which the client machine (in which the cheat
code executes) communicates, such that the cheat process blocks itself on receiving
a predefined message from the server. This communication with the cheat server
can be viewed as a substitute to the finer grained timing measurements required to
preempt the cheat process successfully.

The communication between the cheat process and the network server is carried
out through a predefined protocol named as cheat protocol. The protocol is explained
briefly as follows: Initially the cheater process allows the cheat client to establish
a connection with the remote cheat server. After the client machine establishes the
connection, the client sends a packet to the cheat server requesting the server to send it
a message after a fine-grained time interval which is essentially less than the interval
to next periodic interrupt of the client. This request is sent via a User Datagram
Protocol (UDP) data packet which contains the desired interval in nanoseconds. The
server on receiving a request, waits for the interval to expire with a precise granularity
and communicates with the client as soon as the timer exceeds the interval. Thus,
there can be two possibilities: either the server is having an OS of higher tick rate
or the server busy waits on a cycle counter for the request time interval to signal the
client precisely. The client on the other hand allows the target application to run in
the local processor while it polls the network for the message to arrive. As soon as
it receives the message, in order to prevent itself from getting billed the client goes
to nanosleep with zero offset. This essentially prevents the target application from
getting billed, on addition to this due to zero-sleep, the application gets rescheduled
on the immediate next tick. The cheat client again performs the same sequence of
communication on every tick.

The immediate advantages of this cheat server above the previous implementation
is that since the cheat server is dedicated to provide the reminder to go for sleep,
the client system thus can sleep wait until it receives a message while the target
application runs on the local host unmodified. Since the cheat code avoids the polling,
the loss in throughput is prevented to a great extent.

But the communication of the cheat client with the server can be detected if the
network traffic is monitored. In addition to this there is a serious drawback regarding
the delay caused by the network latency. The success of the procedure truly relies
on the performance of the server. The next subsection provides an alternative to this
procedure and is free from the drawbacks mentioned above.
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8.3.2 Binary Instrumentation

Binary instrumentation is an easier alternative for implementation of the cheating
code and by incorporating it, any benign code can be converted into a cheater code.
The cheat analysis subroutine is listed in Listing 8.2. Any arbitrary program can
include this subroutine and if this routine is invoked a number of times then essentially
it turns into a cheat program.

Listing 8.2 Cheat analysis routine

void cheat_analysis()
{

cycle_t c = get_cycles();

if(c - tick_start >= work)
{

nanosleep(&zero, 0);

tick_start = get_cycles();
}

}

Due to the two features—accounting the CPU usage and system timer services being
done at periodic ticks in general purpose systems any arbitrary user level code can
systematically sleep at the periodic ticks monopolizing the CPU.

The following section provides an attack strategy which exploits this fine grained
scheduling to practice a denial of service attack. The attack falls in the category
of Access driven attacks and is demonstrated using timing as side channel on AES
block cipher.

8.4 Fine Grained Access-Driven Attack on AES

The previous access-driven cache-timing attacks on AES [4-6, 8] in Sect. 8.1 and
8.2, used the fact that the spy determines all the cache sets accessed by AES only
after the encryption is complete. Due to the large granularity of measurements in
the attacks, it was not possible for the spy to determine intermediate accesses done
by AES. In [10], Bangerter, Gullasch, and Krenn show a way of exploiting the OS
scheduler to obtain information about every single cache access performed by AES.

In order to practically mount the attack, the completely fair scheduler (CFS),
which is typically used in the Linux kernels, is exploited. About 100 spy threads
are launched in the system. When a spy thread gets scheduled into the processor, it
first makes the timing measurements of cache accesses, and then waits until most
of the time slice is complete before blocking itself. The cipher then executes in the
small time interval that remains in the time slice. Typically this attack features the
denial of service to the cipher process, exploiting the underlying scheduler policy.
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The cipher gets scheduled for a very small interval of time before being preempted
by the scheduler.

This interval is just sufficient for the cipher to make one memory access. The next
spy thread then gets scheduled into the processor and the single access made by the
cipher is determined by measuring the memory access time to access its data. In this
way, the cipher is executed very slowly, and each memory access it makes can be
tracked by the spy.

Bangerter et al. [10] demonstrated the first practical asynchronous attack on AES.
In this work the OS scheduler vulnerabilities are exploited to perform a fine grained
access driven cache attack on practical implementation of AES. A malicious code
is executed with multithreading capabilities exploiting the CFS policies in order to
obtain cache access patterns of running encryption. Thus this attack does not require
any direct synchronization with the victim process though exploits the timing as the
source of information to decide whether an intermediate cache access is a hit or miss.

8.5 Attack Procedure

8.5.1 Completely Fair Scheduler

Any general purpose multitasking OS provides an illusion to the user to run several
parallel processes at a time. The scheduler is responsible for the multiplexing between
processes and threads. Recent Linux systems are equipped with CFS, which justifies
its name by asymptotically behaving like an ideal system. Virtual run times (τis)
are associated with every running process Pi and to ensure complete fairness of the
scheme, the virtual run times of all executables would increase simultaneously. But
in real systems this phenomenon of simultaneous increment in the virtual run time
is not possible since at any point of time, a single process takes hold of the CPU and
thus run time of that particular running process gets modified.

For real systems, the scheduler maintains a time line of the respective virtual
run times of processes that are ready to run. Consider a queue of processes ordered
in increasing sequence from left to right. The leftmost entry in the sequence is the
process that is least favored since it has been waiting for greatest interval while the
process on the rightmost in the ordered sequence is the most favored process because
it has been serviced recently. The scheduler defines unfairness as the difference in
the virtual run times of the rightmost and the leftmost entries in the sequence as
Δτ = τright − τlef t and the scheduler ensures fairness by bounding the unfairness
value (Δτ ) at any point of time to be lesser than a predefined maximum unfairness
(Δτmax). The policy of CFS is such that the scheduler preempts the rightmost process
as soon as its virtual run time exceeds the maximum unfairness value and in turn
activates the leftmost process in the time line. This process is repeated to provide all
running processes a fair share of CPU.

Similar to the running processes, if a process blocks itself at virtual run time τblock ,
the virtual run time of the process on unblocking ( τunblock ) itself must be initialized to
a value such that it is serviced as soon as possible. So initialization of τunblock is made
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such that the unfairness amount Δτ exceed Δτmax . Thus the scheduler immediately
preempts the running process and allows the unblocked process to perform the events
for which it was waiting. The sleeper fairness criteria of the scheduler says that if the
process sleeps for a significant amount of time such that τblock < τright −Δτmax , then
the blocking process on being unblocked is initialized as τunblock ≤ τright − Δτmax

and the process eventually occupies the leftmost position in the time line. For the
generic case, the scheduler policy maintains that the virtual run time for an unblocking
process is initialized to a value (τunblock) which is greater than or equal to the virtual
run time when it blocked itself (τblock). Thus, τunblock = max(τblock , τright −Δτmax).

