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Abstract. Group signatures allow group members to anonymously sign mes-
sages in the name of a group such that only a dedicated opening authority can
reveal the exact signer behind a signature. In many of the target applications, for
example in sensor networks or in vehicular communication networks, bandwidth
and computation time are scarce resources and many of the existent construc-
tions simply cannot be used. Moreover, some of the most efficient schemes only
guarantee anonymity as long as no signatures are opened, rendering the opening
functionality virtually useless.
In this paper, we propose a group signature scheme with the shortest known signa-
ture size and favorably comparing computation time, whilst still offering a strong
and practically relevant security level that guarantees secure opening of signa-
tures, protection against a cheating authority, and support for dynamic groups.
Our construction departs from the popular sign-and-encrypt-and-prove paradigm,
which we identify as one source of inefficiency. In particular, our proposal does
not use standard encryption and relies on re-randomizable signature schemes that
hide the signed message so as to preserve the anonymity of signers.
Security is proved in the random oracle model assuming the XDDH, LRSW and
SDLP assumptions and the security of an underlying digital signature scheme.
Finally, we demonstrate how our scheme yields a group signature scheme with
verifier-local revocation.
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1 Introduction

Group signatures, introduced in 1991 by Chaum and van Heyst [19], allow members
of a group to anonymously sign messages on behalf of the whole group. For example,
they allow an employee of a company to sign a document in such a way that the veri-
fier only learns that it was signed by an employee, but not by which employee. Group
membership is controlled by a Group Manager, who can add users (called Group Mem-
bers) to the group. In addition, there is an Opener who can reveal the identity of signers
in the case of disputes. In some schemes, such as the one we propose, the tasks of
adding members and revoking anonymity are combined into a single role. In the sys-
tems proposed in [3, 16, 34], group membership can be selectively revoked, i.e., without
affecting the signing ability of the remaining members.

Security notions. Since 1991 a number of security properties have been developed
for group signatures including unforgeability, anonymity, traceability, unlinkability, and
non-frameability. In 2003 Bellare, Micciancio, and Warinschi [4] developed what is
now considered the standard security model for group signatures. They propose two
security properties for static groups called full anonymity and full traceability and show
that these capture the previous security requirements of unforgeability, anonymity, trace-
ability, and unlinkability. Bellare, Shi, and Zhang [7] extended the notions of [4] to
dynamic groups and added the notion of non-frameability (or exculpability), by which
the Group Manager and Opener together cannot produce a signature that can be falsely
attributed to an honest Group Member.

Boneh and Shacham [11] proposed a relaxed anonymity notion called selfless ano-
nymity where signers can trace their own signatures, but not those of others. This weak-
ening, however, leads to the following feature: if a group member signed a message
but forgot that she signed it, then she can recover this information from the signature
itself. Other schemes [10, 12, 13] weaken the anonymity notion by disallowing opening
oracle queries, providing only so-called CPA-anonymity. This is a much more serious
limitation: in practice it means that all security guarantees are lost as soon as a single
signature is opened, thereby rendering the opening functionality virtually useless. As
we’ve witnessed for the case of encryption [8], CCA2-security is what can make it into
practice.

In this work, we consider a hybrid between the models of [7] and [11] that combines
the dynamic group setting and the non-frameability notion of [7] with the selfless ano-
nymity notion and the combined roles of Group Manager and Opener of [11]. We stress
however that we prove security under the practically relevant CCA2-anonymity notion,
rather than the much weaker CPA-anonymity notion. Yet still, our scheme compares
favourably with all known schemes that offer just CPA-anonymity.

Construction paradigms. Many initial group signature schemes were based on the
Strong-RSA assumption [2, 3, 16]. In recent years the focus has shifted to schemes
based on bilinear maps [10, 11, 17, 26, 33], which are the most efficient group signa-
tures known today, both in terms of bandwidth and computational efficiency.
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Most existing group signature schemes follow the construction paradigm where a
group signature consists of an anonymous signature, an encryption of the signer’s iden-
tity under the Opener’s public key, and a non-interactive zero-knowledge (NIZK) proof
that the identity contained in the encryption is indeed that of the signer. While very use-
ful as an insight, this construction paradigm seems to stand in the way of more efficient
schemes. In this paper, we depart from the common paradigm and construct a group
signature scheme that consists solely of an anonymous signature scheme and a NIZK
proof, removing the need to encrypt the identity of the signer. We thereby obtain the
most efficient group signature scheme currently known, both in terms of bandwidth and
computational resources (see Appendix 6).

It is surprising that we can do without a separate encryption scheme, given that
group signatures as per [4] are known to imply encryption [1]. This implication however
does not hold for group signatures with selfless anonymity, giving us the necessary slack
to construct more efficient schemes while maintaining a practically relevant security
level.

Our scheme. In our construction each Group Member gets a Camenisch-Lysyanskaya
(CL) [17] signature on a random message as a secret key. To produce a group signa-
ture, the Group Member re-randomizes this signature and produces a NIZK proof that
she knows the message underlying the signature. The novel feature is that the Opener
(alias Group Manager) can use information collected during the joining phase to test
which user created the signature, without the need for a separate encryption.3 A dis-
advantage is that opening thereby becomes a linear operation in the number of Group
Members. Since opening signatures is a rather exceptional operation and is performed
by the Group Manager who probably has both the resources and the commercial interest
to expose traitors, we think that this is a reasonable price to pay.

CL signatures and NIZK proofs have been combined before to produce “group-
like” signatures, most notably in the construction of pairing-based DAA schemes [14,
21, 22]. DAA schemes are not genuine group signatures, however, as there is no notion
of an Opener.

Finally, we note that from a certain class of group signature schemes as per our
definitions (that includes our scheme), one can build a group signature scheme with
verifier-local revocation (VLR) [11]. Such a scheme allows verifiers to check whether
a signature was placed by a revoked group member by matching it against a public
revocation list. The converse is not true, i.e., a VLR scheme does not automatically
yield a group signature as per our definitions, as it does not provide a way to open
individual signatures (rather than revoking all signatures by one signer). We refer to
Section 3.2 for details.

3 If the random messages were known to the Group Manager, he could open group signatures
simply by verifying the re-randomized signatures against the issued random messages. To
achieve non-frameability, however, the random message is only known to the Group Member,
so opening in our scheme is slightly more involved.
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2 Preliminaries

Notation. If S is a set, we denote the act of sampling from S uniformly at random
and assigning the result to the variable x by x← S. If S consists of a single element
{s}, we abbreviate this to x← s. We let {0, 1}∗ and {0, 1}t denote the set of binary
strings of arbitrary length and length t respectively, and let ε denote the empty string.
If A is an algorithm, we denote the action of obtaining x by invoking A on inputs
y1, . . . , yn by x← A(y1, . . . , yn), where the probability distribution on x is determined
by the internal coin tosses of A. We denote an interactive protocol P as P = (P0, P1).
Executing the protocol on input in0 and in1, resulting in the respective output out0 and
out1, we write as 〈out0; out1〉 ← 〈P0(in0);P1(in1)〉. If arr is an array or list we let
arr[i] denote the ith element in the array/list.

Digital Signature Scheme. We will use a digital signature scheme consisting of three
algorithms, namely a key generation algorithm DSKeyGen, a signing algorithm DSSign,
and a signature verification algorithm DSVerify. In our setting the key generation will
be executed between a user and a certification authority (CA). It might be an interactive
algorithm leading to the user getting a secret key sk and the CA as well as the user get
the public key pk corresponding to the secret key. The signing algorithm accepts a se-
cret key sk and a message m as input and returns a signature σ̄ ← DSSign(sk,m). The
signature is constructed such that the verification algorithm upon input a message m′,
a public key pk, and a signature σ̄ returns DSVerify(pk,m′, σ̄), which is true if both
m′ ≡ m, and sk corresponds to pk and false otherwise. The signature scheme must
satisfy the notion of unforgeability under chosen-message attacks [29].

Number-Theoretic Background. Our construction will make extensive use of asym-
metric pairings on elliptic curves. In particular we will use the following notation, for a
given security parameter η,

– G1, G2 and GT are cyclic groups of prime order q = Θ(2η).
– We write the group operations multiplicatively, and elements in G1 will generally

be denoted by lower case letters, elements in G2 by lower case letters with a “tilde”
on them, and elements in Zq by lower case Greek letters.

– We fix a generator g (resp. g̃) of G1 (resp. G2).
– There is a computable map ê : G1 ×G2 → GT with the following properties:
• For all x ∈ G1, ỹ ∈ G2 and α, β ∈ Zq we have ê(xα, ỹβ) = ê(x, ỹ)αβ .
• ê(g, g̃) 6= 1.

