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Abstract

There have been several approaches in the past to obtain signature schemes with
message recovery based on the discrete logarithm problem. In this paper we general-
ize these approaches into a Meta-Message recovery scheme by applying the ideas of
the Meta-FlGamal signature scheme. Furthermore we present Meta-blind signature
schemes which have been developed from the ElGamal based blind signature scheme
and the message recovery blind signature scheme discovered recently. From our Meta-
schemes we get various variants from which some are more efficient then the already
known ones. They can be recommended for practical use. Then we give interest-
ing applications of the presented Meta-schemes like authentic encryption schemes,
key distribution protocols and authentication schemes. Again, we can extract highly
efficient variants.

1. Introduction

The concept of signature schemes giving message recovery has been proposed in 1978 [RiSAT78].
In these schemes the message has to satisfy a given redundancy scheme (e.g. the english language)
and can be recovered from the signature parameters. This has the advantage, that the signed
message doesn’t contain the message explicitly. The drawback of this concept is, that we can’t
sign a hash value of a large message.

There have been several approaches in the past to obtain signature schemes with message
recovery based on the discrete logarithm problem [NyR193, NyR293, NyRu94, Pive93, HoP194,
HoP294]. In this paper we integrate all these approaches into a Meta-Message recovery scheme
by applying the ideas of the Meta-ElGamal signature scheme [HoP194, HMP394].

The concept of blind signature schemes was introduced by Chaum in 1982 [Chau82]. These
schemes can be used in payment systems [Chau85] or for electronic voting schemes [FuO092].
In a blind signature scheme an owner Alice wants to obtain a digital signature on a message



she signs. If she gets the message and the signature later, it must not be possible that Nancy
can find a relationship between some blinded and unblinded parameters. Additionally there are
other classes of blind signatures, hidden or weak blind signature [HoP394], in which the notary
can find a relationship between some blinded and unblinded parameters if she gets a signed
unblinded message.

Recently blind ElGamal based signature schemes and blind message recovery signature
schemes were introduced [CaPS94]. We show how to generalize them using the ideas of the
Meta-ElGamal and the Meta-Message recovery signature scheme. Note that this can be done
with many but not all variants, e.g. it doesn’t apply to the original ElGamal signature scheme.
Then we give some interesting applications of these Meta-schemes like authentic encryption
schemes, key distribution protocols and authentication schemes.

We first give a brief review of the Meta-ElGamal signature scheme and present the Meta-
Message recovery scheme. After this we present Meta-ElGamal blind signatures and Meta-
Message recovery blind signatures. Then we discuss the most efficient variants of both blind
Meta-schemes and continue with some useful applications of all Meta-schemes.

2. The Meta-ElGamal signature scheme

The Meta-ElGamal signature scheme has been proposed in [HMP394].

The basic ElIGamal signature scheme

For an ElGamal signature [ElGa84, ElGa85] the trusted authority chooses a large prime p and
a generator a € Z7 with order p — 1. p and «a are public system parameters and authentically
known to all users. The signer Alice chooses a random number z4 € Z,_; and computes y4 :=
a®4 (mod p). She publishes y4 and keeps z 4 secret. These values are constant for all messages
to be signed. To sign a message m € Z, 1 Alice chooses a random number k € Z7_,. She
computes 7 := a¥ (mod p) and solves the congruence

m = x4r+ ks (mod p—1) (1)

for the parameter s. The triple (m;r,s)is the signed message. It can be verified by checking the

congruence
m — 7

a™ = yhr® (mod p). (2)
The Meta-ElGamal signature scheme
Instead of signature generation by the equation (1) we can also choose the general equation

A=1x4B+ kC (mod q) (3)

with ¢ € P ,q|(p—1), and choose A, B, (' as general functions e, f, g : Z,”> — Z, with arguments
m,r and s. As m € Z,_; we imply that m is reduced modulo ¢ before it is used as an argument
but in the following description we omit this for the sake of clearness.

The parameter s should either be used as argument in only one of the three functions or the
functions have to be chosen carefully, such that the signature equation can be solved. Also all of
the parameters m, r, s have to occur at least once. If two or three functions use exactly the same
arguments, then they should be chosen as different operations. The occurrence of the insecure
rs— and ms—variants [HMP394], where the parameters r and s (m and s) occur exactly in one
of the three functions e, f and g together but neither r nor s (m nor s) occurs in one of the
two other, should be avoided. All four conditions apply also for equivalent variants, in which the
signature equations can be transformed into each other. Furthermore none of the three functions
should be equal to zero. To get efficient variants, in the functions should be chosen, such that
s can be easily extracted (e.g. without inversion). It’s also an advantage to choose one of the
functions equal to one, to obtain an efficient signature verification. This verification is done by
checking the equation

o = y§rC (mod p). (1)



of permutations, namely to choose A, B, (' as a permutation of one of the following five types
EG 1 - EG V, which have been analyzed in detail in [HMP394]:

EG L (m,r,s), EGIL: (f(m,r),s,1), EGIIL (f(m,r),g(m,s),1),
EG IV: (f(m,r),g(r,s),1),EG V: (f(m,s),g(r,s),1).

The functions f, g : Zq2 — Z, have to be invertible in the argument s to guarantee the solubility
of the general signature equation (3) for the signature parameter s.
For every type we get one of the following six permutations of the coefficients, which are
enumerated by No. 1 - 6:
1:( ) 2: (a 3:(
4: (¢,a,b) 5: (b,c,a) 6: (
For example (a,b,c) = (m,r,s)in Type EG I and (a,b,¢) = (f(m,r),s,1) in Type EG II. We
can use more general (+A4,+B,+C),(+A4,+B,-C),(+A,-B,+C),(+A,—B,—C) instead of
(A, B,C) in the signature equation and refer to them with o(1),0(2),0(3) and o(4).
Additionally we can generalize the computation of the parameter r by choosing
' := ¥ (mod p) and computing 7 := d(r', m) with a suitable function d : Z,* — Z,.
It also possible to vary the mode of operation that determines the group orders and the length
of the parameters [HMP394]:

XL: ElGamal mode with |p| = |¢| = 512,
L: Schnorr mode [Schn89, Schn91] with |p| = 512, |¢| = 160,
M: DSA mode [NIST91] with |p| = 512, |¢| = 160, r reduced modulo ¢, and

S: small mode [Schn89, Knob94] with |p| = 512,|¢| = 160 and a ¢ bit number
h(r) (50 < |g¢1] < 160) reduced by any hash function h.

Some generalizations have already been proposed by Schnorr [Schn91]. They can be embedded
in the Meta-ElGamal scheme [HMP294]. All these generalizations can also be applied to the
FElGamal signature scheme with two message blocks (T'ype EG VI — EG X) and the signature
scheme with three message blocks (T'ype EG XI) [ElGa84, HMP394]. Combining the described
variations we get the Meta-ElGamal signature scheme which can be written as

MEG = (Mode.Type.No.o,d,e, f,g).
The parameters are chosen in the following way:
e Mode € {XL, L, M, S} gives the mode of operation,

e Noe{l,2,3,4,5,6} gives the number of the permutation,

Type € {EG I, EG I, ..., EG XI} gives the type of permutation,
o 0 €{o(l),0(2),0(3),0(4)} fixes the signs,

o d: sz — Z, specifies the computation of r,

e e fg: Zq3 — Z, invertible in the argument s.