8.5.2 Denial of Service Exploiting Completely Fair Scheduler

Bangerter et al. in [10] exploits the sleeper fairness of the CFS to surface an attack
on the encryption process. The malicious attacker observes the timing measurements
of cache accesses via a multithreaded spy process S. The spy process S launches
large number of threads and the blocking or unblocking of the subsequent threads
are scheduled sequentially in a way that the victim process V gets scheduled between
two subsequent thread scheduling. The interval for which the victim process runs is
sufficient for making one cache access before it is pre-empted due to the unblocking
of the subsequent thread. Thus each cache accesses performed by the victim is
monitored by the multiple spy threads at fine grained timing interval. The attack
principle is detailed as follows:

1. The spy process activates a large number of threads, where initially the virtual run
times of all threads are initialized to a significantly low value by blocking itself
for sufficient time. After this initialization all the launched threads performs the
timing measurements in a round-robin fashion.

2. At any point of time, thread i determines the memory accesses performed by
victim process by observing the access times.

3. Spy thread i before blocking itself computes tsleep and twakeup which are virtual
run times in the time line for blocking of the ith thread and the unblocking time
for the (i +1)th thread. Thread i requests a timer to wakeup thread i +1 at twakeup

before entering into the busy-wait loop until tsleep is reached.
4. The ith thread blocks itself at tsleep and at this point of time there are no spy

threads that are ready to run. The (i + 1)th thread is only activated when twakeup

is reached.
5. The scheduler activates the victim process at tsleep. The victim process can at most

run for the interval twakeup − tsleep since at twakeup the timer expires and unblocks
thread i + 1. Since the spy threads are activated one after another in order, thread
i + 1 will be serviced immediately at twakeup since it is the leftmost thread in the
time line.

6. Thus, unblocking of the (i + 1)th thread causes a preemption of victim V and the
above scenario can be repeated successively for a large number of spy threads in
cache access driven attacks exploiting denial of service for the victim process V .
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In this work, twakeup − tsleep is set as 1500 machine cycles, where only 200 cycles
are actually being used by the victim to perform the encryption.

8.5.3 Using Timing as Side Channel for Cache Access Attack

Listing 8.3 is a C code implementation for the timing measurements of cache ac-
cesses. The spy process can use this implementation to learn the information about
the table look-ups only up to the cache line granularity. The reason behind this is
that the requested data is loaded from the main memory to the cache memory in
data blocks, equal to the size of cache line. So if any data is requested to be loaded
from the main memory location, the entire cache line containing the main memory
location gets loaded into the cache memory. The spy process measures the time for
each look-up table accesses and determines whether any particular access is a hit or
miss by looking at the time taken to access the respective locations.

Listing 8.3 Subroutine used by spy process checking the parts of look-up table that
have been accessed by other processes

#define CACHELINESIZE 64
#define THRESHOLD 200
unsigned measureflush(void *table, size_t tablesize, uint8_t *

bitmap) {
size_t i;
uint32_t t1,t2;
unsigned bit, n_hits = 0;
for(i=0; i< tablesize/CACHELINESIZE; i++) {

_asm_(" xor %%eax, %%eax \n"
" cpuid \n"
" rdtsc \n"
" mov %%eax, %%edi \n"
" mov (%%esi), %%ebx \n"
" xor %%eax, %%eax \n"
" cpuid \n"
" rdtsc \n"
" clflush (%%esi) \n" :
"=a" (t2),
"=D" (t1) :
"S" ((const char*) table + CACHELINESIZE * i) :
"ebx", "ecx", "edx", "cc");

bit = (t2 - t1 < THRESHOLD) ? 1 : 0;
n_hits += bit;
bitmap[i/8] &= ˜(1 << (i%8));
bitmap[i/8] |= bit << (i%8);

}
return n_hits;

}
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The timing measurements for the respective table locations are treated as following:

1. The rdtsc as appears in Sect. 4.2.1 instruction is used to observe the timestamp
counter values before and after the look-up accesses.

2. The event cache hits and misses can be distinguished through a thresholding
scheme where if a timing measurement is less than a threshold then the spy
process decides that it is cache hit, otherwise if the measurement exceeds the
threshold then the spy concludes the access to be a miss. Rigorous testing on
a desired platform will reveal the actual threshold for a system. To the best of
our knowledge, there are no well defined techniques to estimate the threshold
accurately.

3. A bitmap is maintained so as to keep track at which location cache hits and misses
occurred.

The steps are performed on the entire look-up table for AES for each and every cache
lines. Since data from the main memory is accessed in cache block, access attacks can
only reveal cache accesses in the granularity of cache lines. The timing information
is thus used by the attacker to construct a bitmap containing the information of cache
hits and misses.

8.5.4 Denoising by Neural Network

Normally the timing measurements as obtained from the explained procedure are
highly affected by noise from other processes running concurrently on the system.
The events of cache hit and misses for the victim process get hugely affected by the
cache accesses from other running processes in the system. This may result in faulty
conclusions regarding the key space. Another drawback of this procedure is that the
fine-grained timing measurements are not perfect, thus single timing measurements
may lead to misleading results.

In this work, Bangerter et al. [10] proposes a denoising technique using the arti-
ficial neural network (ANN) which is used efficiently to improve the success of the
attack. The inputs to the ANN is bitmap which represents cache hits and misses for
the respective cache access across time. The ANN filters out the noise and outputs
the probabilities for each memory accesses being actually performed by the victim
process.

8.6 Conclusion

The chapter discussed strategies for access-driven timing attacks, which are capable
of identifying individual cache accesses made by the cipher. Several attacks on block
cipher were discussed. The attacks are immensely benefited by multithreaded CPU
environments. Further, by exploiting CPU scheduler policies, every memory access
made by the cipher can be determined.
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Chapter 9
Branch Prediction Attacks

So far we have looked at timing channels that arise due to cache memories in the
system. Cache memories leak information about the memory accesses made by a
cipher. In this chapter, we look at information leakage due to branch instructions. If
a cipher implementation uses a conditional branch that depends on the secret key,
then information about the key can leak through the processor’s branch predictor. A
misprediction causes the execution to take considerably more time compared with
predictions that are correct. This variation in execution time is exploited by attackers
to determine bits of the secret key. Several timing attacks based on branch prediction
have been proposed. Unlike cache attacks, which are mostly effective on block
ciphers, branch prediction attacks are applicable only on public key ciphers such as
the Rivest, Shamir, andAdleman (RSA) algorithm. This chapter begins with a review
of the RSA implementation before discussing various branch prediction attacks.

9.1 Implementation of RSA

RSA performs modular exponentiation to encrypt or decrypt messages. The encryp-
tion of message (M) with the public key e is done as follows: C = Me mod N . The
corresponding decryption is done using the private key d as follows: M = Cd mod N .
For details about RSA, please refer to Sect. 2.5. In this section, we review how the
exponentiation is implemented.

9.1.1 Square and Multiply Exponentiation Algorithm

The square and multiply algorithm performs a squaring at each step, while the mul-
tiplication operation is performed only for the exponent bits that are set to one.
Algorithm 9.1 represents the details. The function returns S ← Md mod N , where
the private key d is (d0||d1||d2|| · · · ||di || · · · ||dn−1). Here, d0 is the most significant
bit and dn−1 is the least significant bit of d .
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Algorithm 9.1: Binary version of square andmultiply exponentiation algorithm

Input: M
Output: S

1 begin
2 S ← M
3 for i from 1 to n−1 do
4 S ← S ∗S mod N
5 if di = 1 then
6 S ← S ∗M mod N
7 end
8 end
9 return S

10 end

This algorithm is unbalanced because multiplication is performed only when di = 1.
Common side channels such as power and timing are capable of identifying this
conditional execution. Simple power attacks (SPA) and timing attacks exploit this
conditional instruction execution retrieving the bits in d that are 1.