Following [28] we call a pairing of Type-1 if G1 = G2, of Type-2 if G1 6= G2 and
there exists a computable homomorphism ψ : G2 → G1, and of Type-3 if G1 6= G2

and no such homomorphism exists. In addition, in [20, 32] a further Type-4 pairing is
introduced in which G2 is a group of order q2, namely the product of G1 with the G2

used in the Type-3 pairing setting. In practice Type-3 pairings offer the most efficient
implementation choices, in terms of both bandwidth and computational efficiency.

Associated to pairings are the following computational assumptions, which we shall
refer to throughout this paper:

3



Assumption 1 (LRSW) With the notation above we let x̃, ỹ ∈ G2, with x̃ = g̃α,
ỹ = g̃β . Let Ox̃,ỹ(·) be an oracle that, on input of a value µ ∈ Zq , outputs a triple
A = (a, aβ , aα+µαβ) ∈ G3

1 for a randomly chosen a ∈ G1. Then for all probabilistic
polynomial time adversaries A, the quantity ν(η), defined as follows, is a negligible
function:

ν(η) := Pr[α← Zq;β ← Zq; x̃← g̃α; ỹ ← g̃β ; (µ, a, b, c)← AOx̃,ỹ(·)(x̃, ỹ) :

µ /∈ Q ∧ a ∈ G1 ∧ b = aβ ∧ c = aα+µαβ ]

where Q is the set of queries passed by A to its oracle Ox̃,ỹ(·).

This assumption was introduced by Lysyanskaya et al. [30], in the case G = G1 = G2

for groups that are not known to admit an efficient bilinear map. The authors showed
in the same paper, that this assumption holds for generic groups, and is independent
of the decisional Diffie-Hellman (DDH) assumption. However, it is always applied in
protocols for which the groups admit a pairing, and the above asymmetric version is the
version that we will require.

Assumption 2 (XDDH; SXDH) We say XDDH to hold in the pairing groups if DDH
is hard in G1, i.e., if given a tuple (g, gµ, gν , gω) for µ, ν ← Zq it is hard to decide
whether ω = µν mod q or random. We say SXDH holds if DDH is hard in both G1

and G2.

Note that neither XDDH nor SXDH hold in the case of Type-1 pairings. For the others
types of pairings XDDH is believed to hold, and only for Type-3 pairings SXDH is
believed to hold.

To demonstrate the non-frameability of our scheme we require an additional as-
sumption, which we call the symmetric Discrete Logarithm Assumption (SDLP).

Assumption 3 (SDLP) Given the tuple (gµ, g̃µ) ∈ G1 × G2 computing µ is a hard
problem.

This is a non-standard assumption which, however, implicitly underlies many asym-
metric pairing versions of protocols in the literature that are described in the symmetric
pairing setting only. Note that the input to the SDLP problem can always be checked to
be a valid input, as given (h, h̃) one can always check whether ê(g, h̃) = ê(h, g̃).

The above three assumptions are what we require to prove our scheme secure. How-
ever, for comparison with other schemes in the literature, we recap on the following two
problems, introduced in [9] and [10], respectively.

Assumption 4 (q-SDH) In a pairing situation as above, this assumption implies that
given a q-tuple (g̃γ , g̃γ

2

, . . . , g̃γ
q

) for some hidden value of γ, it is hard to output a pair
(g1/(γ+α), α) for some α ∈ Zq .

Assumption 5 (DLIN) Given a, b, c, aα, bβ , cγ ∈ G1, this assumption says it is hard
to determine whether α+ β = γ.
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CL Signatures. Our group signature scheme is based on the pairing-based Camenisch-
Lysyanskaya (CL) signature scheme [17] (Scheme A in their paper), which is provably
secure under the LRSW assumption. The scheme assumes three cyclic groups G1, G2,
and GT of prime order q = Θ(2η), with a pairing ê : G1 × G2 → GT , and two
generators g ∈ G1 and g̃ ∈ G2.

The secret key of the CL signature scheme consists of α, β ← Zq and the public key
is defined as (x̃, ỹ)← (g̃α, g̃β) ∈ G2

2. Computing a signature s ∈ G3
1 on a messagem ∈

Zq is done by choosing a← G1, calculating b← aβ and c← aα+mαβ , and setting
s← (a, b, c). Finally, a tuple (a, b, c) ∈ G3

1 is a valid signature on a message m ∈ Zq
if both ê(a, x̃) = ê(b, g̃) and ê(a, x̃) · ê(b, x̃)m = ê(c, g̃) hold.

Theorem 1 ([17]). The CL signature scheme A is existentially unforgeable against
adaptive chosen message attacks [29] under the LRSW assumption.

CL signatures are re-randomizable, i.e., given a valid signature (a, b, c) ∈ G3
1 on a

message m, the signature (ar, br, cr) ∈ G3
1 will also be valid for any r ∈ Z∗q . This

re-randomization property is central to our new group signature scheme.

Sigma Protocols. We will use a number of protocols to prove knowledge of discrete
logarithms (and, more generally, of pre-images of group homomorphisms) and prop-
erties about them. This section recaps some basic facts about such protocols and the
notation we will use.

Let φ : H1 → H2 be a group homomorphism with H1 and H2 being two groups of
order q and let y ∈ H2. We will use additive notation for H1 and multiplicative nota-
tion for H2. By PK{(x) : y = φ(x)} we denote the Σ-protocol for a zero-knowledge
proof of knowledge of x such that y = φ(x) [15, 18]. Σ-protocols for group homo-
morphisms are three-move protocols where the prover chooses rnd← H1 and sends
Comm← φ(rnd) to the verifier; the verifier sends back a random Cha← H1; the prover
then sends Rsp = rnd− Cha · x; and the verifier checks that φ(Rsp)φ(x)Cha = Comm.
It is well-known that basic Σ-protocols for group homomorphisms are honest-verifier
zero-knowledge proofs of knowledge of the pre-image of the group homomorphism.
There is a number of different ways to turn any honest-verifier Σ-protocol into a proto-
col that is full zero-knowledge with perfect simulation and negligible soundness error
(e.g., [23, 25]). We denote the full zero-knowledge variant of a Σ-protocol PK{. . .} as
FPK{. . .}.

The well-known Schnorr identification protocol is the special case PK{(x) : y =
gx}, i.e., φ(x) = gx where g is a generator of a subgroup of order q of Zp. Let φ1 :
H1 → H2 and φ2 : H1 → H2. We often write y1 = φ1(x1) ∧ y2 = φ2(x2) to
denote φ(x1, x2) := (φ1(x1), φ2(x2)) or y1 = φ1(x) ∧ y2 = φ2(x) to denote φ(x) :=
(φ1(x), φ2(x)).

The “signature” variant of a Σ-protocol is obtained by applying the Fiat-Shamir
heuristic [27] to the aboveΣ-protocol. We denote such a “signature-proof-of-knowledge”
on a message m ∈ {0, 1}∗ by, SPK{(x) : y = φ(x)}(m). That is, when we say that
Σ ← SPK{(x) : y = φ(x)}(m) is computed, we mean that a random rnd← H1 is
chosen and the pair Σ ← (Cha,Rsp) is computed where Cha← H(φ‖y‖φ(rnd)‖m),
Rsp← rnd − Cha · x and H : {0, 1}∗ → Zq is a suitable hash function. Note that
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Σ ∈ Zq × H1. We say that Σ = (Cha,Rsp) is valid with respect to y and φ if
Cha = H(φ‖y‖yChaφ(Rsp)‖m) holds; typically y and φ will be clear from the con-
text and we will just say that “Σ is valid.” We further note that a unique specification of
the statement (e.g., (x) : y = φ(x)) that SPK “proves” needs to be included as an argu-
ment to the hash function, i.e., here φ‖y, where φ stands for the description of the whole
algebraic setting. In the random oracle model [6], one can use the forking lemma [31,
5] to extract the secrets from these SPKs if correct care is taken that the prover can
indeed be efficiently rewound. Moreover, in the random oracle model one can simulate
SPKs for unknown secrets by choosing Cha,Rsp ← Zq at random and programming
the random oracle so thatH(φ‖y‖yChaφ(Rsp)‖m) = Cha.

3 Definitions

As mentioned in the Introduction, we propose a notion that builds a hybrid between
[7] and [11]. Consequently, our definitions describe a dynamic group signature scheme
with a combined role of Group Manager and Opener that obtains selfless anonymity,
traceability, and non-frameability.

3.1 Syntax

A group signature scheme consists of a set of users with a unique index i who can
produce signatures on behalf of the group. Initially users must interact with a trusted
party to establish a public key pair. Users can become Group Members via an interaction
with the Group Manager. After the interaction the user obtains a secret signing key that
she can use to produce signatures on behalf of the group. The Group Manager obtains
a piece of information that he can later use to identify signatures created by the user.
In addition, both parties obtain some piece of publicly available information, which
certifies the fact that the particular user has joined the group.

As remarked earlier, in our models we put more trust in the Group Manager by
requiring that he is also in charge of opening signatures. The syntax that we require is
as follows.