In a simplified manner, we can also describe the Meta-FlGamal scheme by the tuple
(Mode,d, e, f,qg)but then we loose useful structural information for the security analysis. There-
fore we prefer the first notation even if it contains redundancy.



The basic Message recovery scheme

This scheme has been proposed by Nyberg and Rueppel [NyR193]. Let p and ¢ be primes with
ql(p —1). Let a € Z; be an element of order q. The signer Alice chooses z4 and y4 as in the
ElGamal scheme. To sign the message m € Z,_;, satisfying a redundancy scheme, she chooses

a random k € Z7, computes r := a~k

m (mod p) and solves the equation s := k — 247 (mod q).
The tuple (7, s) is the signature on the message m, which can be recovered by computing m :=

a®yhr (mod p).

3.1 The Meta-Message recovery scheme for one message block

To develop a signature scheme giving message recovery from the Meta-ElGamal signature

schemes, we can use the general message recovery approach, which has been described in
[NyRu94]:

1. Multiply the exponential (or its inverse) in the commitment r with the message m
(or m1),

2. replace the message m by 1 in equation (3),

3. rebuild the verification equation, such that the exponential o is computed and the message
can be recovered from the commitment part r of the signature.

We can apply this approach to the Meta-ElGamal scheme.

General functions

Instead of computing r’ := a* (mod p) and r := (¢")7!

tion d : Zp2 — Z, to the arguments 7/, m, such that

m (mod p) we can apply a general func-

= o (mod p), r:=d(r',m),

where d is invertible in the second argument, that is m := d='(r,7’). The general signature
equation is of the form

A=1x4B+ kC (mod q) (5)

with A, B, C permutations of the general functions e, f, g : Zq2 — Z, with arguments r and s.
The message recovery can be done by verifying the equation

m=d" (7‘, aAO_lyEBC_l (mod p)) (6)

and checking if m satisfies the given redundancy scheme. The correctness of the scheme can be
verified by the following congruence:

d=! (7‘, aAO_lyEBO_l (mod p)) =d! (r,a(A_“B)O_l (mod p))
=d! (7‘, a*CC™" (mod p ) =d(r,r") = m.

Type of equation
If we look carefully on the necessary conditions on the functions e, f, ¢ which are the same as
described in chapter 2, we see that we get the following ten types of permutations:

Type (+A, £ B, +£C) permutation of Type (+A, £ B, +£C) permutation of
MR 1 1 r s MR VI r s f(r,s)
MR 11 1 s f(r,s) MR VII s s f(r,s)
MR 111 1 r f(r,s) MR VIII r f(r,s) g(r,s)
MR 1V 1 f(r,s) g(r,s) MR IX s f(r,s) g(r,s)
MR V r r f(r,s) MR X e(r,s) | f(r,s) g(r,s)




efficient types are Type MR I — IV if we choose the parameter C' = 1, because we need no
inversion during message recovery. In Type MR II, IV, VI — X we have to choose suitable
functions e, f, g to guarantee the solvability for the parameter s. In Type MR 1V, we have to
choose different functions f, g without homomorphic properties to guarantee the security of the
signature scheme. Type MR 1 has been obtained from Type EG 1 of the Meta-FlGamal scheme,
Type MR II from Type EG IV and Type MR III from Type EG V. The other types result from
various variants of the Meta-ElGamal scheme which haven’t been enumerated yet [HMP394].

Table 1 gives an overview about all permutations of the first four types with d(+',m) =
(r')~'m (mod p), where we find the most efficient variants (C' = 1). Variant MR 1.3 has first
been proposed in [NyR193], variant MR 1.2 in [Pive93], variants MR 1.1 and MR 1.5 in [NyR293]
and independently in [HoP294] and variants MR 1.4 and MR 1.6 in [NyR293, NyRu94].

No. A -B C signature message recovery
MR I.1 1 r $ L= —aar+ks m=a® Y r
MR I.2 1 5 r L= —xgs+kr m=a Y
MR 1.3 E T 1 s=—xar+k m = a’yyr
MR 1.4 S 1 r s=—xatkr m = a”_lyﬁ 7
MR L5 T S 1 r=—w4s5+k m=ayr
MR I.6 T 1 E r=—x4+ks m= 04”_13/154_ r
MR II.1 s f(r,s) 1 s=—aaf(r,s)+k m = asyi;(m)r
MR II.2 s 1 f(r,s) s=—z4+kf(r,s) m = asf(r75)—1y1];(7°,si—1r
MR I1.3 1 f(T, 8) S 1= —$Af(7‘7 5) + ks m = Oés_l yIJ;(T,S)s r
MR I1.4 1 S f(r7 5) = —z4s+ kf(T, 8) m = af(T7s)_1y,s4f(T7s)_1r
MR IL.5 f(r, 8) 1 S f(r7 8) = —xy + ks m = af(7*75)5_1 yj_l
MR IL6 | f(r,s) s 1 f(r,s)=—aas5+k m = af )y p

MR III.1 T 1 f(r,s) r=—x4+kf(r,s) m = arf(r75)—1y£(r,s) T
MR III.2 T f(r,s) 1 r=—zaf(r,s)+k m=a’ IJ;(T,S)T

MR III3 f(r, 8) 1 r f(r7 8) = —xy _I_ k‘T m = af(T,S)T 1y7’ 1
MR I11.4 f(T, 8) r 1 f(r7 5) = —z4r+ k m = af(T7S)y2T1
MR II1.5 1 f(r,s) r = —aaf(r.s)+ kr m = ar—lyIJ;(T,s)r ,
MR IIL.6 1 T f(r,s) 1= —war+kf(r,s) m = af(r,s)—ly;f(r,s) "
MR IV.1 | f(r,s) | g(r,s) 1 f(r,s)= —aag(r,s)+ k m = af(r,s)yg(r,s)r
MR IV.2 f(T, 8) 1 g(r7 5) flr, 5) =—z4+ kg(r, 8) m = ol ("s)g 7s)~L, a(rs) 17‘
MR IV.3 1 g(r,s) | f(r,s) | 1= —aag(r,s)+ kf(r,s) | m= o (r,8)™1 9 (9 f(7:9) 1
MR IV.4 1 frys) | glr,s) | 1= —aaf(r,s)+ kg(r,s) | m = 0d(rs) ™! IJ;(T ,5)g(r,s)
MRIVS | g(rs) | 1| f(r,s) | glrs)= —aa+ kf(r,s) | m=astita™ yho™
MR IV.6 g(T, 8) '][(7‘7 8) 1 g(r7 5) = _wAf(T, 8) + k m = ag(r,g)yIJ;(T 5)7‘

Table 1: Message recovery for one message block

Mode of operation

We also have to consider different modes of operation for the message recovery schemes. The
Mode XL in which |p| = |¢| = 512 is not very efficient. The Mode L has been referred as
ElGamal* in [NyRu94]. For Mode M and S we get two different possibilities of computing the
parameter 7 (of length ¢;) as pointed out in [NyRu94] for Mode M:

L. meZy, d:Z} —Zg, :h(ak(modp)) r:=d(r',m) (( modp) m),
2. mé€Zy,d: 2 —Z,, 1 :=ac" (mod p), r = h(d(r, )) =h (d(a m))



mi=d! (7‘, h(aAO_l(yA)_Bc_l)) .