9.1.2 Balanced Montgomery Powering Ladder Implementation

A modification to the square and multiply algorithm protects against obvious side-
channel leakages. This is called the Montgomery ladder algorithm. Algorithm 9.2
shows this modification.

The Montgomery ladder performs the entire exponentiation by alternatively mod-
ifying the values of two variables that depend on the exponent bits. Algorithm 9.2
has both “if” and “else” statements and every iteration has either of the correspond-
ing code executed. Unlike the square and multiply algorithm, here the number of
multiplications performed is always a constant and independent of the value of the
key. This balanced mode of operation eliminates obvious side-channel leakage.

9.1.3 Montgomery Multiplication

The integer division required for the modular multiplication and squaring in Algo-
rithms 9.1 and 9.2 is the most time consuming. Montgomery multiplication provides
a means to avoid this. For two multiplicands a and b, the algorithm computes
(a ∗ b) mod N . There are four steps in the multiplication.

1. First, an integer R is found such that gcd(R, N ) = 1. If the RSA modulus N

is a k-bit number, then R is generally taken to be 2k . The extended Euclidean
algorithm is used to determine the inverse of R and N , denoted R−1 and N−1

respectively. Thus R ∗R−1 = 1 and N ∗N−1 = 1. This has to be done only once
before any encryption can start.
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Algorithm 9.2: Montgomery Ladder Algorithm

1 begin
2 R0 ← 1
3 R1 ← M
4 for i from 0 to n−1 do
5 if di = 0 then
6 R1 ← (R0 ∗R1) mod N
7 R0 ← (R0 ∗R0) mod N
8 end
9 else if di = 1 then

10 R0 ← (R0 ∗R1) mod N
11 R1 ← (R1 ∗R1) mod N
12 end
13 end
14 return R0

15 end

2. R is used to convert the multiplicands into their Montgomery domain as follows:

A = (a ∗ R) mod N (9.1)

B = (b ∗ R) mod N.

3. The next step is to perform the Montgomery multiplication. This is shown in
Algorithm 9.3. This involves three multiplications and some less expensive oper-
ations such as addition and right shifts (assuming R is a power of 2, division by
R is performed by shifting right). The multiplication S ∗N−1 is not too expensive
either, because mod R implies that only the least significant R bits need to be
considered.

4. The inverse Montgomery transformation is then performed to convert the result
to an ordinary integer,

z = S ∗ R−1 mod N. (9.2)

From the side-channel perspective, there is an extra reduction step in 4th line of
Algorithm 9.3. Due to the conditional branch statement, variations in the execution
time will occur. These variations are the source of side-channel exploits. The next
section demonstrates this leakage through the processor’s branch predictor.

9.2 Timing Branch Mispredictions

The branch prediction unit in the processor is responsible for predicting whether a
branch in a program is taken or not-taken. If a branch is predicted taken, instructions
from the destination address are fetched. On the other hand, a not-taken prediction
causes the CPU to continue fetching instructions in a sequential fashion. A prediction
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Algorithm 9.3: Montgomery Multiplication Algorithm

1 begin
2 S ← A∗B
3 S ← (S+(S ∗N−1 mod R)∗N)/R
4 if S > N then
5 S ← S −N
6 end
7 return S
8 end

that goes wrong is called a misprediction. It causes the pipeline to be flushed and
instructions fetched from the correct destination. This incurs a significant overhead
in superscalar processors. The difference in execution time between a correct and a
wrong branch prediction is used to break ciphers such as the RSA. In this section,
we demonstrate the timing difference caused by mispredictions.

We take the example of a Montgomery multiplication implemented to return the
square of its input. As seen in Algorithm 9.3, the Montgomery multiplication has an
extra reduction step which is executed only if S > N . We determine the execution
time difference caused by the mispredictions that occur due to this condition in the
algorithm.

The experiment performs the operation a2 mod N for an input a using the Mont-
gomery multiplication algorithm. Listing 9.1 shows the pseudocode. The modulus
N is a 1024-bit integer similar to the modulus used in RSA. Since this involves num-
bers much bigger than what normal CPU registers can hold, GNU Multiple Precision
Arithmetic Library is used to perform the big number arithmetic. R is chosen to be
21025, which is greater than N and the greatest common divisor (GCD) of R and
N is 1. Around 10,000 randomly chosen inputs were considered within the range 0
to N − 1. Since there is a predominant effect of noise, we determine the average
execution time for each input a from 1000 runs.

Listing 9.1 Pseudocode for modular squaring using Montgomery multiplication

1 int sqmult(int a, int R, int N)
2 {
3 A = (a * R) % N;
4

5 S = A * A;
6 S = (S + (((S * Nˆ{-1}) % R) * N)) / R;
7 if (S > N)
8 S = S - N;
9 return S;

10

11 }

The conditional branch instruction occurs due to the if statement in line 8 of the
listing. This causes two different execution paths:
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• Branch not-taken path occurs when S > N . This causes the execution of the
subtraction S ← S − N . In this case, there is no deviation from the sequential
execution of the program.

• Branch taken path occurs when S ≤ N . No subtraction is done and the execution
jumps to the return statement following the “if” block. This is the branch target
statement.

A part of the assembly code corresponding to Listing 9.1 is illustrated in Listing 9.2 for
better understanding. The function call to the GMP function __gmpz_cmp makes
the comparison between S and N . On its return, the eax register contains a positive,
negative, or zero value corresponding to A > N, A < N, and A = N, respectively.
The instruction testl compares this value with zero, while jle branches to the
label L4 if eax is less than or equal to zero, thereby not performing the subtraction.
If eax is greater than zero, then the subtraction (using function __gmpz_sub)
is performed.

Listing 9.2 Partial Assembly Code for the Squaring Function (sqmult)

1 movq %rdx, %rsi
2 movq %rax, %rdi
3 call __gmpz_cmp
4 testl %eax, %eax
5 jle .L4
6 movl $N, %edx
7 movl $S, %esi
8 movl $S, %edi
9 call __gmpz_sub

10 .L4:
11 leave
12 .cfi_def_cfa 7, 8
13 ret
14 .cfi_endproc

Since the inputs a were randomly chosen, some cause the branch to be taken while
others do not. We classify the execution time into two sets depending on whether the
branch was taken or not-taken. Figure 9.1 shows the average execution time for the
function corresponding to inputs where the branch was not taken and Fig. 9.2 shows
the average execution time where the branch was taken.