Definition 1. A group signature scheme GS extended by a PKI is given by a tuple

(GSetup,PKIJoin, (GJoinU ,GJoinM ),GSign,GVerify,GOpen,GJudge)

where:

1. GSetup is a setup algorithm. It takes as input a security parameter 1η and produces
a tuple (gpk , gmsk), where gpk is a group public key and gmsk is the Group
Manager’s secret key. To simplify notation we assume that gmsk always includes
the group public key. Note that the group public key contains system parameters,
which need to be checked by all entities not involved in there generation.

2. PKIJoin is an algorithm executed by a user to register with a certification authority
(CA). It takes as input the index of the user i and the security parameter 1η . The
output of the protocol is the key pair (usk[i],upk[i]) consisting of user secret key
and user public key or ⊥ in case of a failure. The user public key upk[i] is sent to
the CA, who makes it available such that anyone can get an authentic copy of it.
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3. GJoin = (GJoinM ,GJoinU ) is a two-party interactive protocol used to add new
users to the group. The input for the user is (i,usk[i], gpk), i.e., the index of the
user, the user secret key, and the group public key. The input for the Group Man-
ager is (i,upk[i], gmsk), i.e., the user index, the user public key, and the Group
Manager’s secret key.
As a result of the interaction, the user obtains her group signing key gsk[i], and the
Group Manager obtains some registration information reg[i] (which will later be
used to trace signatures of i). If the protocol fails, the output of both parties is set
to ⊥.

4. GSign is the algorithm users employ to sign on behalf of the group. It takes as
input an individual user signing key gsk[i] and the message m ∈ {0, 1}∗ to be
signed, and outputs a signature σ. We write σ ← GSign(gsk[i],m) for the process
of obtaining signature σ on m with secret key gsk[i].

5. GVerify is the signature verification algorithm. It takes as input (gpk ,m, σ), i.e.,
the group public key, a message and a group signature, and returns 0 if the signature
is deemed invalid and 1 otherwise.

6. GOpen is the algorithm for opening signatures. It takes as input (gmsk ,m, σ, reg),
i.e., the Group Manager’s secret key, a message, a valid group signature on the
message, and the registration information table reg, and returns a user index i ∈
[n] and a proof π that user i produced signature σ, or it returns ⊥, indicating that
opening did not succeed.
We assume that the opening algorithm, before outputting (i, π), always checks that
the user i is registered, i.e., that reg[i] 6= ⊥, and that the proof π passes the judging
algorithm (see the next item). If either of these checks fails, the opening algorithm
outputs ⊥.

7. GJudge is the judging algorithm. It takes as input a message m, a group signature
σ on m, the group public key gpk , a user index i, the user public key upk[i], and a
proof π and outputs 1 or 0, expressing whether the proof shows that user i created
signature σ or not.
We assume that the judging algorithm verifies the signature using the GVerify al-
gorithm on input gpk , m, and σ.

3.2 Security notions

In this section we give the security definitions that we require from group signature
schemes. We describe the oracles that are involved in our definitions, as well as the
restrictions that we put on their uses. These oracles use some shared global state of the
experiments in which they are provided to the adversary. In particular, at the time of
their use, the sets of honest and corrupt users are defined. Also the oracles have access
to the global information contained in upk. For honest users the oracles have access to
gsk and if the Group Manager is uncorrupted they also have access to reg. We assume
that at the beginning of the execution, the content of each entry in these arrays is set to
⊥ (uninitialized).

We consider a setting with n users divided (statically) into sets HU and DU of
honest and dishonest users, respectively. Even though our definitions appear to consider
static corruptions only, one can easily see (by taking an upper bound on the number
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of users for n and guessing the indices of “target” users upfront) that they actually
imply security in the dynamic case. However, the latter comes at the cost of losing a
factor n in reduction tightness for traceability and non-frameability, and of n2/2 for
anonymity. For some notions the adversaryA is actually a pair of algorithms (A0,A1);
we implicitly assume that A0 can pass state information to A1. Our security notions
make use of the following oracles:

– Ch(b, ·, ·, ·) is the challenge oracle for defining anonymity. It accepts as input a
triple formed from two identities i0, i1 ∈ HU and a message m, and returns a
signature σ∗ ← GSign(gsk[ib],m) under the signing key of user ib, where b is a
parameter of the experiment. This oracle can only be called once.

– SetUPK(·, ·) takes an input the index of a user i ∈ DU and a value upk. If reg[i] ≡
⊥ it sets the user’s public key upk[i]← upk. The oracle can only be called before
user i joins the group.

– GJoinUD(·) is an oracle that takes as input an honest user index i ∈ HU and exe-
cutes the user side of the join protocol for i, i.e., GJoinU (i,usk[i], gpk). The local
output of the protocol is stored in gsk[i]. This oracle can be used by an adversary
to execute the registration protocol with an honest user, the adversary playing the
role of the Group Manager (when the latter is corrupt).

– GJoinDM (·) is an oracle that takes as input the index of a corrupt user i ∈ DU
and simulates the execution of the join protocol for the (honest) Group Manager,
i.e., GJoinM (i,upk[i], gmsk). The local output of the protocol is stored in reg[i].
This oracle can be used by an adversary to execute the registration protocol with
the (honest) Group Manager on behalf of any corrupt user.

– GSign(·, ·) accepts as input pairs (i,m) ∈ HU ×{0, 1}∗ and obtains a signature on
m under gsk[i] if the user is not corrupt, and its signing key is defined.

– GOpen(·, ·) accepts as input a message-signature pair (m,σ) and returns the re-
sult of the function call GOpen(gmsk ,m, σ, reg). The oracle refuses to open the
signature attained through a call to the Ch oracle, i.e., σ ≡ σ∗.

Note that, depending on the precise group signature scheme, the oracles GJoinUD(·)
and GJoinDM (·) may require multi-stages, i.e., interaction between the oracle and the
adversary to complete the functionality. If this is the case we assume that these stages
are executed by the adversary in a sequential order, as if the oracles are a single stage.
Thus, we do not allow the adversary to interleave separate executions of the GJoin
protocol, or execute multiple of them in parallel.

Correctness. We define the correctness of a group signature scheme GS through a game
in which an adversary is allowed to requests a signature on some message by any of the
honest players. The adversary wins if either (1) the resulting signature does not pass the
verification test, (2) the signature is opened as if it were produced by a different user,
or (3) the proof produced by opening the signature does not pass the judging algorithm.
The experiment is detailed in Figure 1. We say that GS is correct if for any adversary
Pr[Expcorr

GS,A(η) = 1] is 0.
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Expcorr
GS,A(η)
HU ← {1, . . . , n} ; DU ← ∅
(gpk , gmsk)← GSetup(1η)
For i ∈ HU

(usk[i],upk[i])← PKIJoin(i, 1η)
〈reg[i];gsk[i]〉 ← 〈GJoinM (i,upk[i], gmsk);GJoinU (i,usk[i], gpk)〉

(i,m)← AGSign(·,·),GOpen(·,·)(gpk)
If i 6∈ HU then return 0
σ ← GSign(gsk[i],m)
If GVerify(gpk ,m, σ) = 0 then return 1
(j, π)← GOpen(gmsk ,m, σ, reg)
If i 6= j or GJudge(m,σ, gpk , i,upk[i], π) = 0 then return 1
Return 0

Expanon-b
GS,A (η)
DU ← A0(1

η)
HU ← {1, . . . , n} \ DU
(gpk , gmsk)← GSetup(1η)
For i ∈ HU

(usk[i],upk[i])← PKIJoin(i, 1η)
〈reg[i];gsk[i]〉 ← 〈GJoinM (i,upk[i], gmsk);GJoinU (i,usk[i], gpk)〉

b′ ← ACh(b,·,·,·),SetUPK(·,·),GJoinDM (·),GSign(·,·),GOpen(·,·)
1 (gpk)

Return b′

Exptrace
GS,A(η)
DU ← {1, . . . , n} ; HU ← ∅
(gpk , gmsk)← GSetup(1η)

(m,σ)← ASetUPK(·,·),GJoinDM (·),GOpen(·,·)(gpk)
If GVerify(gpk ,m, σ) = 1 and GOpen(gmsk ,m, σ, reg) = ⊥ then return 1
Else return 0

Expnf
GS,A(η)

(DU , gpk)← A0(1
η)

HU ← {1, . . . , n} \ DU
For i ∈ HU

(usk[i],upk[i])← PKIJoin(i, 1η)

(i,m, σ, π)← ASetUPK(·,·),GJoinUD(·),GSign(·,·)
1 (1η)

If i 6∈ HU or GVerify(gpk ,m, σ) = 0 then return 0
If σ was oracle output of GSign(i,m) then return 0
If GJudge(m,σ, gpk , i,upk[i], π) = 0 then return 1
Return 0

Fig. 1. Experiments for defining the correctness and security of a group signature scheme. The
particular restrictions on the uses of the oracles are described in Section 3.2.