As the signed message is very small in this case we won’t consider it any more.

The second variant was proposed by Schnorr [Schn89] and for Mode M by Nyberg and Rueppel
and has been generalized in the seventh generalization of the Meta-ElGamal signature scheme
in [HMP394]. It doesn’t give message recovery and can thus be used only in text hashing mode
(where we have to transmit m additionally) like the efficient DSA-variants proposed in [HMP394].
Summarizing the above results, we see that Mode L is best suited for message recovery schemes,
because the expansionrate of the signature is minimal.

The Meta-scheme:
Combining the described variations we get the Meta-Message recovery scheme (MMR) for one
message block which can be written as

MMR; = (Mode.Type.No.o,d,e, f,q).

The parameters can be chosen out of the following:

Mode € {XL, L, M, S} gives the mode of operation,

Noe {1,2,3,4,5, 6} gives the number of the permutation,

Type € {MR I, MR II, ..., MR X} gives the type of permutation,

o€ {o(l),0(2),0(3),0(4)} fixes the signs,

d:Z,* — Z, invertible in the argument m,

e, f.g: Zq2 — Z, invertible in the argument s.

3.1.1 Security of the Meta-Message recovery scheme

The security of the Meta-Message recovery scheme is similar to the mr—variants of the Meta-
FElGamal signature scheme, which has been analyzed in detail in [HMP394]. If we are substituting
the parameter r in the signature equation by the function d(r’, m) then we see, that the equations
in Type MR T are like the equations in T'ype EG II if we choose d = f. The same property holds
for all other types, only the corresponding types in the Meta-ElGamal scheme haven’t been
enumerated yet.

The security analysis for a total break of the signature scheme and universal forgery of mes-
sages can be adapted from the Meta-ElGamal scheme. Only the existential forgery has to be
considered again, because we get some obvious attacks, as described in [NyR193].

1. An attacker can choose signature parameters r, s at random and calculate the correspond-
ing message m by the message recovery equation (6). To avoid this attack, the message m
should be in a redundancy scheme, such that the probability of success for such an attack
is negligible.

2. For some variants one can compute valid signatures (7, s+ t) from a given valid signature
S(m) = (r,s). For example the following equations hold

MR 1.2: § (m(yg_l)t) =(r,s+1) MR L3:  S(ma') = (r,s+1t)
MR I.4: § (m(aT_l)t) =(r,s+1) MR L5:  S(myYy) = (r,s+1)
For special choices of the functions f and ¢ this property also exists for some variants of

the other types of signature schemes. This corresponds to the homomorphic property of
the RSA signature scheme.



no two of the above messages are within this scheme.

Equivalent security of the variants
As already mentioned in [NyRu94, HMP394] some of the variants offer equivalent security. For
arbitrary choices of the functions d, e, f, g the equations

e 1 and 6,
e 2 and 4,
e 3 and 5,

for all types provide equivalent security, because only the roles of the generator a and the
public key y4 are changed. Additionally, some variants of the Meta-Message recovery scheme
are strongly equivalent [NyRu94] to other variants of the Meta-ElGamal scheme for some spe-
cial choices of the function d. For example for a message m € Z, in Mode S, if we choose
d(r',m) = r'm~! then Type MR I is strongly equivalent to Type EG I: If (r,s) is a signature
for m in Type EG I then (rm~! (mod ¢),sm™! (mod ¢)) is a signature for m in Type MR
I. Conversely, given a signature (r,s) in MR I, we first recover m and obtain the signature
(rm (mod ¢),sm (mod ¢)) in EG L

3.1.2 Performance of the Meta-Message recovery scheme

The most efficient variants are those, in which Alice doesn’t need to compute any inversion
modulo ¢ for signature generation and additionally Bob doesn’t need to compute any inverse
for message recovery. These conditions are satisfied for variants MR 1.3, MR II.1, MR III.4 if
we choose a suitable function f, for which the inverse can be computed without computing
multiplicative inverses modulo g¢.

3.2 The Meta-Message recovery scheme for two message blocks

The ideas of the Meta-ElGamal scheme can also be applied for two message blocks using the
general construction principle described above. In this case, only one message block mq can be
recovered, the other one my has to be transmitted together with the signature parameters r, s.
Thus we can put for example a hash value h(my) and the identity I D4 of user A into this second
block. This value has to be transferred in any case, by this approach it’s already authenticated.
This can be useful for e-mail distributions of messages. The block m; needs no longer to be
within a suitable redundancy scheme and can be chosen at random in Z,_; for Mode L. If we
choose for example a t bit hash value and [ bits for the identity, then the message block my can
be submitted as a [ 4+ ¢ bit message. We can also add additional information, like timestamps to
give a date of expire for the message.

The general signature equation is nearly the same as in section 3.1 with the difference that the
functions e, f, g : Zq3 — Z, use the arguments my,r, s. If we consider the efficient variants, we
have to choose one function equal to 1. Hence we get the remaining ten types of permutations
if we also consider the necessary conditions on the functions e, f, g described in chapter 2 .

Type (+A, £ B, +C) permutation of Type (+A, £ B, +C) permutation of
MR XI flma,r) s 1 MR XVI flma,r) | g(ma,r,s) 1
MR XIT | f(ma,r) | g(ma,s) 1 MR XVII | f(ma,r,s) r 1
MR XIIT | f(ma,r) g(r,s) 1 MR XVIII | f(ma,r,s) s 1
MR XIV | f(ma,s) g(r,s) 1 MR IXX f(ma,rs) g(r,s) 1
MR XV | f(ma,s) | g(ma,r,s) 1 MR XX f(ma,r,s) | g(ma,r,s) 1

The types MR XI, XII, XIII, XVI, XVII are solvable for all possible choices of f,g. The
most efficient variants are those in which the functions f, g have only two arguments and the
parameter ' = 1, this is respective the case for two variants of Type MR XI — XIV which are
given in the following table 2.



No. A +D signature message recovery

MR XI.3 s f(ma,r) s=—xaf(ma,r)+k my = asyﬁ‘(mz,r)r

MR XI.6 | f(ma,7) s f(ma,r) = —zas+k my = Ozf(mQ’r)er

MR XIL3 | g(ma,s) | f(ma,7) | g(m2,s) = —zaf(ma,r)+k | m = ag(m2’s)y£(m2’r)r
MR XII.6 f(mz, 7“) g(mz, 5) f(mz’ 7“) = _l’Ag(mz, 5) +k|m = af(mz,r)yi(m%b’)r
MR XII1.2 | f(ma,r) | g(r,s) fma,7) = —xag(r,s)+ k my = af(mQ,r)yi(r,S)r
MR XIIL.4 | g¢(r,s) | f(ma,7) | g(r,s)=—xaf(ma,r)+k my = ag(r,s)yﬁ‘(mz,r)r
MR XIV.1 | f(ma,s) | g(r,s) f(ma,s) = —xag(r,s)+k my = af(mQ,s)yi(r,S)r
MR XIV.6 | g(r,s) f(ma,s) | g(r,s) = —xaf(ma,s)+k my = ag(r,s)yﬁx(m%s)r

Table 2: Efficient variants for Message recovery with two message blocks

If we choose one coefficient out of the set
{r,s,e(r,s),e(ma, 1), e(mz,s),e(mg,r,5)}

instead of the coefficient 1, we get further 60 types (MR XXIII - MR LXXXII) which are not
very efficient.