In both graphs, we see a separation in the execution time. The regions of the graphs
with average execution time between 11,000 and 11,500 correspond to inputs where
the branch prediction was correct and the regions above 12,000 correspond to the
mispredictions. A clear separation is observed in both graphs. This experiment will be
helpful for understanding the attack algorithms exploiting the branch mispredictions.
The following sections discuss the details of these attacks.
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Fig. 9.1 Execution time from not-taken branches in Montgomery multiplication (on Intel i5). The
lower band (around 11,500 clock cycles) indicates runs where the branches were correctly predicted
not-taken. The upper band (around 12,500 clock cycles) indicates mispredictions
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Fig. 9.2 Execution time from taken branches in Montgomery multiplication (on Intel i5). The
lower band (around 11,000–11,500 clock cycles) indicates runs where the branches were correctly
predicted taken. The upper band (around 12,500 clock cycles) indicates mispredictions

9.3 Attacking the Square and Multiply
Exponentiation Algorithm

In this section, we show how timing mispredictions can be used to recover the secret
exponent in the square and multiply algorithm (Algorithm 9.1) if the Montgomery
multiplication algorithm is used. We assume that the adversary can invoke the func-
tion implementing the algorithm with different values of M and monitor the execution
time. She however cannot determine the intermediate and any other internal values
of the function.
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The most significant bit of the exponent (i.e., d0) in Algorithm 9.1 is set to one.
The attacker determines all other bits iteratively. That is, bit di is determined only
after di−1 is found. The process to determine bit di is as follows:

Assumptions: The attacker knows the branch prediction algorithm used in the attack
system. She also knows the initial state of the branch predictor.

Offline Phase: The attacker selects a large set of plaintexts M and then performs
the following operations:

• Assumes that di = 1 and forms an exponent as follows: d (1) = d0||d1||d2||
· · · ||di−1||1. The guess of di = 1 causes the multiplication in line 6 of
Algorithm 9.1 to be performed in the ith iteration.

• Now, for each plaintext in M, the attacker simulatesAlgorithm 9.1 to determine if
there is a misprediction in the squaring in the (i + 1)th iteration. Such an analysis
is possible because the attacker knows how the branch predictor works.

• Based on whether there is a correct or wrong prediction in the Montgomery
multiplier (MM), the set of plaintexts M can be partitioned into two sets: M1

and M2. These sets are defined as follows:
– M1 = {m|m causes a misprediction during MM of (i + 1)th squaring ifdi = 1}
– M2 = {m|m does not cause a misprediction during MM of (i + 1)th squaring

if di = 1}
• The attacker now assumes di = 0 and forms an exponent as follows: d (0) =

d0||d1||d2|| · · · ||di−1||0. The above steps are repeated to partition the set of
plaintexts M into two sets, M3 and M4. These sets are defined as follows:
– M3 = {m|m causes a misprediction during MM of (i + 1)th squaring ifdi = 0}
– M4 = {m|m does not cause a misprediction during MM of (i + 1)th squaring

if di = 0}
Now equipped with four sets of plaintexts M1, M2, M3, and M4, the attacker is
all set for the online phase.

Online Phase: Corresponding to each set Mi (1 ≤ i ≤ 4), the attacker determines
four average execution times for Algorithm 9.1. Since the ith bit of the exponent is
either 0 or 1, two of the sets will show a separation in timing. For instance, consider
the correct value of di is 1. This means,

• All plaintexts in M1 have a misprediction during MM of (i + 1)th squaring. Thus,
these plaintexts would correspond to a longer time.

• All plaintexts in M2 have no misprediction during MM of (i + 1)th squaring.
Thus, these plaintexts would correspond to a shorter time.

• In both M3 and M4, there are some plaintexts that would have a misprediction
during MM of (i + 1)th squaring, while other plaintexts in these sets will not have
the misprediction.

When the average time is computed, there would be a separation between the time
for M1 and M2 but no (or lesser) separation between M3 and M4. Algorithm 9.4
shows the details of the attack.
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Algorithm 9.4: Determining bit di of the exponent
Output: M ,M1,M2,M3,M4
Output: di

1 begin
2 Cj ← 0 for 1 ≤ j ≤ 4
3 Tj ← 0 for 1 ≤ j ≤ 4
4 for at-least 216 times do
5 x ← choose random plaintext from M
6 t1 ← start time
7 ScalarMultiply(x)
8 t2 ← end time
9 for k ∈ {1,2,3,4} do

10 if x ∈ Mk then
11 Ck ← Ck+1
12 Tk ← Tk+(t2 − t1)
13 end
14 end
15 end
16 A j ← Tj/Cj for 1 ≤ j ≤ 4
17 if (A1 −A2)> (A3 −A4) then
18 return 1
19 end
20 else
21 return 0
22 end
23 end

In the algorithm, a random plaintext x is chosen from M and the scalar multiplication
invoked and timed. The measured time is added to all sets where x is present. Since
M = M1 ∪ M2 and M = M3 ∪ M4, x would be present in exactly two of the
sets.

The average time Ai is found for each set and then the separation is determined.
If there is more separation between A1 and A2, then di is 1, otherwise di is 0.

Evaluation: There are two limitations of this attack technique. First, the attacker
needs to know the branch predictor algorithm present in the system. Second, she has
to know the initial state of the branch predictor. Both these requirements are needed
to partition M into sets M1, M2, M3, and M4.

Attackers may be able to tackle the initial state requirement of the predictor, for
instance, by performing dummy operations that force the predictor to a particular
state—such as branch taken. The first requirement however is more difficult to fulfill
especially for commercially available processors. Branch prediction algorithms in
modern commercial processors are a closely guarded secret and most manufactures
do not reveal their internals. Thus, attackers would only be able to make smart guesses
about the algorithm or use approximations.

In the experiments we consider an Intel i5 machine. We do not know the
branch prediction internals in the i5 but consider the 2-bit bimodal algorithm (see
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Fig. 9.3 Timing variation due to plaintexts for sets M3 and M4 when di = 1—the wrong guess
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Fig. 9.4 Taming variation for random plaintexts for sets M1 and M2 when di = 1—the correct
guess

Sect. 3.3.2.2), which we assume is a close match. Figure 9.3 shows the average ex-
ecution time for the exponentiation (Algorithm 9.1) for plaintexts M3 and M4 and
Fig. 9.4 shows the average execution time for plaintexts in M1 and M2.

Table 9.1 tabulates the difference in the average separation between the sets. It
can be observed that the difference in timing for the wrong assumption is small
whereas the difference in timing for the plaintext partitions for the correct guess
of di is significantly large. Thus, in spite of the assumed predictor, the attack was
able to correctly identify di as 1. We expect that as better models for the predictor
emerge, this attack’s success would improve considerably. Alternatively, the attacker
can use other attack strategies. Some of these strategies are discussed in the following
sections.
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Table 9.1 Separation in timing for assumptions di = 0 or di = 1

Assumption Separation (in clock cycles)

di = 0 (A3 − A4) = 6278 − 6271 = 7 Wrong guess
Average separation negligible

di = 1 (A1 − A2) = 6312 − 6257 = 55 Correct guess
Average separation significant

9.4 Asynchronous Attack on the Square and Multiply Algorithm

In a simultaneous multithreading (SMT) environment, a single processor core is si-
multaneously shared between two processes. The processor does not distinguish
between processes from different users. This could lead to attacks on the RSA
exponentiation using the square and multiply algorithm (Algorithm 9.1).