Anonymity. Anonymity requires that group signatures do not reveal the identity of the
signer. In the experiment that we consider, the adversary controls all of the dishonest

9



users. The adversary has access to a challenge oracle Ch(b, ·, ·, ·), which he can call
only once with a triple (i0, i1,m), where i0 and i1 are the indices of two honest signers,
and m is some arbitrary message. The answer of the oracle is a challenge signature
σ∗ ← GSign(gsk[ib],m). During the attack the adversary can (1) add corrupt users to
the group of signers (via the SetUPK(·, ·) and GJoinM (·) oracles), (2) require signatures
of honest users on arbitrary messages via the GSign oracle, and (3) require opening of
arbitrary signatures (except the signature σ∗ obtained from the challenge oracle) via the
GOpen oracle. The experiment is described in Figure 1. For any adversary that obeys
the restrictions described above we define its advantage in breaking the anonymity of
GS by

Advanon
GS,A(η) = Pr[Expanon-1

GS,A (η) = 1]− Pr[Expanon-0
GS,A (η) = 1]

We say that the scheme GS satisfies the anonymity property if for any probabilistic
polynomial-time adversary, its advantage is a negligible function of η.

Traceability. Informally, traceability requires that no adversary can create a valid sig-
nature that cannot be traced to some user that had already been registered. We model
the strong but realistic setting where all of the signers are corrupt and work against the
group manager. In the game that we define, the adversary can add new signers using ac-
cess to the GJoinDM oracle and can request to reveal the signers of arbitrary signatures
via the GOpen oracle. The goal of the adversary is to produce a valid message-signature
pair (m,σ) that cannot be opened, i.e., such that the opening algorithm outputs ⊥. For
any adversary A we define its advantage in breaking traceability of group signature
scheme GS by:

Advtrace
GS,A(η) = Pr[Exptrace

GS,A(η) = 1]

We say that GS is traceable if for any probabilistic polynomial-time adversary, its ad-
vantage is a negligible function of the security parameter.

Non-frameability. Informally, non-frameability requires that even a cheating Group
Manager cannot falsely accuse an honest user of having created a given signature. We
model this property through a game that closely resembles that for traceability. The
difference is that the adversary has the Group Manager’s secret key (who is corrupt).
During his attack the adversary can require honest users to join the group via the oracle
GJoinUD, and can obtain signatures of honest users through oracle GSign. The goal of
the adversary is to produce a signature and a proof that this signature was created by an
honest user (who did not actually create the signature). For any adversary A we define
its advantage against non-frameability of group signature scheme GS by

Advnf
GS,A(η) = Pr[Expnf

GS,A(η) = 1]

We say that scheme GS is non-frameable if for any probabilistic polynomial-time ad-
versary, its advantage is a negligible function of η.
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Remarks. The security definitions that we present depart from the more established
ones in several ways that we describe and justify now. First, we repeat that even though
our definitions appear to consider static corruptions only, they imply security in a dy-
namic setting.

Second, we borrow the selfless anonymity notion from [11] that departs from the one
of [4] in that it does not allow the adversary access to the signing keys of the two signers
involved in the query to the challenge oracle. Thus, we cannot grant the adversary access
to the secret information of any honest user. This is a natural, mild restriction which, as
discussed in the introduction, may lead to significantly more efficient schemes.

Third, our notion of traceability seems different than the notion of traceability of [4].
Indeed, according to our definition an attacker that creates a signature that opens as
some honest identity is not considered an attack! We look at this scenario as a framing
attack, however, and it is therefore covered under our non-frameability notion, a notion
that was not modeled in [4].

Fourth, a detailed comparison of our security notion with the notion of [7] reveals
that we do not provide a read and write oracle for the registration table reg. This follows
from the fact that we combine the Group Manager with the opening authority. Thereby,
the entities cannot be corrupted individually, thus, the adversary has either full access
(i.e., when the Group Manager is corrupted) or he does have no access.

Group Signatures with Verifier-Local Revocation. Let us discuss the relation of our
scheme and definition with the group signature scheme with verifier-local revocation
by Boneh and Shacham [11]. They define a group signature scheme with verifier-local
revocation (VLR) as a scheme that has the additional feature of a revocation list. Es-
sentially, VLR-verification of a group signature contains, in addition to the signature
verification as described before, a check for each item in the revocation list whether
or not it relates to the group signature at hand. If it does, then the signature is deemed
invalid.

The scheme and definitions of Boneh and Shacham (1) do not have an open (or
tracing) procedure and (2) assume that the group manager is fully trusted. The latter
makes sense because if there is no open procedure, it is not possible to falsely blame
a user for having produced a specific group signature. However, Boneh and Shacham
point out that any VLR scheme has an implicit opening algorithm: one can make a
revocation list consisting of only a single user and then run the VLR group signature
verification algorithm. Thus, the verification fails only in the case where the user who
generated the signature is (the only) entity in the revocation list, which leads to her
identification. This shows that we can convert a VLR-scheme into a group signature
scheme with an Opener, however, we stress that the obtained scheme does not satisfy
non-frameability.

We now point out that the opposite direction also works: for a sub-class of group sig-
nature schemes according to our definition one can construct a group signature scheme
with verifier local revocation. The subclass is the schemes for which the GOpen algo-
rithm takes as input (gpk ,m, σ, reg) instead of (gmsk ,m, σ, reg) as per our definition
(i.e., it does not need to make use of the group manager’s secret key). We note that
the scheme we propose in this paper falls into this sub-class. Now, the idea for obtain-
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ing a VLR group signature scheme is as follows. The new key generation consists of
the GSetup, PKIJoin, and (GJoinU ,GJoinM ) where the group manager runs the users’
parts as well and then just hands them their keys. The VLR group signing algorithm is
essentially GSign. To revoke user i, the group manager adds reg[i] to the revocation
list. Finally, the VLR-verification consist of GVerify and GOpen, i.e., it accepts a sig-
nature if GVerify accepts and if GOpen fails for all entries reg[i] in the revocation list.
The security notions for VLR group signatures, namely selfless anonymity and trace-
ability, follow from our notions of anonymity and traceability for group signatures. We
do not give the precise formulation, but we note that a security model for VLR dynamic
group signatures follows by combining our dynamic security model above, with the
static VLR model from [11]. We also note that VLR group signatures do not provide
forward-anonymity: a new revocation list can also be used on old signatures.

4 Our Group Signature Scheme

Overview of Our Scheme. Our group signature scheme is based on two special prop-
erties of CL signatures, namely on their re-randomizability and on the fact that the
signature “does not leak” the message that it authenticates. Intuitively, a user’s group
signing key is a CL signature on a random message ξ that only the user knows. To
create a group signature for a message m, the user re-randomizes the CL signature and
attaches a signature proof of knowledge of ξ on m.

If non-frameability were not a requirement, we could simply let the Group Manager
choose ξ, so that he can open group signatures by checking for which of the issued val-
ues of ξ the re-randomized CL signature is valid. To obtain non-frameability, however,
the Group Manager must not know ξ itself. Hence, in our scheme ξ is generated jointly
during an interactive GJoin protocol between the user and the Group Manager. Essen-
tially, this protocol is a two-party computation where the user and the Group Manager
jointly generate ξ, a valid CL signature on ξ, and a key derived from ξ that allows the
Group Manager to trace signatures, but not to create them.

System Specification. We now present the algorithms that define our efficient group
signature scheme. We assume common system parameters for a given security param-
eter η. Namely, we assume that an asymmetric pairing is fixed, i.e., three groups G1,
G2, GT of order q > 2η with an efficiently computable map ê : G1 × G2 → GT , to-
gether with generators g and g̃ of G1 and G2, respectively. Further, two hash functions
H : {0, 1}∗ → Zq , G : {0, 1}∗ → Zq are defined.

GSetup(1η): The Group Manager chooses random α, β ← Zq , and computes x̃← g̃α

and ỹ ← g̃β . It then sets the group public key of the scheme to gpk ← (x̃, ỹ) and
the group secret key to gmsk ← (α, β).

PKIJoin(i, 1η): The CA certifies public keys of a digital signature scheme as defined
in Section 2. The user generates (upk[i],usk[i])← DSKeyGen(1η) and sends
upk[i] to the CA for certification.
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GJoin = (GJoinM (i,upk[i], gmsk),GJoinU (i,usk[i], gpk)): When a user i wants to
join the group, she must have already run the PKIJoin algorithm. Then she runs the
following protocol with the Group Manager. We assume that this protocol is run
over secure channels and, for simplicity, that the parties only run one instance at a
time. We also assume that if a verification for a party fails, the party informs the
other party about the failure and the protocol is aborted.
1. The Group Manager chooses a random κ← Zq , computes t← G(κ), and sends
t to the user.