Combining the described variations we get the Meta-Message recovery scheme for two message
blocks which can be written as

MMR; = (Mode.Type.No.o,d,e, f,q).

The parameters are the same as for one message block, except that Type can be chosen out of

{MR XI, MR XII, ..., MR XX, MR XXIII, ..., MR LXXX}.

3.3 The Meta-Message recovery scheme for three message blocks

In the case of three message blocks we can also recover only one message block mq, such that we
have to transmit the other two blocks my, m3 together with the signature. The general signature
equation is as above in section 3.1 with the difference that the functions e, f, g : Zq4 — Z,
have the arguments mgy, ms, r, s. If we consider only the efficient variants we should choose one
function equal to 1, such that we can choose the parameter C' = 1 and don’t need any inversion
for message recovery. Among these variants the following one in table 3 is most efficient with
suitable functions f, g. Because we can also apply the same attack as for the ms— variant in the
Meta-ElGamal signature scheme [HMP394] in which an attacker can universally forge message
blocks mgs with the knowledge of one signed message (mq,mga, ms,r,s) we have to choose for
example the last ¢ bit of the message block my as the hash value h(mq,m}, ms) of a suitable
hash function (m/ denotes a |p| — t bit message, my = mb||h(my, mh, ms) and the parameter
t € Z,_y an additional security parameter). The most secure scheme is the one, in which we
choose £A,+B,+C as a permutation of mg, f(ms,7) and s. In this case an attacker can only
start an existential forgery on the message block ms, which can be prevented either by the choice
of a suitable hash function or a redundancy scheme. This variant is also given in the following
table 3:

4. Meta-ElGamal blind signatures

The basic scheme

We first give a short review of the first blind signature scheme, which has been presented by
Okamoto in 1992 [Okam92]. Okamotos approach is best suited for signature schemes, where the
message is only hidden in the function d, that means m doesn’t appear as argument in the
functions e, f and g. This is the case in Schnorr’s signature scheme [Schn89], which is the basis
for Okamoto’s protocol.



INO. £1 — D o signaturc message recovery
MR XXI.1 1 f(ma,r) | glma,s) | 1= —zaf(ma,r)+ kg(ma,s) ozg(mi’”s)_lyf;(m%r)g(ma’s)_lr
MR XXI.2 1 g(ma,s) | f(ma,r) | 1 = —zag(ma,s)+ kf(ma,r) ozf(m%r)_lyg(ma’s)f(m2’r)_lr
MR XXIL.3 | g(ma,s) | f(ma,r) 1 g(ma,s) = —zaflma,r) + k ag(ma,s)yi(mQ,r)T
MR XXL4 | g(ma,s) 1 Fma,r) | glma,s) = —wa+ kf(ma,r) | adtmeoftman™hyfman™,
MR XXL5 | f(mz2,r) 1 g(ma, s) f(ma,7) = —z4 + kg(ma,s) ozf(m%r)g(m?”s)_lyg(ma’s)_lr
MR XXI.6 | f(m2,7) | g(ma,s) 1 flma,7) = —zag(ms,s) + k ozf(m%r)ngq(ma’s)r
MR XXII.1 ma f(ms,7) s ma = —z 4 f(ms,7) + ks amQS—lyfq(ma,r)s—lT
MR XXII.2 mo s f(ma,r) mo = —@as + kf(ma,r) ozm2f(m37r)_1y;f(m3’r)_lr
MR XXII.3 s f(ma,r) mo s = —zaf(ma,r)+ kmo asmglyf(mayr)mglr
MR XXII.4 s mo f(ma,r) s = —zamo + kf(ms,r) ozsf(m&r)_lyer(ma’r)_lT
MR XXIL5 | f(mas,r) mo s f(ms,r) = —zamo + ks ozf(mL’”T)S_lyZﬂ_lT
MR XXIL.6 | f(ma,r) s mo flms,7) = —was+ kmo ozf(m3’r)m2_ly;m2_lr

Table 3: Message recovery for three message blocks
Okamoto’s blind Schnorr signatures
Owner Alice ‘ Channel ‘ Notary Nancy
a,be Z, k €z
7 — i = o* (mod p)
r' = yytab (mod p)
r:=h(r',m)
ri=r+4a — T
3 — §:=an7 4k (mod ¢q)
s:=5+b(mod q)

The signature on the message m is given by (r,s). It’s verification can be done by checking the
equation
h(a®yy",m) = r.

This equation is true, because of the following congruence:

h(a®yy" (mod p),m) = h(af“"'fo"'ba_l’NT (mod p),m) = h(af“_“xN"'b, m)=h(r',m)=r

The Meta-scheme
Now we present the Meta-ElGamal based blind signature scheme founded on the ElGamal
based blind signature scheme in [CaPS94]. For the sake of clearness the function d is chosen as
d(r,m):= r and we only focus on the Mode L. The adoption to the other modes is straightfor-
ward. )

The idea is that notary Nancy chooses the blinded parameter 7 := o (mod p) herself (with
arandom k € Z,*) and the owner Alice chooses the unblinded r := #a® (mod p) (with random
a,b € Z,). Nancy signs the blinded message m using the equation

A=anB+kC (mod q), (7)

which is equivalent to k = C~1(A — 2y B) (mod q) where 2 is the secret key of Nancy. The
unblinded signed message is given by (m,r,s). Its validity is checked by the equation

ot = y&rY (mod p). (8)

For the correctness of the signature scheme, it is necessary, that this equation is satisfied.
Thus we have

yﬁrc = o#NB(akt+b)C = [ enB+C(aC7 (A—zyB)+b) — y](VJ?—ac—ch)aaé—1AC+bc (mod p)



If the value s does not appear in ' then it is possible to transform these two equations to get
m = (a,b,m,r,7) and s := 0(a,b,m,r,m,7,5). Note that s or § are not allowed in the equation
for 7. Furthermore we can transform the signature equation (7) to get & := p(zn, k, 7, 7). Hence

A=aACC™ 4+ bC (mod q)
B =aBCC™! (mod q)

follows the Meta-ElGamal blind signature scheme:

Meta-ElGamal blind signature scheme

parameter: p,q prime, a generator, m message

s:=6(a,b,m,r,m,7,3)

Owner Alice ‘ Channel ‘ Notary Nancy
a,b €r Z; ker Z,"
T — 7 := o (mod p)
“a’ (mod p)
= p(a,b,m,r,7) — m
3 — §:=play, k,m,7)

The signature on the message m is given by (r,s). Its verification can be done by checking

the equation

We illustrate the Meta-scheme by giving equations for some efficient variants in table 4.

ot = y&rY (mod p).