The asynchronous attack we describe now does not require knowledge of the
branch predictor algorithm or its initial state. It uses the fact that when the Mont-
gomery multiplication (Sect. 9.1.3) executes, information about the branch taken or
not-taken is stored in the branch target buffer (BTB). The BTB is a cache shared be-
tween all processes in the system. It is of limited size, therefore a branch instruction
in a process may evict a previous entry in the BTB. The attack works as follows:

The adversary runs a spy process simultaneously with the exponentiation. The
spy process uses dummy branch instructions to continuously evict the contents of
the BTB. This induces mispredictions in the square and multiply process, which is
manifested in its execution time. As in the previous attack, the attack is iterative.
Bit di in the exponent is determined only after bits d0–di−1 are known. Below we
describe how the bit di is obtained.

Offline Phase: Similar to the offline phase in Sect. 9.3, the attacker selects a large
set of plaintexts M and creates four sets from it as follows:

• M1 = {m|m ∈ M causes the branch to be taken during MM of (i + 1)th squaring
if di = 1}

• M2 = {m|m ∈ M causes the branch not to be taken during MM of (i + 1)th

squaring if di = 1}
• M3 = {m|m ∈ M causes the branch to be taken during MM of (i + 1)th squaring

if di = 0}
• M4 = {m|m ∈ M causes the branch not to be taken during MM of (i + 1)th

squaring if di = 0}
As in the attack in Sect. 9.3, M1 and M2 partition M. Similarly, M3 and M4

partition M. However, there is a subtle difference between the two offline phases.
The attack in Sect. 9.3 required the partitions to be based on correct and wrong branch
predictions. However, in the asynchronous attack described here, the partitions are
based on whether the branch is taken or not taken in the (i + 1)th iteration.
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Online Phase: In the online phase, the attacker executes a spy process simultane-
ously with the cipher in a multithreaded environment and times the execution of the
exponentiation. The spy is capable of evicting the contents of the BTB. Since the
BTB stores information about the branch targets of the Montgomery multiplication
used during the exponentiation, evicting the BTB would evict these branch target
entries.

The aim of the spy is to evict the BTB entries just before the (i + 1)th iteration.
In the (i + 1)th iteration, when the CPU executes the conditional reduction branch
instruction in the Montgomery squaring, it is unable to find the branch target address
in the BTB. This may result in a compulsory misprediction if the branch is taken.

Depending on which set the plaintext belongs to and the value of di , the following
will happen. Let us say, di = 1, then

• All plaintexts in M1 take the branch in the (i + 1)th squaring. Therefore, these
plaintexts would cause a compulsory misprediction. Thus the execution time is
longer.

• All plaintexts in M2 do not take the branch in the (i + 1)th squaring. Therefore,
these plaintexts would not have a misprediction (since we assume the default is
branch not taken). Thus, the execution time is shorter.

• In both M3 and M4, there are some plaintexts that take the branch while others
do not. Thus, the forced misprediction does not occur all the time.

When the average time is computed, there would be a separation between the time
for M1 and M2 but no (or lesser) separation between M3 and M4.

If di = 0, the separation in the average execution time is expected to occur
between M3 and M4 instead of M1 and M2. The attack process is exactly similar
to Algorithm 9.4.

Evaluation: The critical factor in the entire attack is the spy process that evicts
the BTB. The spy needs to flush the BTB just before the squaring in the (i + 1)th

iteration. Since the exact instant when the (i + 1)th iteration is executed is not known,
the spy has to periodically flush the BTB and hope that a flush happens before the
target iteration.

The resolution of clearing a BTB has a major impact in determining the attack’s
success. Either the BTB can be evicted completely or partially. Each has its own
advantages.

• Total eviction. In this method, the entire BTB is cleared by the adversary. This is the
easiest eviction strategy because the knowledge of the target destination address
in the Montgomery multiplication is not required. However in practice, clearing
the entire BTB between two consecutive squaring operations is unrealistic since
it requires more time than performing the operations between two consecutive
squarings. To improve the performance of the attack, the adversary can evict the
BTB partially.

• Partial eviction. The adversary continuously clears only a part of the BTB that
stores the BTB set of the target address of the branch taken. In the extreme case,
the adversary only clears the particular set of the BTB that stores the target address
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of the target branch. In these cases, the adversary needs to know how the branch
targets get mapped in the BTB.

In this attack, it is assumed that the adversary does not have any means to control
a particular misprediction event since the synchronization between the spy and the
attacker was deliberately avoided. In the next section, a synchronized version of the
explained attack is presented.

9.5 Synchronous Attack on the Square and Multiply Algorithm

The main idea of the synchronous attack that reveals di are the following observations:

1. In the ith iteration of Algorithm 9.1, if di = 1, then the branch is not taken
and the multiplication in line 5 is done. If di = 0, the branch is taken and the
multiplication is skipped.

2. If the processor is forced to predict branch not taken, di = 0 will cause a mispre-
diction, thus resulting in a pipeline flush and an increase in execution time. On
the other hand, di = 1 will not cause any misprediction, therefore no increase in
execution time.

3. The adversary forces the branch not taken state in the processor by evicting the
branch target in the BTB just before the ith iteration.

The attack works as follows:

• The attacker chooses an M and determines the execution time for Algorithm 9.1,
say T1.

• The execution is run again with the same M and the execution time is measured.
Let T2 be the time. The only difference compared to the first execution is that just
before the ith iteration, the adversary clears a single target location of the BTB
corresponding to the branch instruction.

• if (|T2 − T1|) is greater than some threshold τ , then di = 0 else di = 1.

In all the attacks discussed so far, the attacker measures the execution time of the
misprediction while running an implementation of the square and multiply algorithm.
In the following section, a new attack strategy is explored which is asynchronous in
nature and measures the execution time of the branches of a spy process.

9.6 Trace Driven Attack Targeting the BTB

This attack is similar to that of the prime and probe attack on cache memories
(Sect. 8.1). Just like the prime and probe attack, the adversary executes a spy program.
The spy has a series of branch instructions in a loop, which are executed and timed.
The execution time for the branch instructions would initially be large due to several
mispredictions that occur. The execution time would reduce gradually as the BTB
gets filled. When a cipher executes simultaneously with the spy, some of the BTB
entries of the spy get evicted. This forces branch mispredictions in the spy causing
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an increase in the execution time. The increase in time leaks information about the
cipher’s secret key. The steps in the attack are enumerated below:

• The adversary initiates the attack by allowing the spy process to execute a number
of branch statements that gradually fill the BTB with branch target addresses from
the spy process.

• After a while, the cipher is allowed to execute.
• When the exponentiation code in the cipher encounters a branch, the CPU will

not find the target address of the branch in the BTB. The prediction then defaults
to not-taken.

• If di = 0, the conditional branch in the square and multiply algorithm (Algo-
rithm 9.1) results to taken and one of the entries in the BTB corresponding to
the spy process is evicted in order to accommodate the new target destination. If
di = 1, then there is no misprediction, thus no entries in the BTB get evicted.

• After the cipher completes execution, the spy reexecutes its branches and measures
the time required. If the branches take a longer time than usual, it is attributed to
the mispredictions in the BTB due to the cipher’s evictions. Thus, di is taken 0.
If there is no change in the execution time of the branches, it is attributed to no
mispredictions and di is taken 1.