2. The user i chooses τ ← Zq , computes s← gτ , r̃ ← x̃τ , k ← ê(g, r̃), as well
as σ̄ ← DSSign(usk[i], k), sends (s, r̃, σ̄) to the Group Manager and executes
FPK{(τ) : s = gτ ∧ r̃ = x̃τ} with the Group Manager.

3. The Group Manager uses DSVerify(upk[i], ê(g, r̃), σ̄) to verify the signature.
If it verifies correctly he computes z ← s·gκ and w̃ ← r̃ ·x̃κ, stores (w̃, r̃, κ, σ̄)
in reg[i], chooses ρ← Zq , computes a← gρ, b← aβ , and c← aα ·zραβ , and
sends (a, b, c, κ) to the user. In addition, he executes

FPK{(α, β, ρ, γ) : c = aαzγ ∧ a = gρ ∧ x̃ = g̃α ∧ ỹ = g̃β ∧ 1 = bα/gγ}

with her, where γ = ραβ. Note that this proof allows the user to verify that
α, β 6= 0.

4. The user computes ξ ← τ + κ mod q, and checks whether t = G(κ). She also
verifies ê(a, ỹ) = ê(b, g̃) and, if the verification is successful, stores the entry
gsk[i]← (ξ, (a, b, c)).

Remarks: The value of ω stored in reg[i] allows the Opener to identify a user
within the group signature scheme. In addition, the Opener can provably attribute
this ω to k = ê(g, r̃). Consequently, a group signature can be provably attributed
to k. By the unforgeability of the external signature scheme, the signature on k
allows to attribute a group signature to a user public key upk[i]. Furthermore,
the FPK protocol that the Group Manager and the user execute in Step 3 of the
protocol indeed proves that c was computed correctly w.r.t. a, b, x̃, and ỹ. To this
end, note that because of ê(a, ỹ) = ê(b, g̃), we know that b = aβ and thus b = gβρ.
Subsequently, from 1 = bα/gγ we can conclude that γ = ραβ and hence that c
was computed correctly by the Group Manager.

GSign(gsk[i],m): Let a user i with signing key gsk[i] = (ξ, (a, b, c)) sign the mes-
sage m. She first re-randomizes the signature by choosing ζ ← Zq and computing
d← aζ , e← bζ , and f ← cζ , and then computes the SPK

Σ ← SPK{(ξ) :
ê(f, g̃)

ê(d, x̃)
= ê(e, x̃)ξ}(m)

proving that she knows the “message” for which (d, e, f) is a valid CL-signature.
Finally, she outputs σ ← (d, e, f,Σ) ∈ G3

1 × Z2
q as the group signature on m.

GVerify(gpk ,m, σ): To verify a signature σ = (d, e, f,Σ) on the message m, the veri-
fier first checks that ê(d, ỹ) = ê(e, g̃), where g̃, ỹ are retrieved from gpk . Secondly,
the verifier checks that the proof Σ is valid. If either of the checks fail, output 0;
otherwise output 1.
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GOpen(gmsk ,m, σ, reg): Given signature σ = (d, e, f,Σ) on m, the Group Manager
verifies the signature using GVerify. Then, for all entries reg[i] = (w̃i, r̃i, κi, σ̄i)
he checks whether ê(f, g̃) = ê(d, x̃) · ê(e, w̃i) holds. For the w̃i where the equation
holds, the Group Manager retrieves κi and σ̄i, computes ki ← ê(g, r̃i) and the SPK

Π ← SPK{(w̃i, κi) :
ê(f, g̃)

ê(d, x̃)
= ê(e, w̃i) ∧ ki =

ê(g, w̃i)

ê(g, x̃)κi
} ,

and outputs (i, π = (ki, σ̄i, Π)).
Note that φ(w̃) := (ê(e, w̃), ê(g, w̃)) is a group homomorphism from G2 to GT ×
GT and therefore π can be obtained from applying the Fiat–Shamir transform to the
underlying Σ-protocol as discussed earlier. Also note that the opening operation is
linear in the number of users in the system, but we consider this reasonable as in
most practical applications opening is a rather exceptional operation performed by
a resourceful Group Manager.

GJudge(gpk ,m, σ, i,upk[i], π): The signature of the external signature scheme is ver-
ified using the signature verification algorithm DSVerify(upk[i], k, σ̄). If the signa-
ture verifies, use input gpk , m, σ = (d, e, f,Σ), and π, to output 1 if algorithm
GVerify(gpk ,m, σ) = 1 and Π is valid. Otherwise output 0.

Remarks. Following the explanations in Section 3.2, we can build a VLR scheme as
follows. Transformation of the key generation and the signing algorithm are straight-
forward. To revoke a user i, the Group Manager publishes the corresponding entry w̃i
from reg[i] to the revocation list rlist. Finally, we modify the GVerify algorithm so
that it checks not only that ê(d, ỹ) = ê(e, g̃) and the proof Σ is valid, but also whether

ê(f, g̃) = ê(d, x̃) · ê(e, w̃i)

for any entry w̃i in rlist. If this is the case, it rejects the signature. Thus, the verifier
performs what has been a part of the tasks of the Opener in our basic group signature
scheme.

5 Security Results

Verifying our scheme’s correctness is not hard from its description (and the comments
we made there). We now present our results that the scheme satisfies our anonymity,
traceability, and non-frameability requirements. Proofs of the following theorems can
be found in Appendix B.

Theorem 2. In the random oracle model the group signature scheme is anonymous
under the XDDH and the SDLP assumptions.

Theorem 3. In the random oracle model the group signature scheme is traceable under
the LRSW assumption.

Theorem 4. In the random oracle model the group signature scheme is non-frameable
under the SDLP assumption and the unforgeability of the underlying digital signature
scheme.
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Security of our scheme as a VLR group signature scheme, in the random oracle
model, follows from the above theorems.

6 Comparison With Previous Schemes

We compare efficiency of several schemes with respect to (1) signature size, (2) com-
putational costs of signature generation, and (3) computational costs of signature veri-
fication. Let us begin with a detailed discussion of our scheme. The signature algorithm
outputs the randomized CL signature (d, e, f), as well as the data needed to verify the
signature proof of knowledge Σ. When looking at Σ in more detail, we can set

A← ê(f, g̃)

ê(d, x̃)
=

(
ê(c, g̃)

ê(a, x̃)

)ζ
and B ← ê(e, x̃) = ê(b, x̃)ζ ,

then the SPK is to prove knowledge of ξ such that A = Bξ. Applying our description
of SPK’s obtained from Sigma protocols (see Section 2), the signer needs to compute,
for random rnd← Zq ,

Comm← Brnd, Cha← H(φ‖A‖Comm‖m), Rsp← rnd− Cha · ξ (mod q).

The SPK is then given by the pair (Cha,Rsp), and hence verification is performed by
checking whether Cha = H

(
φ‖A‖(BRsp ·ACha)‖m

)
. Thus, a signature consists of

three elements in G1 (d,e, and f ) and two elements in Zq (Cha and Rsp).
We now turn to computational cost, where by the following type of expression 1 ·

P 2 + 2 · P + 3 · G2
T + 1 · G1 we denote a cost of one product of two pairing values,

two pairings, three multi-exponentiations in GT with two terms, and one exponentiation
in G1. Unfortunately, it is very hard to assign conversion factors between the different
operations. The reason being that such factors heavily depend, for example, on the
elliptic curve underlying a scheme, on the security parameters, or even optimisation
of the implementation. Still, to provide a better readability we sort the operations with
presumably decrementing complexity and cost.

With the above formulation of the required SPK, the cost for signing would be
2 · GT + 3 · G1, since ê(a, x̃), ê(b, x̃) and ê(c, g̃), can be precomputed. Now we want
to optimize the computation of the hash to further shorten the computation time of
signing. Keep in mind that doing so, would require corresponding changes to the proofs
as well. In our case, the change for optimization actually simplifies the proof. Thus,
if we adapt the computation of the challenge to include d, e and f instead of A, i.e.,
Cha← H(φ‖d‖e‖f‖Comm‖m), the signer does not need to computeA. Consequently,
the cost for signing accounts to 1 · GT + 3 · G1. Note that this slight change in the
computation of the challenge not only benefits the signer but also the verifier of the
signature.

Verification in our scheme requires to check whether ê(d, ỹ) = ê(e, g̃) holds. This
is computed as one product of two pairings, which is more efficient than computing
two pairings separately. In addition, verification consists of verifying the SPK, which
amounts to 1 ·P 2 + 1 ·G2

1 + 1 ·G1, assuming the calculation of the verification value as
ê(f c, g̃)/ê(dcesξ , x̃). The total cost of verification of a signature consequently amounts
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to 2·P 2+1·G2
1+1·G1. Note that we use here the adapted computation of the challenge

as described before. We apply similar changes to the calculation of the challenge value
for all schemes in our comparison to reduce the required numbered of computations. In
addition, we assume pre-computation of pre-known values.