No. equation (9) equation (10)
MBI12 | m=ai 'mr+br s = ar '5r
MBIL3 | s=am 'sm+bm r=am” 'Fm
MB14 | s=af 'sr+br m = ai 'inr
MBL5 | r=am 'Fm+bm s =am 'im
MBIL2 | 1 =af(m, 7)1 f(m,r)+bf(m,r) s=af(m,7)"15f(m,r)
MBIL3 | s = flm,r) =af(m,7)
MB I1.4 | s=af(m,7)"15f(m,r) + bf(m,r) L=af(m, 7)1 f(m,r)
MBIL5 | f(m,r) =af(m,7)+b s=as
MBIIL.2 | 1 = ag(m,$) +bf(m,s) g(m, s) = af(in, 7) " Lg(m, 3) f(m,r)
MBIIL.3 | g(m,s) = ag(m,s)+b flm,r) = af(
MB 1.4 | g(m,s) = af(m,7)"Lg(m,5)f(m,s) +bf(m,s) | 1 =af(m,7)~f(
MBIIL5 | f(m,r)=af(m,7)+b g(m,s) = ag(
MBIV.2 | 1 =af(in, f)_lf(m, ry+bf(m,r) g(r, ) = af (i, 7) " g(F,8) f(m,r)
MB IV.3 | g(r,s) = ag(7,5)+b flm,r) = af(
MB IV.A4 | g(r,s) = af(m,7)"Lg(F, 5)f(m,r) + bf(m,r) 1=af(m,r
MBIV.5 | f(m,r)=af(m,7)+b g(r,s) = ag(
MB V.2 | 1 =af(in, 5)_1f(m, s)+bf(m,s) g(r, s) = af(m, 8) " g(7,5) f(m, s)
MB V.3 | g(r,s) = ag(7,8) + b f(m,s) = af(
MB V.4 | g(r,s) = af(m,3)"1g(F,5)f(m,s) + bf(m,s) L=af(m, 371 f(
MB V.5 | f(m,s)=af(m,5)+b g(r,s) = ag(

Note that for those schemes in which the parameter s appears in C' we can’t get blind signature
schemes for general functions f and g, because s and § are not allowed as arguments in the
function . Thus we can’t get a blind signature scheme using the basic ElGamal signature

scheme.

A signature scheme is called blind, if all (blinded) parameters which are known by Nancy are
statistically independent from the unblinded parameters of the signature. If it can be shown that
for any blinded and unblinded parameters there are unique ¢ and b which are chosen at random

Table 4: Meta-ElGamal blind signature schemes
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can show that all variants are blind signature schemes:

Theorem 1: For any pair of triples (1,3,7), (m,s,r) with m,r,7 € Z;,7 = o (mod p),
A= Bay+ Ck (mod ¢), a® = yBr% (mod p) and A, B,C chosen from the table above, there
exist unique a,b € Z, with

r=7a’ (mod p) (11)
A=aC7PAC + bC (mod ) (12)
B =aC7'BC (mod q) (13)
Proof: Choose a,b € Z, with
a=BCB™'C™! (mod ¢) (14)
b=(A-ABB™HC™! (mod ¢) (15)

Using the signature equation (7) from above we get

ak+b = (BCB'CHk4+ (A— ABB™1)C! (16)
= C YA+ B(CB k- AB™))
= C YA+ B(A-axB)B~! — AB71))
™

Thus we have

~ L —1(A—
TaOéb = aak—l—b = aC (A—Bzy)

The validity of the relations for ¢ and b is trivial. Moreover the choice of a and b is unique,
because congruence (16) must be satisfied. Hence the Meta-ElGamal blind signature scheme can
be written as

MEB = (Mode.T'ype.No,d,e, f,g)
similar to the Meta-ElGamal scheme (MEG).

4.1 Security considerations

Total break of the scheme

To avoid a total break of the scheme, which means that an attacker can compute the secret key
xn of the notary Nancy, Nancy should be aware that she doesn’t sign a blinded message m if
the coefficient B or C' is equal to zero or (p — 1)/2 in Mode XL.

o As already described in [HMP294], the variants of the ElGamal signature scheme can
be totally broken, if the coefficient C' is chosen equal to (p — 1)/2 (mod p) in Mode
XL (or equal to 0 (mod ¢) in modes L, M and S). In these cases every verifier can
compute the secret key zp. The signature equation is A = aznyB + kC (mod p — 1).
If ¢ = (p—1)/2 then this equation simplifies to A = znxB (mod p — 1) if k is even
and to A=anyB+(p—1)/2 (mod p—1) if k is odd. In both cases 4 can be com-
puted if ged(B,p — 1) = 1. In the case of ¢ = 0 (mod ¢) the equation simplifies to
A = anyB (mod ¢), which can always be solved for zx if B # 0.

To avoid this kind of attack, it is necessary, that either the parameter C' can’t be chosen
equal to (p — 1)/2 or 0 without knowledge of the notary, or the parameter B should also
be equal to (p — 1)/2 or 0 in this case, such that 2 can’t be extracted, as the condition
ged(B,p— 1) = 0 is not satisfied.

If we look at the equation (10), we see that if C' = 0 then the parameter B or B must also
be equal to zero, such that either the notary gets a zero coefficient ((p — 1)/2 respectively)
or the equation is trivial and leaks no information about .

11



(or B=(p—1)/2in Mode XL) and C' # 0. In this case, only k can be extracted, which is a
random number used only once, such that there is no immediate use from this knowledge.
But with the knowledge of k the parameter k := (k — b)a~" can also be computed. This
can be used, to solve the blinded equation A = ayB + kC (mod ¢) for the parameter z
if this equation is not trivial in the sense, that B is also equal to (p—1)/2 or 0 in this case.

If we look again at the equation (10), we see that with the choice of B = 0, the coefficient
B or ' must also be equal to zero. If B is equal to zero then the notary won’t sign the
message, in the other case k can’t be extracted as C' = 0.

Universal and existential forgery
There are three different persons with different views who are able to cheat:

e The notary Nancy knows the blinded parameters and perhaps later some unblinded ones.
She wants to find out some relationship between the blinded and unblinded parameters
and she does not need to follow the protocol.

e The verifier Bob knows some unblinded and blinded parameters but not necessarily the
related ones and can try to forge a signature. He cannot influence the protocol.

e The owner Alice knows the related blinded and unblinded parameters and her aim is to
get more valid signatures to arbitrarily chosen messages than is allowed to get. She does
not need to follow the protocol.

We have already proved that the scheme is truly blind. Thus Nancy doesn’t get additional
informations and is not able to cheat.

The blinded parameters don’t help verifier Bob because as we have seen there are unique
parameters a,b such that a blinded and an unblinded triple of signature parameters correspond
to each other. Hence we get no further informations from the unblinded parameters and can
reduce this case to the Meta-ElGamal scheme. This type of possible cheating has already been
analyzed in [HMP394].

Last we examine the case that Alice try to cheat. If she follows the protocol then we
can reduce this case to the problem how to get an additional valid signature triple out
of ¢t given signature triples. We assume that ¢ pairs of signature triples are known, these
are (mq,s1,71), (M1,71,81), -, (My, 8¢, 7¢), (M4, 71, $¢). She can try to choose the parameter
k = ak +b (mod q) such that k = k; (mod p) with ky = a1ky + by (mod ¢). Then us-
ing the equations A = ey B + kC and A = ax B + k1C Alice can compute the secret key zpn
because the parameters mq, sy, 71, m, s, r which appear in A, B, C' are known and we have two
equations and two unknown variables k and zn. Note that k is still unknown for Alice (Other-
wise she can compute k and xy using the blinded signature equation A = Bay + C'INC) Now
she can solve the equations to get z and k.