9.7 Conclusion

Branches in programs can lead to information leakage due to the branch prediction
units present in modern processors. Eliminating branches from programs is not al-
ways possible, thus alternate approaches to counter branch prediction based timing
attacks need to be determined. The next chapter provides an overview of the counter-
measures available for timing attacks. Many of these countermeasures can be applied
or tuned to prevent branch prediction attacks.
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Chapter 10
Countermeasures for Timing Attacks

The criteria for a timing attack to be successful are the following:

1. The run time behavior of the crypto application should vary depending on the
secret key. For instance, the instructions executed or memory locations accessed
should depend on the secret. Even the data operated on could also cause run time
behavior to vary.

2. These variations in the run time behavior must be manifested through the time
required to execute operations.

3. The adversary must have sufficient capabilities to monitor time variations. For
instance, the adversary should have access to the system executing the crypto
application.

4. A clock source precise enough to capture variations in the run time behavior of
the application should be available.

5. A synchronization signal to determine when the application starts and/or
completes its processing.

6. In addition to these criteria, the success obtained in the attack largely depends on
the number of time measurements made.

An attack would be successful only if all these criteria are met. It is therefore not
surprising that countermeasures try to make one or more of these criterias difficult to
fulfill. Completely preventing a criterion can be done, for example, by eliminating
the cache memory from processors. However, this leads to significant performance
degradation, which far supersedes the security gains obtained. Thus, the aim of practi-
cal countermeasures is to obtain the right balance between security and performance.
The upcoming sections discuss the countermeasures.

10.1 Application Level Countermeasures

Countermeasures in the crypto application are generally easy to apply and provide
sufficient levels of security against timing attacks. However, they suffer from signif-
icant shortcomings. First, most of the application-level countermeasures are heavy
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and inefficient. Further, all applications require to be patched with the same counter-
measures. A system may thus have several applications which are modified with these
bulky countermeasures. This adversely affects performance and energy requirements
of the system. Neverthe-less, these countermeasures provide a quick fix to prevent
timing attacks. We therefore discuss some of these countermeasures here.

10.1.1 Countermeasures Involving Look-Up Tables

In block cipher implementations, key dependent look-up table operations are per-
formed. While these operations improve speed, it leads to vulnerabilities through
timing channels. One method to prevent the attack is designing new ciphers which
have no s-boxes, for example [1]. For the general class of ciphers that use s-boxes,
implementations without look-up tables would have a drastic affect on performance.
An alternate implementation without look-up tables is using bitslicing [2, 3]. This
allows multiple encryptions to be done concurrently in a single processor. Bitslicing
yields high speed encryption, which however is restricted to certain nonfeedback
modes of operation, and therefore cannot be universally applied.

An alternate approach is to implement the cipher with appropriately chosen look-
up tables or restrict their usage. This approach tries to achieve security with increased
performance by either restricting the size of the look-up tables or the accesses made
to it.

10.1.1.1 Look-Up Tables in Selected Rounds

Cache attacks on block ciphers discovered so far, rely on collisions in the first few or
the last round of the cipher. For instance in Advanced Encryption Standard (AES),
cache attacks target collisions in the look-up tables either in the first, second, or the
last round. It is only in these rounds that collisions can be exploited by an adversary.

Preventing usage of look-up tables in these “sensitive” rounds would therefore
prevent the attack. For instance, a hybrid implementation can be built for AES,
which uses look-up tables in all but the first, second, and final round. In these sen-
sitive rounds alternate implementations can be used for the s-box, for example, by
logical equations or by using small look-up tables as discussed in the next section.
The execution time for these implementations of s-boxes must be independent of the
secret key. This approach provides security because there are no timing variations in
run-time execution due to the sensitive rounds. For instance, compared to an AES
implementation with look-up tables, the overhead of an implementation with two
rounds protected is 10.8 compared to 66.7 for an implementation that does not use
look-up tables. The rounds implemented without look-up tables shield the imple-
mentation against cache attacks, while the look-up tables used in the intermediate
rounds boost performance.



10.1 Application Level Countermeasures 141

10.1.1.2 Small Look-Up Tables

Consider an implementation of a cipher with a look-up table of size l · 2δ , where l is
the number of memory blocks occupied by the table and 2δ the number of elements in
the table that share the same memory block. The number of bits required to access an
element in the table is δ + log2 l; log2 l bits to select the memory block and δ bits to
address the element within the block. Most cache attacks are not able to distinguish
between elements that lie in the same block. Assuming that the table is aligned to a
memory block, these cache attacks can only retrieve log2 l bits leaving the remaining
δ bits uncertain. The uncertainty can be increased by packing more elements into a
memory block thereby reducing l.

In the extreme, if the entire look-up table fits in a single cache line, then the
adversary cannot ascertain any information from the memory access patterns. In
such cases log2 l = 0, that is the adversary retrieves 0 bits. The problem however is
that, s-boxes used in most ciphers are considerably larger than the memory block.
Therefore compressing them into a single block is not easy. In [4] and [5], techniques
that compress s-boxes of standard ciphers like CLEFIA into a single memory block
were proposed. One technique that is especially suited for s-boxes based on the
multiplicative inverse in a finite field uses composite field isomorphisms [6]. This
allows the use of smaller tables which stores subfield operations. For instance the
AES s-box, which typically requires atleast 256 bytes, can be compressed into a
single memory block of 32 or 4 bytes.

10.1.1.3 Cache Warming

Loading the contents of the look-up tables prior to encryption could reduce the risk
of cache attacks. As a result, the accesses to the look-up table during the cipher
execution would be cache hits. However, this alone is not sufficient to thwart attacks.
Conflict misses that occur during the execution may evict the look-up table entries
from the cache, potentially resulting in cache misses that leak information about the
secret key. The system should therefore ensure that elements in the look-up table are
not evicted during the encryption. This is not easy to satisfy.

10.1.1.4 Choosing Look-Up Tables

The number and size of the look-up tables play an important role in an attack’s
success. Choosing appropriate number and size of look-up tables can therefore be
used to mitigate time-driven cache attacks. For a specific system, Chap. 6 shows how
appropriate look-up tables can be chosen without compromising on the performance.
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10.1.2 Data-Oblivious Memory Access Pattern

This allows the pattern of memory accesses to be performed in an order that is
oblivious to the data passing through the algorithm. To a certain extent, modern
microprocessors provide such data oblivious memory accesses by reordering in-
structions. For example, four memory accesses to different locations say, A, B, C,
and D, would get executed in any of the four ways (say BCDA or DCAB). This
reordering would increase the difficulty of certain time-driven and access-driven at-
tacks. However, the reordering is restricted to memory accesses which do not have
data dependencies. For block ciphers, such independent memory accesses are present
within a round but not across rounds, therefore only partially fulfills data-oblivious
requirements.

A naïve method to attain complete data-oblivious memory accesses is to read
elements from every memory block of the table, in a fixed order, and use just the
one needed. Another option is to add noise to the memory access pattern by adding
spurious accesses, for example, by performing a dummy encryption in parallel with
the real one. A third option is to mask the sensitive table accesses with random masks
that are stripped away at the end of the encryption. Alternatively, the table can be
permuted regularly to thwart attacks using statistical analysis.