We now compare our scheme with the current best schemes w.r.t. signature length.
We only consider pairing-based schemes as RSA-based schemes need much larger
groups to attain the same security level. Consequently, we can focus on just a small
number of schemes.

– The CL scheme from [17] shares many similarities with our own. The basic security
is based on the LRSW and the DDH assumption in GT . The basic construction is in
the case of Type-1 pairings, and combines the CL-signature scheme with a Cramer-
Shoup encryption. It is this Cramer-Shoup based component that creates the main
divergence from our own scheme. Translating the construction to the Type-2 or
Type-3 setting we obtain a more efficient construction based on the LRSW and the
XDDH assumption.

– The DP scheme of Delerablée and Pointcheval [26] is based on the XDDH assump-
tion and q-SDH. It is shown to provide full-anonymity under the XDDH assumption
w.r.t. the so-called CCA attack, which is achieved by combining two ElGamal en-
cryptions. The scheme is also shown to provide full-traceability under the q-SDH
assumption.

– The BBS group signature scheme [10] is similar to the DP scheme [26]. How-
ever, it provides full-anonymity under the DLIN assumption only with respect to
a so-called CPA attack (i.e., the adversary is not allowed to make any Open oracle
queries). As we strive to provide a comparison between systems that have similar
security guarantees, we consider a variant of the BBS scheme that we call BBS*
and describe in Appendix A..

We summarize the efficiency discussion in Table 1. Note that all schemes provide
anonymity w.r.t. the CCA attack, are based on the random oracle model, and provide
strong exculpability. As pointed out in the discussion before, they use slightly differ-
ent underlying assumptions, namely q-SDH or LRSW. A further difference is that our
scheme, as opposed to the schemes we compare against, combines Group Manager and
Opener into one entity.

Scheme Size of Sig. Sign Cost Verification Cost
G1 Zq G5

T G3
T G2

T GT G2
1 G1 P 2 P G3

T G2
2 G4

1 G3
1 G2

1 G1

Ours 3 2 1 3 2 1 1
CL 7 4 1 1 11 2 1 2 2 1
DP 4 5 1 1 6 1 1 1 1 2

BBS* 4 5 1 3 5 1 1 1 4

Table 1. Comparison of signature lengths, signature generation costs and signature ver-
ification costs.
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Table 1 shows that our scheme compares favourably with the other schemes, espe-
cially in terms of signature length and the signature generation operation. In particular,
it reduces the signature size by almost a factor of two. Comparing verification costs
shows all schemes on a similar level. Note that short signatures and small signature
computation costs are particularly interesting as there are many scenarios where the
group signature has to be generated and communicated by a resource constrained de-
vice.

Verification costs. To have an conclusive comparison of the verification costs, it is
essential to know the exact cost for each operation. This follows from the fact that there
exist various possibilities to verify a SPK proof. For example, verification of the BBS*
(as described in Appendix A) SPK proof requires the calculation of the following value(

ê(u, v)

ê(T3, w)

)c
· ê(T3, v)xê(h, v)y

ê(e, w)r ê(e, v)δ

where u, v, w, h, and e are pre-known. We can calculate this value as

ê(ucT x3 h
ye−δ, v)

ê(T c3 e
r, w)

or as ê(T3, v
xw−c)

ê(u, v)cê(h, v)y

ê(e, w)r ê(e, v)δ
,

where the first computation amounts to 1 · P 2 + 1 · G4
1 + 1 · G2

1 operations and the
second one accounts for 1 · P + 1 · G4

T + 1 · G2
2 operations. We can see that a direct

comparison of those different methods of computing the same value is very hard. Such
difficulties, however, mostly arise in the verification equation and make the verification
costs less transparent. Still, the numbers in Table 1 show that all compared schemes
require similar computation efforts in verification.

VLR-Variant. We end this section by considering our VLR group signature variant
as explained in Section 3.2. This version of our scheme has the same signature size as
above, namely 3·G1+2·Zq . The signing cost is also the same, namely 1·GT+3·G1, but
verification includes the opening computations for all revoked users, thus verification
requires time

|rlist| · P + 3 · P 2 + 1 ·G2
1 + 1 ·G1.

As noted previously the BS VLR group signature scheme from [11] requires Type-
4 pairings to implement it, as is explained in [32]. Security in their scheme is based
on the q-SDH and DLIN assumptions, with DLIN being required to prove selfless-
anonymity. A signature requires two elements in G1 and five elements in Zq and this
can be computed in 1 · P 2 + 2 · G2

1 + 4 · G1 or 1 · G3
T + 1 · G2

1 + 3 · G1. Verification
costs depend on the size of the revocation list |rlist|, and are given by

(1 + |rlist|) · P + 1 · P 2 + 1 ·G3
1 + 3 ·G2

1.

Those times split up into signature verification costs (1 · P 2 + 1 · G3
1 + 3 · G2

1) and
revocation check costs ((1 + |rlist|) · P ). These are slightly faster times than those
quoted in [11] as we assume an efficient Type-4 representation of G2 is used. Note
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we have not counted the cost of hashing into G2 which could be expensive depending
on the precise elliptic curve chosen. However, we note that our scheme is significantly
more efficient in terms of bandwidth and computational resources than that of [11],
even before considering the time needed to hash onto the Type-4 G2 group in the BS
scheme.
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23. Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie. Efficient zero-knowledge proofs
of knowledge without intractability assumptions. In Hideki Imai and Yuliang Zheng, editors,
PKC 2000, volume 1751 of LNCS, pages 354–372. Springer, January 2000.

24. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing,
33(1):167–226, 2003.
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A Sketch of BBS*

This variant of the BBS group signature scheme is based on remarks by Boneh et
al. [10] (general scheme and non-frameability) and [33] (CCA anonymity). In partic-
ular, the variant we consider attains exculpability by an interactive protocol between
Group Manager and user for the joint computation of a triple (Ai, xi, yi) such that
Axi+γi hyi = u. Here yi is secret to the user, γ is the Group Manager’s secret, and
u, h ∈ G1 are public parameters. Given that all schemes we compare are secure un-
der XDDH, we employ standard Cramer-Shoup encryption [24] instead of the linear
Cramer-Shoup encryption proposed by Shacham [33] which is secure even if XDDH
does not hold.

In more detail, the setup and key generation algorithms produce u, v ← G1 and
c← uχ1vχ2 , d← uµ1vµ2 , as well as e← vι. As a result of the join protocol, each user
gets a tuple (Ai, xi, yi) fulfilling Axi+γi hyi = u and the Group Manager uses his secret
value γ to compute w ← vγ . The group public key consists of (u, v, c, d, e, h, w) and
the secret key of the Opener contains (χ1, χ2, µ1, µ2).

To sign a message, user i chooses r ← Zq , δ ← r · xi, and computes T1 ← ur,
T2 ← vr, T3 ← erAi, T4 ← crdrH(T1,T2,T3). Moreover, she computes the proof

Σ ← SPK{(r, xi, δ, yi) : T1 = ur ∧ T2 = vr ∧ T4 = crdrH(T1,T2,T3)∧

1 = T xi1 u−δ ∧ ê(u, v)

ê(T3, w)
=
ê(T3, v)xi ê(h, v)yi

ê(e, w)r ê(e, v)δ
} ,

and outputs the signature σ ← (T1, T2, T3, T4, Σ).
The verification of a signature consists of checking the validity of the proof Σ.

Opening a signature can be performed by the Opener using his secret key to decrypt the
Cramer-Shoup encryption of the value Ai.
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B Security Proofs

B.1 Proof of Theorem 2

We show that a simulator B, given an adversary A having a non-negligible advantage
in the anonymity game Advanon

GS,A(η) ≥ ε, can solve a DDH problem in G1. We denote
the DDH challenge given to B as (g0, g1, g2, g3) = (g, gµ, gν , gω), where B will output
a guess δ′ indicating whether ω ← µν, i.e., δ = 1, or ω ← Zq , i.e., δ = 0.

The proof idea is to let honest users sign with signatures on a secret value ξi = µri,
where ri ← Zq . More concretely, B generates (gpk , gmsk) in the normal way and cre-
ates a tuple (ai, bi, ci) = (gρi , aβi , a

α+αβµri
i ) for each honest user i. When A asks the

simulator for a challenge signature, B uses its knowledge of gmsk and gsk[i],∀i ∈ HU
to create a signature of the form (d∗, e∗, f∗) = (gν , gνβ , gνα(gω)αβri). This consti-
tutes a valid group signature for a user with ξi = µri and randomization parameter
ν, assuming B has been given a DDH tuple with ω = µν. Consequently, A only has
an advantage in solving the anonymity game, if the DDH challenge was a DDH tuple.
Otherwise, A does not gain any information from the given signature.

In more detail, given the groups G1, G2 and GT , B retrieves the sets HU ,DU ⊆
{1, . . . , n} from A. He uses g ← g0, selects a generator g̃ ∈ G2 as well as α, β ← Zq ,
and computes x̃← g̃α and ỹ ← g̃β . Then, he sets the secret key of the group manager
to gmsk ← (α, β) and the group public key gpk ← (g, g̃, x̃, ỹ), which he supplies toA.