If £ and %y are equal then r and r; are equal either. Thus the problem is how to choose
a,b,ay,b1 such that

by _

"o 7a’ (mod p).

or
1=7""7a’" (mod p).
This is the representation problem [Bran93] and is equivalent to the discrete logarithm problem.
Thus this attack is not successful.
But how can Alice cheat if she doesn’t follow the protocol 7 Note that she can compute the
parameters r,m and s totally different. But then she doesn’t get any valid signature on any
message m and it will be hard for her to combine several non-signatures into one signature.

12



Instead of using d(r,m) := r we can also use the general suitable function d(r’,m) where

r' = 7%a® (mod p) if m does not appear as argument in the functions e, f,g. The resulting

Meta-scheme is given in the following table:

Meta-blind scheme for d-variants
parameter: p,q prime, a generator, m message
Owner Alice ‘ Channel ‘ Notary Nancy
a,bEpR Z; iCER V5
7 — 7 := a* (mod p)
= #ab (mod p)
r:=d(r',m)
7= (a,b,r) - 7
3 — 5:=plan, k,7)
s:=6(a,b,r,7,3)

Further, instead of using the equation (A1) 7' := (#)%® = akatb (mod p) we can also
use (A2) r' 1= Fyytab = af—enath (mod p) as suggested by Okamoto in [Okam92], (A3)
= Pk = akatand (mod p) or (Ad) 7' := (7)'yna® = akatzy+b (mod p) which haven’t
been proposed before. This leads to slightly modified general equations (9), (10) from which we
obtain many additional efficient variants. We get the following equations:

(A2) A =bC+ ACC™! (mod q) (17)
B =aC — BC™! (mod q) (18)
(A3) A =aACC™! (mod q) (19)
B =aBCC™! 4+ bC (mod q) (20)
(A4) A =aACC™ +bC (mod q) (21)
B =aBCC™ =1 (mod q) (22)

The approach (A3) is interesting for the d—variants and the message recovery variants as we
can choose here A = s, B =r,C =1 and d(+',m) = m+ r. Then we get the following equations
for # and s:

r:=Ffa+b,s=38a and s = xyr + k.

Security considerations
The attack described above for the total break also applies here, if the notary doesn’t examine
the coeflicients B and ' carefully.

5. Meta-Message recovery blind signatures

Now we present the Meta-Message recovery blind signature scheme based on the message re-
covery blind signatures [CaPS94]. The idea is that notary Nancy chooses the blinded parameter
i := o herself (with a random k € Z,) and the owner Alice chooses the unblinded 7 := mi®a®
(with random a,b € Z,). Nancy signs the blinded parameter 7 using the equation

A=anB+kC (mod q), (23)

which is equivalent to k = C~YA — 2xDB) (mod q), where z is the secret key of Nancy. The
signature on the unblinded message m is given by (r,s). Its validity is checked by the message
recovery equation

m = aAC_ly;,Bc_lr (mod p). (24)
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Ac—l —_po—t

—1_ -1, .7
o yv r = A0 —onyBO  pakth,

QACT —en BCT +a(C7! (A—zy B))+b

m = (€7 A+aCT Adb)—an (O B+aC ™' B) ) (

mod p)

and this should be equivalent to m modulo p. Hence we get the equations

A= —aACC™ —bC (mod q)
B = —aBC7C (mod q)

Note that we get nearly the same equations as in the Meta-FElGamal blind signature scheme.
If the value s does not appear in ' then it is possible to transform these two equations to get
7 :=1(a,b,r,t) and s := 6(a,b,r,7,5,1). Note that s and § are not allowed in the equation for
7. Furthermore we can transform the signature equation (23) to get  := p(xn, k, 7). From this
the Meta-Message recovery scheme follows:

Meta-Message recovery blind signature scheme
Parameter: p,q prime, o generator, m message
Owner Alice ‘ Channel ‘ Notary Nancy
a,bEpR Zq INCE~R Zp*
t — t:=a* (mod p)
r:= mi®a® (mod p)
7= (a,b,r, 1) — T
3 — §:=play, k,7)
s:=0(a,b,r,7,31)

The signature of the message m is (r, s). The message recovery is done by calculating

Ac-1 _pBCc—1

mi= YN r (mod p)

and checking, if m satisfies the redundancy scheme. We summarize the equations for some
efficient types in table 5:

No. signature equation(25) equation(26)
MB 1.2 l=—zny5+ k7 1= —arf =ty —br s = —ar '3r
MB L.3 5= —ani+k s=—as—b r=—ar
MB 14 §E—J;N—|—/~cr s=—arf t5r— br 1= —ai 1ty
MB L.5 F=—ani4k r=—ar —b 5= —a3
MBIl | §=—enf(F,8)+k | s=—af(F,5)—b f(r,s) = —af(7,35)
MBIL.6 | f(7,8) =—ans+k | f(r,s)=—as—b s = —as
MBIIL.2 | 7= —anf(F,8)+k | r=—af—b f(r,s) = —af(7,35)
MBIIL3 | f(7,5) = —an + k7 | f(r,s) = —a# = f(7,8)r —br | 1= —ai~'r
MB IIL4 | f(7,5)= —aeni+k | f(r,s) = —af(7,5)—b r=—ar
MBIL5 | 1= —anf(7,8)+kF | 1 = —ar~tr —br fr,s) = —a# ™ f(F,3)r
Table 5: Efficient variants of the Message recovery blind signature scheme

Note that in the schemes listed in table 5 we can get the functions ¢ and by transforming
the equations (25) and (26) with a general function f. In any other variant of Type MB I - IV
this is not possible for general functions f and g.

The proof of blindness is similar to the proof given for the Meta-ElGamal blind signature

scheme above.
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1

A= Bay+ Ck (mod ¢q), a?¢” y;,BO_lr =m (mod p) and A, B,C chosén from the table
above, there exist unique a,b € Z, with

r = mi®a’ (mod p)
A=—aC7YAC — bC (mod q)
B = —aC~'BC (mod q)

Proof: Choose a,b € Z, with

a=—-BCB'C™! (mod q) (31)
b=(-A+ ABB~H)C~! (mod q) (32)

Using the signature equation (23) from above we get

ak+b = (=BCB'C™HYk4+ (-A+ ABBHC™! (33)
= O N-A- (CBlk AB™1Y)
= CY(-A- (( —anB)B' — AB1Y)
= O Y~A+ Bay) (mod q)

Thus we have

ak+b _ C—1(-A4+Bzy) _ —Ac—1 BO-1 _

mita® = ma ma ma yn~ =7 (mod p)

The validity of the relations for ¢ and b is trivial. Moreover the choice of a and b is unique,
because congruence (33) must be satisfied.
Hence we can define Meta-Message recovery blind signature scheme

MRB = (Mode.Type.No,d,e, f,q)

similar to the Meta-Message recovery scheme.

5.1 Security considerations
5.2 Efficiency considerations

For a detailed security and efficiency analysis we refer to the final version of this paper.