Generic program transformations are also present for hiding memory accesses
[7]. However, there are huge overheads in performance and memory requirements.
More practical proposals have been developed using shuffling [8] and permutations
[9].

10.1.3 Constant and Random Time Implementations

A combination of the countermeasures discussed so far can be used to deliver con-
stant time implementations [10, 11]. To obtain such implementations requires cache
warming to ensure that all memory accesses result in cache hits. A timing probe
which measures the current execution time for the cipher, and a compensation loop
which is designed to increase the encryption time until the worst case execution
time is obtained. Additionally, to prevent evictions of the table occurring during an
interrupt, an interrupt detector is required to rewarm the cache.

As opposed to constant time implementations, adding a random delay to each
execution time can be used to increase the attack difficulty. The countermeasure
was first proposed for DPA in [12]. Tunstall and Benoit in [13] and later Coron and
Kizhvatov in [14, 15] provide improvements by modifying the distribution of the
delay.
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10.2 Countermeasures Applied in the Hardware

Subtle changes in the hardware can make attacks much more difficult with little over-
head in the performance. In this section we survey some of the hardware modifications
that have been suggested to counter cache attacks.

10.2.1 Noncached Memory Accesses

Certain memory pages can be flagged as noncacheable. This would prevent memory
accesses from loading data into the cache. Consequently, every memory access would
read data from the RAM and every access would thereby be a cache miss preventing
all cache attacks.

10.2.2 Specialized Cache Designs

Specialized cache memory designs have been proposed for thwarting cache attacks.
They work on the fact that information leakage is due to sharing of cache resources,
thus leading to cache interference. These solutions provide means of preventing
access-driven attacks. Their effectiveness in blocking time-driven attacks has not yet
been analyzed. In [16], Percival suggests eliminating cache interference by modify-
ing the cache eviction algorithms. The modified eviction algorithms would minimize
the extent to which one thread can evict data from another thread.

In [17], Page proposed to partition cache memory, which is a direct-mapped
partitioned cache that can dynamically be partitioned into protected regions by the
use of specialized cache management instructions. By modifying the instruction set
architecture and tagging memory accesses with partition identifiers, each memory
access is hashed into a dedicated partition. Such cache management instructions are
however only available in the operating system. While this technique prevents cache
interference from multiple processes, the cache memory is underutilized due to rigid
partitions. For example, a process may use very few cache lines of its partition, but
the unused cache lines are not available to another process.

In [18], Wang and Lee provide an improvement on the work by Page using a
construct called partition-locked cache (PLCache), where the cache lines of interest
are locked in cache, thereby creating a private partition. These locked cache lines
cannot be evicted by other cache accesses not belonging to the private partition. In
the hardware, each cache line requires additional tags comprising a flag to indicate
if the line is locked and an identifier to indicate the owner of the cache line. The
underutilization of Page’s partitioned cache still persists because the locked lines
cannot be used by other processes, even after the owner no longer requires them.
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Wang and Lee also propose a random-permutation cache (RPCache) in [18],
where, as the name suggests, it randomizes the cache interference, so that the dif-
ficulty of the attack increases. The design is based on the fact that information is
leaked only when cache interference is present between two different processes. The
architecture requires an additional hardware called the permutation table, which
maps the set bits in the effective address to obtain new set bits. These are then used
to index the cache set array. Changing the contents of the permutation table will
invalidate the respective lines in the cache. This causes additional cache misses and
a randomization in the cache interference. In [19], Wang and Lee use an underlying
direct-mapped cache and dynamically reprogrammable cache mapping algorithms
to achieve randomization. From the security perspective, this technique is shown
to be as effective in preventing attacks as RPCache, but with less overheads on the
performance. In [20], Kong et al. show that partition locked and random permutation
caches, although effective in reducing performance overhead, are still vulnerable
to advanced cache attack techniques. They then go on to propose modifications to
Wang and Lee’s proposals to improve the security [21, 22].

In [23], Domnitser et al. provide a low cost solution to prevent access-driven at-
tacks based on the fact that the cipher evicts one or more lines of the spy data from the
cache. The solution, which requires small modifications of the replacement policies
in cache memories, restricts an application from holding more than a predetermined
number of lines in each set of a set-associative cache. With such a cache memory,
the spy can never hold all cache lines in the set, therefore the probability that the
cipher evicts spy data is reduced. By controlling the number of lines that the spy can
hold, trade-off between performance and security can be achieved.

10.2.3 Specialized Instructions

A few recent microprocessors support specialized instructions for ciphers. For ex-
ample, Intel supports the AES-NI for their new processors [24], which allows AES
encryption or decryption using a combination of six instructions. These instructions
have dedicated hardware support [25] and therefore do not require to use look-
up tables. Dedicated hardware has the added advantage of boosting performance.
With Intel’s AES-NI, speed of encryptions can be increased more than an order of
magnitude. The drawback however is that, such dedicated hardware are only appli-
cable for AES-based crypto systems. There are several other ciphers that are used in
many applications, which cannot gain from these instructions. These ciphers are still
vulnerable to attacks. An alternate direction is to develop improved instruction sets,
which would be friendly for general cipher algorithms. For example, bit-permutation
instructions were suggested in [26, 27] as a means to speedup a typical block cipher.
For public-key ciphers, several instruction enhancements have been suggested such
as [28–30]. In [31], a new instruction to be added to the microprocessor ISA called
PERMS, was suggested. This instruction allows any arbitrary permutation of the bits
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in an n-bit word, and can be used to accelerate diffusion layer implementations in
block ciphers, thereby providing high-speed encryptions.

10.2.4 Hardware Prefetching

Prefetching data automatically into cache memory is present in modern micropro-
cessors to reduce the memory latencies by anticipating accesses. In [32], automatic
hardware prefetching is suggested as a means to counter cache attacks, since it would
confuse the adversary while distinguishing between a cache hit and a miss.

While prefetching was in fact demonstrated to make access-driven attacks slightly
more difficult [33]. It has the opposite effect in profiled time-driven cache attacks.
In profiled time-driven attacks such as the one by Bernstein in 2005, prefetching can
be a source of information leakage rather than a means to mitigate the attack.

10.2.5 Fuzzying Clocks

Current timing attacks require distinguishing between events by their execution time.
This requires highly accurate timing measurements to be made. A popular method
for making these measurements is by the rdtsc (read time stamp counter) instruc-
tion, which is present in most modern day processors. This instruction allows the
processor’s time stamp counter (TSC) to be read.

Since the TSC is incremented in every clock cycle, rdtsc can provide nanoscale
accuracy. Denying the adversary access to the rdtsc instructions robs her of a simple
and highly precise clock source. However, the main drawback preventing user access
to the TSC is that several benign applications (such as Linux kernels, multimedia
games, and certain cryptographic algorithms [34]) rely on rdtsc. These applications
will cease to function if the instruction is disabled. A less stringent way is to therefore
fuzz the timestamp returned by the rdtsc instruction. This is possible because unlike
timing attacks, benign applications do not require highly accurate timing measure-
ments. Time fuzzing can be either done by reducing the accuracy of the measurement
(such as by masking least significant bits of the timestamp [35]) or by reducing the
precision of the measurement (such as by injecting noise into the timestamp [36]).