Then, the simulator B generates a PKI key pair (usk[i],upk[i])← PKIJoin(i, 1η)
for all honest users i ∈ HU . B chooses ρi, ri ← Zq and calculates their group signing
key as (ai, bi, ci) = (gρi0 , a

β , aαgρiαβri1 ). Note, that this tuple has the same distribution
as the one specified by the protocol in Section 4. Moreover, B chooses a random ki ∈
GT and computes the signature σ̄i ← DSSign(usk[i], ki), which is distributed as in the
proposed scheme. He stores (ai, bi, ci, ri, ki, σ̄i) in gsk[i].

Then B runs A and simulates the oracle queries as follows:

– G(κ): B maintains a list LG of each previous random oracle response t to the cor-
repsonding query κ. It returns t to each query κ, assigning a fresh random value
t← {0, 1}` if (κ, t) is undefined.

– H(S): B maintains a list LH of previous random oracle responses storing (S,Cha).
It returns Cha to each query S, assigning a fresh random value Cha← {0, 1}` if
(S,Cha) is undefined.

– SetUPK(i, upk): B executes the role of the CA and publishes upk[i]← upk. Note
that everyone can get an authentic copy of upk (which can be achieved by letting
the simulator create a signature on the user public key using the CA’s public key).

– GJoinDM (i): For dishonest users i ∈ DU , B simulates the Group Manager’s side
of the protocol as prescribed in the scheme in Section 4 using the knowledge of
gmsk . The simulator stores the local output (w̃, r̃, κ, σ̄) in reg[i].

– GSign(i,m): Given user i ∈ HU and a message m from A, B retrieves gsk[i] =
(ai, bi, ci, ri, ki, σ̄i).
It chooses ζ ← Zq to re-randomize the group signing key to obtain (d, e, f) =

(aζi , b
ζ
i , c

ζ
i ). By programming the random oracleH(·), B can simulate the signature

of knowledge Σ and returns σ = (a, b, c,Σ) to A. He adds (i,m, σ) to a list sgn.
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– GOpen(m,σ): As the signature can originate from an honest or a dishonest user,
the simulator distinguishes two cases.
1. If the signature stems from a dishonest user, it can be opened and the proof π

created using the information from reg as in the real scheme.
2. In case the signature was created on the behalf of an honest user, then either σ

is a previous output of the GSign(·, ·) oracle produced by B, or it is a forgery
produced byA. The latter case is excluded by the non-frameability property of
Theorem 4. In the former case, B can simply look up the corresponding user i
from the list sgn using the message m and σ, and look up the corresponding
tuple gsk[i] = (ai, bi, ci, ri, ki, σ̄i). Then, by programming the random oracle
H(·) B simulates a signature of knowledge

Π ← SPK{(w̃i, κ) :
ê(f, g̃)

ê(d, x̃)
= ê(e, w̃i) ∧ ki =

ê(g, w̃i)

ê(g, x̃)κ
} .

He sends (i, π = (ki, σ̄, Π)) to A.
– Ch(·, i0, i1,m): First, B chooses b← {0, 1} and looks up the group signing key
gsk[ib] = (aib , bib , cib , rib , kib , σ̄ib). Secondly, he constructs

(d∗, e∗, f∗)← (g2, g
β
2 , g

α
2 g

αβrib
3 ) .

Assuming that the given DDH challenge is a DDH tuple, i.e., δ = 1, implies f∗ =

g
αν+αβνµrib
0 , which has the same distribution compared to a real signature tuple. If
δ = 0, f∗ is uniformly distributed in G1, independent of the choice of b. Finally, B
simulates the signature of knowledge Σ by programming the random oracleH(·).

At the end of its execution, the adversary A will output a guess b′. The simulator B
outputs δ′ = 1 if the adversary A output γ′ = γ, and outputs δ′ = 0 otherwise. We
calculate the advantage of B in solving the DDH challenge as

AdvXDDHB = Pr[δ′ = 1|δ = 1]− Pr[δ′ = 1|δ = 0].

When δ = 0, f∗ is a uniformly distributed value in G1 independent of b, so that A
outputs b′ = b with probability Pr[b′ = b|δ = 0] = 1

2 . As B guesses δ′ = 1 when
b′ = b, we get:

Pr[δ′ = 1|δ = 0] =
1

2
.

If δ = 1 then the challenge signature is identically distributed as in a real attack sce-
nario. Due to B’s choice of δ′ we see that Pr[δ′ = 1|δ = 1] = Pr[b′ = b|δ = 1], which
stands for the adversary A winning the anonymity game. Thus,

Pr[b′ = b|δ = 1] =
1

2

(
Pr[Expanon-1

GS,A (η) = 1] + Pr[Expanon-0
GS,A (η) = 0]

)
=

Advanon
GS,A(η) + 1

2
,

lets us conclude that:
AdvXDDHB ≥ ε

2
.
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B.2 Proof of Theorem 3

We prove that given any adversary A winning the traceability game, one can construct
an adversary B breaking the existential unforgeability of CL signatures. The theorem
then follows from the security proof of CL signatures [17].

In a first step, we transform adversary A into an adversary A′ to which the general
forking lemma due to Bellare and Neven [5] can be applied; we recall the lemma in
Appendix C. The lemma will then yield a forking algorithm FA′ that produces two
different but related untraceable group signatures, based on which B can compute a
forgery for the CL signature scheme.

Given adversary A, consider the following algorithm A′. On input (x̃, ỹ) and ran-
dom tape R, it runs A on input gpk = (x̃, ỹ) and random tape R′ derived from R,
simulating its oracle queries as follows while maintaining a counter ctr and lists LG ,
LH, and an associative array reg:

– G(κ): A′ looks up a tuple (κ, t) in the list LG and returns t; if no such tuple is
found, it chooses a random value t← {0, 1}` and adds (κ, t) to LG .

– H(S): A′ looks up a tuple (S, j,Cha) in the list LH and returns Cha. If no such
tuple is found, it increases ctr , chooses a random value Cha← {0, 1}` and adds
(S, ctr ,Cha) to LH.

– SetUPK(i, upk): A′ sets upk[i]← upk as the certified public key associated to
user i.

– GJoinDM (i): A′ chooses κ← Zq , computes t← G(κ), and sends t to A. After
receiving (s, r̃, σ̄), A′ rewinds A to extract τ from the FPK{(τ)}; when it fails,
which only happens with probability of the knowledge error 1/q, A′ halts with
output (0, ε). Otherwise, it computes ξ ← τ + κ mod q and queries its signing
oracle for a CL signature (a, b, c) on message ξ. It then sends (a, b, c, κ) to A and
uses the zero-knowledge simulator to simulate FPK{(α, β, ρ, γ)}, which it can do
without any probability loss due to the perfect zero-knowledge property. Finally, it
saves the tuple (w̃ ← x̃ξ, r̃, κ, σ̄) in reg[i].

– GOpen(m,σ): If GVerify(gpk ,m, σ) = 0 then A′ returns ⊥. Else, it parses σ as
(d, e, f,Σ) and looks for a tuple (w̃, r̃, κ, σ̄) ∈ join such that ê(f, g̃) = ê(d, x̃) ·
ê(e, w̃). If such a tuple is found, it constructs a proof π using values w̃, r̃ and κ as
in the real GOpen algorithm and returns (i, (k, σ̄, π)).

When A outputs its forgery (m,σ = (d, e, f, (Cha,Rsp)) we distinguish two cases de-
pending on the validity of a forgery. If the forgery is invalid, meaning that GVerify(gpk ,
m,σ) = 0 or σ can be opened by the procedure described in the GOpen oracle using
one of the w̃ values in join, then A′ halts with output (0, ε). Otherwise, it looks up
the index j so that (S, j,Cha) ∈ LH for S = A‖B‖C‖m where A = ê(f, g̃)/ê(d, x̃),
B = ê(e, x̃), and C = AChaBRsp. Such a tuple must exist, since at the very latest A′
would have forced its creation during the final verification GVerify(gpk ,m, σ). We call
the j-thH(·) query made by A the “crucial” hash query. A′ halts with output (j, σ).

Consider the general forking lemma with algorithm A′ and an input generator IG
that outputs gpk . IfAwins the traceability game with probability ε, i.e., Advtrace

GS,A(η) =
ε, then the probability acc that A′ outputs (j, σ) with j ≥ 1 is

acc ≥ ε− n/q ,
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where the latter term is due to premature halting because of an extraction failure during
any of the GJoin protocols.

By applying the general forking lemma, we obtain an algorithm FA′ that with prob-
ability

frk ≥ acc2

qH
− 1

q
≥ ε2

qH
− 3n2 + 1

q
(1)

outputs a tuple (1, σ1, σ2), where qH is (at most) the number of H(·) queries made by
A.