6. Efficient variants

Efficient Meta-ElGamal blind signatures
Recently Harn published a digital signature scheme [Harn94], which is variant EG I1.3 of the
Meta-ElGamal scheme. From this we get the following blind signature scheme:

The signature equation for notary Nancy is

§=an(m+7)—k (mod q).
Thus we have A := s,B := (m+ r),C := —1 and we can substitute the equations (10) and
(9) to get m+r = a(m—l—r) and s = a8 — b. We have m := (a,b,r,7,m) = a='(m +r) — 7,

s:=6(a,b,3,7,r,m,m)= a3 —band § _p(mracN,k)_xN(m—l—r) k.

We get the following scheme:
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parameter: p,q prime, a generator, m message

owner Alice notary Nancy
a,b €p Zq INCE~RZp*
7 := o (mod p)
T — T
r:= 7%’ (mod p)
mi=a(m+r)—7 — m
s=an(m+7)+k (mod q).

s — S

s:=as+b

Performance analysis: Owner Alice needs to compute two on-line exponentiations modulo p
with a |¢| bit exponent and one off-line inverse modulo ¢. Notary Nancy needs just one off-line
exponentiation modulo p with a |¢| bit exponent. A verifier needs to compute two exponentiations
instead of three as usual for an ElGamal signature. Note that this scheme is more efficient than
the variant proposed in [CaPS94]. In that variant owner Alice additionally computes two on-
line inversions modulo ¢. There are other variants with high efficiency (EB I11.4, EB IIL.3, EB
1.4, EB IV.3, EB IV.4, EB V.3, EB V.4) where the addition is used for the functions f and g
[HMP394].

Efficient Meta-Message recovery blind sighatures

The most efficient variants for the message recovery blind signature scheme are the variants MB
1.3, MB L., MB II.1, MB I1.6, MB II.2 and MB III.4. Here the owner needs one on-line and one
off-line exponentiation modulo p with a |¢| bit exponent, the notary one off-line exponentiation
modulo p with a |g| bit exponent and the verifier two exponentiations modulo p with a |p| bit
exponent.

7. Applications of the Meta schemes

7.1 Authentic message encryption

The basic encryption scheme which can be developed from the ElGamal encryption scheme
[ElGa84] has been proposed in [NyRu94]. In this scheme we have to submit three ciphertext
blocks. An improvement of this scheme was proposed in [HMP194] in which we need to transmit
only two message blocks of length |p| 4+ |¢| instead of 2|p| + |¢| in the basic encryption scheme.
This scheme can also be generalized for the Meta-Message recovery scheme.

The trusted third party chooses two large primes p,q € P with ¢|(p — 1), an element «
of order ¢ and a one-way function h:Z,” — Z,". These public parameters are authentic to
all users. Each user ¢ € {A, B} chooses a secret key z; € Z,* and computes his public key
y; := a” (mod p). He publishes y; which is certified by a trusted third party and keeps x; secret.
To send a message m € Z,_; within a suitable redundancy scheme, the user Alice chooses a ran-
dom k € Z, and computes 7 := h(y%)"'m (mod p), 7 := r (mod ¢) and s := k — 247 (mod ).
Then she sends (7,s) to the receiver Bob, who computes 7 := r (mod ¢), recovers the message
m = h(ygyifB)r (mod p) and checks if m satisfies the redundancy scheme. We prove that the
scheme is correct:

T BT —T AT T ATRT _ -1 _
Wyiy?) = by a4*5 ) = h(y) (h(yf)) m=m (mod p)
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Alice has to compute one inverse modulo p, one exponentiation modulo p with a |¢| bit exponent
and executes g one time. Bob computes two exponentiations modulo p with a |¢| bit exponent
and executes g one time. The ciphertext for a |p| bit plaintext within the redundancy scheme
has a length of |p| + |¢| bit. Thus the expansionrate is only (|p| + |¢])/Ip| = 1 + |ql/|p-

7.1.2 Security considerations

An attacker, Carol, can try to forge the signature or break the encryption scheme. Forging the
signature scheme seems to be as hard as forging the Nyberg-Rueppel scheme and breaking the
encryption scheme seems to be as hard as the Diffie-Hellman problem [DiHe76] (that is: given
a4 and a”B, compute a475). If the Diffie-Hellman problem can be solved then the scheme is
no longer secure.

Note that the one-way property of the function ¢ is necessary because otherwise an attacker
Carol can get the Diffie-Hellman-Key K := y%” = y5* (mod p) with just one known plaintext—
ciphertext pair (m,r, s) by computing

K

(g7 (r'm)y5*)"0™ (mod p).

Then Carol can read every further message with given ciphertext (r,s) by computing

' :=r (mod ¢) and recovering the message m := h(y5 K" )r (mod p).

Meta authentic encryption schemes

We can adopt the ideas of this kind of schemes to all Meta-Message recovery schemes. The
equations 1’ := h(y%) and r := d(r',m) (mod p) are the same in every variant. Furthermore the
signature generation is like in the general equation (5). The message recovery can be done by
the equation

-1 _, -1
m=d" (7‘, h(ya® 13/,4 5BC )) (mod p). (34)

The correctness of this equation is shown by the following congruence:

a7 (rhyaC T y3 P POT) = dt (rayg PO
=d! (7‘, h(ygcc_l)) = d Yr,r") = m (mod p).

Note that the variants in [HMP194] which are based on the rs—variants are not authentic as
pointed out by Lim [Lim 94]. His attack can be countermeasured if the receiver checks whether
the session key h(yg) has been used before. As this solution is not very practical we recommend
not to use them.

7.2 Self-certified public keys

By applying the ideas described in [BaKn89, Guen89] we can create identity based certificates
for the public keys of identified users with distinguished names, which results in the self-certified
public keys [Gira91]. They have the following properties:

e The public key can be computed as a function of the identity, the public parameters
(generator a, prime modul p, public key of the trusted authority yz) and the signature
parameter r, which isn’t necessarily authentic. The secret key is computed by the trusted
authority as the signature parameter s.

e The authenticity of the public key is not directly verified, but only the authorized user
knows the corresponding secret key and thus can benefit of this public key.
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The trusted authority Z signs the identity /D4 of user Alice with the signature scheme giving
message recovery proposed in [NyR193]. Z chooses a random number k4 € Z7, computes 74 :=
a~*FaIDy (mod p) and solves the signature equation for the parameter z 4:

x4 =ka—azra (mod q).

The tuple (r4,24) is a signature on the message I D 4. The parameter r4 is published and the
parameter z 4 is kept as secret key. The corresponding public key can be computed as

ya = a¥4 = afamrzra = gkay A = o T4 Dy (mod p).

Thus it can be computed as a function uwy with arguments «a,yz,r4 and I'D,4, which are all
public known.

In the following, we will describe the general approach to obtain the self-certified public key
ya of user Alice. For the sake of clearness we restrict the description to the Mode L.