If t1 is the current value of the TSC, then masking returns  t1/E � (E is a time
duration called epoch). Consequently, t has the form t2

E � − t1
E �. The size of the

epoch is crucial. It should be large enough to protect against timing attacks, yet small
enough to not affect benign applications. In [37], Vattikonda et al. propose a way
to bypass such masking schemes. The technique uses the fact that timing attacks
do not need absolute timing measurements, rather it is only required to distinguish
between two or more events. In the proposal, the adversary first loops continuously
to synchronize with the start of the epoch. This is denoted by t1e = t1

E �. Then the
operation to be timed is called and an rdtsc instruction is invoked in a tight loop till
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the end of the epoch (detected by the change in the rdtsc value). A counter c counts
the number of rdtsc invocations made. The value of c in the end of the loop can be
used to distinguish between events executed by the operation, as a smaller value of
t2e = t2

E � will lead to a larger value of c.

c = 0;
/* Synchronize to the start of epoch */
t1e = rdtsc;
while(t1e != rdtsc);
function() /* the operation that needs to be timed */
/* Continuously scan TSC until end of epoch */
t2e = rdtsc;
while(t2e != rdtsc) c = c + 1;
return c and (t2e - t1e)

In the noise injection technique, a random offset between [0,E) is added to the times-
tamp value returned by rdtsc. There are however two possible problems. The first is
likely to occur when multiple rdtsc instructions are invoked. The first invocation of
rdtsc returns a value of the form t1 + r1, while the second invocation return has
the form t2+r2, where t1 and t2 are the timestamp values and r1 and r2 are the
random numbers (0 ≤ r1,r2 < E). If the two invocations are done in quick succes-
sion then t1 = t2, while it is possible that r1 > r2. This gives the impression of
time moving backward. The second drawback of the noise injection scheme is that
the randomness is limited by the size of E. If sufficient number time measurements
are made and average taken, the effect of the injected noise can be eliminated.

In [34], Martin, Demme, and Sethumadhavan propose a scheme called Timewarp.
The scheme prevents the attack in [37] by restricting the TSC reading to the end of
an epoch. Additionally, the rdtsc instruction is delayed by a random time (less than
an epoch) before the result is returned. Noise is further added to the TSC value to
increase the difficulty of the attack.

Even without using the rdtsc instructions, it is possible to make highly accurate
timing measurements. For example, on multiprocessor systems, a counter can be
run in a tight loop in a different thread, which can be used to make sufficiently
precise timing measurements. These are called virtual time-stamp counters (VTSC).
To prevent use of such counters, [34] proposes to add hardware in the processor,
which detects these loops and injects random delays into them.

10.3 Countermeasures in the Operating System

While hardware countermeasures are expensive and application layer countermea-
sures are heavy, the search is still on for the countermeasure that is a panacea. The
operating system may hold the key—especially in attacks that use a spy process to
snoop at a victim’s execution behavior.
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In the operating system for instance, the scheduler can be tweaked to ensure
processes from different security domains do not share the same hardware resources.
Fine-grained attacks, which exploit scheduler policies may be mitigated by changes
to the scheduling algorithm. For instance, by ensuring that a minimum threshold is
forced before a context switch happens between two processes.

10.4 Conclusion

Countering timing attacks can be done at either the application layer, hardware, or in
the operating system. In each category there are several options available. While ap-
plication layer countermeasures can easily be applied, they have huge overheads that
affect system performance. On the other hand, countermeasures applied at the hard-
ware level are efficient but are expensive requiring system redesign. Comparatively,
countermeasures in operating systems and virtual managers are less explored.

Engineers would need to make learned decisions on what countermeasures to
incorporate. These decisions should be made early in the design phase. Trade-offs
between the performance, cost, and security need to be considered. However, this is
easier said than done. A countermeasure which works well with for one system and
algorithm may not be suitable in another environment. While performance and costs
can be easily gauged, the same cannot be done with security. For this reason, metrics
need to be developed that could quantify the security of the system. For time-driven
cache attacks, this book provided a means to do this. Similar frameworks need to be
developed for other leakage models and attacks. The hope is for a unified framework
that could assess the vulnerability of a system to all forms of timing attacks.
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Appendix A: CPUs Used for Experiments

The attacks and models developed in this book were tested on several systems.
We selected a wide range of systems based on the technology used and the target
application. The technology ranged from 22 to 90 nm and covered servers, desktops,
laptops, and notebooks. Table A.1 has the details of the machines, the technology,
clock, microarchitecture, and their cache configurations.

Table A.1 Cache configurations for test platforms

Cache Size Line Associativity

AMD Opteron (275) 90 nm, 2.2 GHz, Italy

L1-data 64 KB 64 byte 2-way

L1-instruction 64 KB 64 byte 2-way

L2-unified 1 MB 64 byte 16-way

Intel Xeon (E5345) 65 nm, 2.33 GHz, Core

(α = 255, β = 20) L1-data 32 KB 64 byte 8-way

L1-instruction 32 KB 64 byte 8-way

L2-unified 4 MB 64 byte 16-way

Intel Core 2 Duo (E7500) 45 nm, 2.93 GHz, Wolfdale-3M

L1-data 32 KB 64 byte 8-way

L1-instruction 32 KB 64 byte 8-way

L2-unified 3 MB 64 byte 12-way

Intel Atom (N455) 45 nm, 1.66 GHz, Pineview

L1-data 24 KB 64 byte 6-way

L1-instruction 32 KB 64 byte 8-way

L2-unified 512 KB 64 byte 8-way
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Table A.1 (continued)

Cache Size Line Associativity

Intel i3 (550) 32 nm, 3.2 GHz, Clarkdale

L1-data 32 KB 64 byte 8-way

L1-instruction 32 KB 64 byte 4-way

L2-unified 256 KB 64 byte 8-way

L3-unified 4 MB 64 byte 16-way

Intel Dual Core (P6100) 32 nm, 2 GHz, Arrandale

(α = 180, β = 16) L1-data 32 KB 64 byte 8-way

L1-instruction 32 KB 64 byte 4-way

L2-unified 256 KB 64 byte 8-way

L3-unified 3 MB 64 byte 12-way

Intel Xeon (E5606) 32 nm, 2.13 GHz, Westmere

(α = 193, β = 7.5) L1-data 32 KB 64 byte 8-way

L1-instruction 32 KB 64 byte 4-way

L2-unified 256 KB 64 byte 8-way

L3-unified 8 MB 64 byte 16-way

AMD Opteron (6272) 32 nm, 1.4 GHz, Interlagos

L1-data 16 KB 64 byte 4-way

L1-instruction 64 KB 64 byte 2-way

L2-unified 2 MB 64 byte 16-way

L3-unified 6 MB 64 byte 64-way

Intel i7 (4770) 22 nm, 3.4 GHz, Haswell

L1-data 32 KB 64 byte 8-way

L1-instruction 32 KB 64 byte 8-way

L2-unified 256 KB 64 byte 8-way

L3-unified 8 MB 64 byte 16-way
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