Based on this algorithm FA′ , consider algorithm B that forges CL signatures by
running FA′ to obtain two signatures σ1 and σ2 where σ1 = (d1, e1, f1, (Cha1,Rsp1))
and σ2 = (d2, e2, f2, (Cha2,Rsp2)). Let

A1 = ê(f1, g̃)/ê(d1, x̃) B1 = ê(e1, x̃) C1 = ACha1
1 B

Rsp1
1

A2 = ê(f2, g̃)/ê(d2, x̃) B2 = ê(e2, x̃) C2 = ACha2
2 B

Rsp2
2 .

Since the two executions of A are identical in inputs, random tape, and oracle re-
sponses up to the point where the “crucial” hash queries are made, the arguments of
these hash queries must be identical too, so that A1 = A2, B1 = B2, and C1 = C2.
Because B1 = B2 we have that e1 = e2. Since both signatures are valid we have
that ê(d1, ỹ) = ê(e1, g̃) and ê(d2, ỹ) = ê(e2, g̃), so that d1 = d2. Finally, because
A1 = A2 we also have that f1 = f2. The forking algorithm however guarantees us
that the responses to these queries Cha1 and Cha2 are different and smaller than q,
so that Cha1 − Cha2 6= 0 mod q. By putting the equations for C1 and C2 together
one can see that ξ = (Rsp2 − Rsp1)/(Cha1 − Cha2) mod q satisfies the equation
ê(f1, g̃)/ê(d1, x̃) = ê(e1, x̃)ξ, which is the second verification equation of CL sig-
natures. The validity of the group signature σ1 ensures that the first CL verification
equation is also satisfied, so that (d1, e1, f1) is a valid CL signature on message ξ.
Moreover, ξ does not occur in a tuple of reg, because in that case the opening of σ1
at the end of the execution of A′ would have succeeded. Since the only messages ξ
for which B previously queried CL signatures are those occurring in reg, B can out-
put (ξ, (d1, e1, f1)) as its own forgery; its overall probability of doing so is at least the
probability frk depicted in Equation (1).

B.3 Proof of Theorem 4

The goal of the adversaryA in the non-frameability game is to create a group signature
σ on a messagem together with a valid proof π that attributes σ to an honest user i even
though σ was never output by the GSign oracle on inputs i,m. We distinguish between
two types of attacks. In the first type, the value for k in π = (k, σ̄,Π) is different from
the value that user i signed during the join protocol. It is easy to see that this type of
attack is impossible by the unforgeability of the underlying signing algorithm DSSign,
as σ̄ is a valid signature under upk[i] that was never signed by user i. We now focus
on the second type of attacks, where the value for k in π is the same as signed by user i
when joining.

We construct a simulator B that solves a given SDLP problem (g1, g̃1) = (gµ, g̃µ).
Note, that w.l.o.g. we assume that the bases in the SDLP problem match the bases that
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the group signature scheme is using, as an SDLP problem using different bases can be
transformed into the problem denoted before. The simulator makes use of an adversary
A having a non-negligible advantage in the non-frameability game Advnf

GS,A(η) ≥ ε.
The simulator’s output is ε, if he was not able to solve the DL problem, or µ being the
solution to the problem.

The proof idea is to create an algorithm A′ to which we will apply the general
forking lemma. Through the lemma we attain an algorithm FA′ . This algorithm will
output two signatures (σ0, σ1) that are related such that the simulator can extract the
“message” that they have been issued upon. Assuming that B manages to construct
those messages dependent on µ will allow him to solve the SDLP problem.

In more detail, the algorithm A′ gets gpk and a random tape R. It derives R′ from
R and runs A on input (gpk , R′). Algorithm A′ maintains a counter ctr and lists LG ,
LH.

– G(κ): A′ looks up a tuple (κ, t) in the list LG and returns t; if no such tuple is
found, it chooses a random value t← {0, 1}` and adds (κ, t) to LG .

– H(S): A′ looks up (S, j,Cha) in the list LH and returns Cha. If no such tuple is
found, it increases ctr , chooses a random value Cha← Zq and adds (S, ctr ,Cha)
to LH.

– SetUPK(i, upk): A′ sets upk[i]← upk as the certified public key associated to
user i.

– GJoinUD(i): Given an honest user i ∈ HU , A′ extracts the value of κ from the
random oracle G(·) by looking for a pair (κ, t) ∈ LG . (For large enough values of
`, exactly one such pair must exist, because otherwise A must either have created
a collision on G, or predicted an output of G before querying it.) Then he chooses
ri ← Zq and computes s← gri1 /(g

κ) as well as r̃ ← g̃ri1 /(g̃
κ). Then he computes

the signature σ̄ ← ê(g, r̃) and sends (s, r̃, σ̄) to A. The algorithm simulates the
proof of knowledge without any probability loss due to the perfect zero-knowledge
property. A will supply the value of κ and will prove the correct computation of
the values (a, b, c). Through the verification of this proof, A′ is assured that the
received signature constitutes a signature on ξ = µri.A′ stores (ξ, a, b, c) in gsk[i].

– GSign(i,m): Given user i ∈ HU and a messagem fromA,A′ retrieves the signing
key from gsk. If gsk[i] = ⊥ does not exists, then A′ return ⊥. Otherwise, it
computes σ ← GSign(gsk[i],m), adds (m,σ) to the list sgn, and returns σ.

Algorithm A will output the forged signature σ = (d, e, f, (Cha,Rsp)) on a message
m, a proof π and an i indicating for which user A forged the signature. If any of
GVerify(gpk ,m, σ) = 0, i 6∈ HU , (m, (d, e, f)) ∈ sgn, or GJudge(m,σ, i,upk[i], π) =
0 fails, then A′ will halt and output (0, ε).

Otherwise, A′ looks up the tuple (A‖B‖C‖m, j,Cha) where A = ê(f, g̃)/ê(d, x̃),
B = ê(e1, x̃), and C = AChaBRsp. Such a tuple exists, since it would be created at
the latest during the final execution of GVerify by A′. We call the j-th hash query the
“crucial” hash query. A′ outputs (j, σ).

We use the forking lemma as given in Section C with the algorithm A′ and input
generator IG outputting gpk . Provided A wins the non-frameability game with proba-
bility ε, makes the probability ofA′ finding (j, σ) with j ≥ 1 become acc = ε. Through
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the general forking lemma we get an algorithm FA′ , which succeeds with probability

frk ≥ acc2

qH
− 1

q
=

ε2

qH
− 1

q

to produce a tuple (1, σ0, σ1). The number of queries of A has the upper bound qH.
Running the algorithm FA′ , the simulator B obtains two signatures σ1 and σ2,

where σ1 = (d1, e1, f1, (Cha1,Rsp1)) and σ2 = (d2, e2, f2, (Cha2,Rsp2)). By a simi-
lar reasoning as in the traceability proof in Appendix B.2, we have that (d1, e1, f1) =
(d2, e2, f2), Cha1 6= Cha2, and Cha1 6= Cha2 mod q. The simulator B computes ξ =
(Rsp2−Rsp1)/(Cha1−Cha2) mod q, which satisfies the equation ê(f1, g̃)/ê(d1, x̃) =
ê(e1, x̃)ξ. Due to our construction of the signatures, we have that ξ = µri holds, where
ri can be looked up in rand. We therefore have that gξ/ri = g1 and g̃ξ/ri = g̃1,
so that ξ/ri is a solution to the SDLP problem. The simulator obtains this value with
probability at least frk .

C Forking Lemma

We recall here the general forking lemma due to Bellare and Neven [5]. In the follow-
ing, think of x as a public key, qH as the number of queries to a random oracle, and
h1, . . . , hqH as the responses.

Lemma 1. Let A be a randomized algorithm that on input x, h1, . . . , hqH returns a
pair (j, σ) ∈ {0, . . . , qH}×{0, 1}∗. Let IG be a randomized algorithm called the input
generator. The accepting probability of A, denoted acc, is defined as the probability
that j ≥ 1 in the experiment

x← IG ; h1, . . . , hqH ← {0, 1}` ; (j, σ)← A(x, h1, . . . , hqH) .

The forking algorithm FA associated to A is the randomized algorithm that on input x
proceeds as follows:

Algorithm FA(x)
Pick random coins R for A
h1, . . . , hqH ← {0, 1}∗
(j, σ)← A(x, h1, . . . , hqH ;R)

If j = 0 then return (0, ε)
h′j , . . . , h

′
qH ← {0, 1}

`

(j′, σ′)← A(x, h1, . . . , hj−1, h
′
j , . . . , h

′
qH ;R)

If (j = j′ and hj 6= h′j) then return (1, σ, σ′)
Else return (0, ε, ε).

Let
frk = Pr

[
b = 1 : x← IG ; (b, σ, σ′)← FA(x)

]
.

Then

frk ≥ acc2

qH
− 1

2`
.
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