Using the Meta-Message recovery scheme

The trusted authority Z, who uses his public key yz and his secret key 2z signs the identity /D4
of Alice with the Meta-Message recovery scheme by choosing a random k4 € Z,, computing 1/, :=
a®4 (mod p), ra := d(r'y,ID4) and solving the general signature equation for the parameter
TA:

A=27B+ kaC (mod q) (35)

with £ A, +B,+C permutations of general functions e, f, ¢ : Zq2 — Z, and arguments r4 and
z 4. This gives an equation of the form x4 =: as(2z,ka,74)ba(z7,ka,74)"" (mod q), where
the functions a4 and by are implicit defined by the chosen variant. The tuple (r4,24) is a
signature on the message I D 4. The public key y4 can be computed as y4 := §34* (mod p) with
generator 4 1= abalFzkara) =i ¢4 (a,yz,74,1D4) (mod p), such that the following congruence
holds for y4:

— ATA — abA(CUZykAyTA)aA(CUZykAyTA)bA(CUZykAJ'A)_l —

ya = 0% aaA(nykAyTA)

= uale,yz,ra,I1D4) (mod p).
(Note, that a®% = yz (mod p)and a*4 = d='(r4,ID4) (mod p)!) This means, that y4 can be
computed as a function u4 of the authentic public parameters a, y7, 1D 4 and the parameter 74,
which doesn’t need to be authentic. To guarantee, that the last equivalence holds, the functions
e, f and ¢ have to be chosen as a composition of arithmetic operations.

If we consider for example Type MR I with function d as d(r/,m) = 7/-m~! and suitable signs
we get the following public keys:

No. signature Ba=tala,yz,74,1D4) | ya = uale,yz,74,1D4)
MRI1 |1=—agra+kazy ral Dy OéyTZA
MR 1.2 l=aga4 —kara Yz Oz(TAIDA)TA
MR 1.3 xp=azra+ kg a yTZATAIDA
MR 1.4 XpA =0z +karg « yz(TAIDA)TA
MR L.5 ra=xzar4 —ky Yz a™Ar I Dy
MRIG | rq=—ay7+kaxy ral Dy a"Ayy

The main drawback of this general approach is, that the trusted authority creates the secret
keys of all users and therefore requires unconditional trust by the users.

Using Meta blind signature schemes

This drawback can be prevented by signing the secret key 24 with a hidden signature [HoKn91,
HoP394, HMP494], such that it can be modified by the user after signature generation without
the trusted authority knowing it [HoP294]. It can also be signed with one of the two Meta blind
signature schemes described above, to obtain a self-certified public key for one pseudonym of a
user.
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message m := h(ID 4)y4 with a public hash function . to obtain a certificate (r, s) and recovering
the public key as y4 := mh(ID4)~! (mod p) by using the identity D4 of the user [NyR193].
This method can be applied to all Meta-Message recovery schemes.

Performance in computing self-certified public keys

Note that the computation of the self-certified public-keys is more efficient in some variants than
in the previously known protocols. For example in variants MR 1.3 and MR 1.4 we just need
one exponentiation modulo p where in the proposed schemes in [BaKn89, Guen89] we need two
exponentiations and one inversion.

7.2.1 Authentication schemes

In the authentication schemes, the user Alice who wants to authenticate herself to the ver-
ifier Bob proves the knowledge of the discrete logarithm x4 of her self-certified public key
ya = uala,yz, 74,1 D4) to the basis f4 = ta(a,yz,74,1D4) by the Zero-Knowledge-proof of
Chaum, Evertse and van de Graaf [ChEG87]. This can be done with all self-certified public
keys obtained from the Meta-Message recovery scheme [HoP294]. It can also be applied to other
authentication protocols, e.g. [ChEG87, BrMc90, Okam92].

Meta-Zero-knowledge authentication scheme

User Alice ‘ Channel ‘ Verifier Bob
v4 € RAND(Z,)
wy = F* (mod p) SN (IDa,ra,w4)

Ba = tala,yz,ra,1D4)
ya = ua(e,yz,ra,1Da)
c4a € RANDI[0 : 2¢ — 1]
v
Accepted, if
wa = Bty

CA
z4 = vy +x4c4q (mod q)

[

(mod p)

7.2.2 Authenticated key exchange

To obtain a general authenticated key exchange protocol, we can adapt the ideas from [BaKn89,
Guen89] or the SELANE-protocols [HoKn91] which both use self-certified public keys.

The first approach combines mutual authentication and key exchange by using the (authentic)
data exchanged during the authentication protocol to construct the session key. The session key
can be computed from the authentic parameters y4, yp in the Meta-authentication scheme above
and some exchanged, randomly chosen parameters ey := ﬁj"‘ (mod p),ep = ﬁéB (mod p) in
the following manner:

K:=e} w%“ = ﬁEAdB-l'UBdA = ﬁjﬁ(“dB-l'UBdA = ijeZlB (mod p).
Obviously this is only correct if f4 = g and thus some variants can’t be used.

In the second approach, a Diffie-Hellman key is computed, which can only be known by the two
parties. The key has to be verified after computation, to ensure that both sides know the same
key. Alice computes yp := up(o,yz,r5,IDp) and B :=tg(a,yz, 78, Dp). Then she chooses
a random number 24 € Z,* and computes y4 := f5* (mod p). y4 is transmitted to Bob who
computes y4 1= ug(e,yz, 74,1 D4) and 54 := ta(a,yz,74,1D4). He chooses a random number
xp € Z," and computes yp := §37 (mod p), which he transmits to Alice. Alice computes her
session key K4 := yg'yy" (mod p) and Bob his session key Kp :=y,7y3" (mod p). If the
transmission of the values y4 and yp hasn’t been disturbed by any attacker, the two session
keys are identically as proven by the following congruence:

K= wiptylt = (8405 = (03)72(55)" = wify}® = Kp (mod p).
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recovery scheme to compute their self-certified public keys y; and the corresponding generators
B (i € {A, BY).

Both solutions are vulnerable to the triangle attack [Burm94] where under special circum-
stances the session key of two users can be calculated using eavesdropped information and
additional information which is voluntarily given by the users to the attacker. This attack can
be countermeasured, but the amortized security can’t be proven [YaSh&9].

A third possibility to exchange an authentic session key, is to sign as message m a random value
wy = a’ (mod p) by Alice with one of the Meta-Message recovery schemes and also a value
wp = a8 (mod p) by Bob. Both parties can exchange their signatures, recover the values g4
and wp and compute the session key as in the Diffie-Hellman key exchange [DiHe76, NyRu94]:

K4 :=wj = a8 = w'? := Kp (mod p).

7.3 Further applications

From the Meta-Message recovery scheme we can develop hidden and weak blind signature
schemes giving message recovery as presented in [HoP394, HMP494]. Other applications of the
Meta-Message recovery scheme are multisignatures, blind multisignatures [HMP694] and thresh-
old cryptosystems as proposed in [HMP594, HMP294]. Details on this topic are very extensive
and can be found in the literature.

8. Conclusion

We have presented Meta-Message recovery signature schemes for one, two and three message
blocks based on the Meta-ElGamal signature scheme. All previously known message recovery
schemes based on the discrete logarithm problem can be integrated into this approach. For
further discussions we have to consider only this Meta-scheme. We have shown how to generalize
the ElGamal- and the Message recovery blind signature schemes and discussed the most efficient
variants. Furthermore some interesting applications like Meta-authentic encryption schemes,
identity based public keys used for authentication and authenticated key exchange schemes
have been mentioned.
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