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Meta Message Recovery andMeta Blind signature schemes basedon the discrete logarithm problemand their applicationsPatrick Horster � Markus Michels � Holger PetersenTheoretical Computer Science and Information Security,University of Technology Chemnitz-Zwickau,Stra�e der Nationen 62, D-09111 Chemnitz, GermanyE-mail: fpho,hpe,mmig@informatik.tu-chemnitz.deRevised December 9, 1994AbstractThere have been several approaches in the past to obtain signature schemes withmessage recovery based on the discrete logarithm problem. In this paper we general-ize these approaches into a Meta-Message recovery scheme by applying the ideas ofthe Meta-ElGamal signature scheme. Furthermore we present Meta-blind signatureschemes which have been developed from the ElGamal based blind signature schemeand the message recovery blind signature scheme discovered recently. From our Meta-schemes we get various variants from which some are more e�cient then the alreadyknown ones. They can be recommended for practical use. Then we give interest-ing applications of the presented Meta-schemes like authentic encryption schemes,key distribution protocols and authentication schemes. Again, we can extract highlye�cient variants.1. IntroductionThe concept of signature schemes giving message recovery has been proposed in 1978 [RiSA78].In these schemes the message has to satisfy a given redundancy scheme (e.g. the english language)and can be recovered from the signature parameters. This has the advantage, that the signedmessage doesn't contain the message explicitly. The drawback of this concept is, that we can'tsign a hash value of a large message.There have been several approaches in the past to obtain signature schemes with messagerecovery based on the discrete logarithm problem [NyR193, NyR293, NyRu94, Pive93, HoP194,HoP294]. In this paper we integrate all these approaches into a Meta-Message recovery schemeby applying the ideas of the Meta-ElGamal signature scheme [HoP194, HMP394].The concept of blind signature schemes was introduced by Chaum in 1982 [Chau82]. Theseschemes can be used in payment systems [Chau85] or for electronic voting schemes [FuOO92].In a blind signature scheme an owner Alice wants to obtain a digital signature on a message1



chosen by herself from the notary Nancy , but Nancy shouldn't have any idea which messageshe signs. If she gets the message and the signature later, it must not be possible that Nancycan �nd a relationship between some blinded and unblinded parameters. Additionally there areother classes of blind signatures, hidden or weak blind signature [HoP394], in which the notarycan �nd a relationship between some blinded and unblinded parameters if she gets a signedunblinded message.Recently blind ElGamal based signature schemes and blind message recovery signatureschemes were introduced [CaPS94]. We show how to generalize them using the ideas of theMeta-ElGamal and the Meta-Message recovery signature scheme. Note that this can be donewith many but not all variants, e.g. it doesn't apply to the original ElGamal signature scheme.Then we give some interesting applications of these Meta-schemes like authentic encryptionschemes, key distribution protocols and authentication schemes.We �rst give a brief review of the Meta-ElGamal signature scheme and present the Meta-Message recovery scheme. After this we present Meta-ElGamal blind signatures and Meta-Message recovery blind signatures. Then we discuss the most e�cient variants of both blindMeta-schemes and continue with some useful applications of all Meta-schemes.2. The Meta-ElGamal signature schemeThe Meta-ElGamal signature scheme has been proposed in [HMP394].The basic ElGamal signature schemeFor an ElGamal signature [ElGa84, ElGa85] the trusted authority chooses a large prime p anda generator � 2 Z�p with order p � 1. p and � are public system parameters and authenticallyknown to all users. The signer Alice chooses a random number xA 2 Zp�1 and computes yA :=�xA (mod p). She publishes yA and keeps xA secret. These values are constant for all messagesto be signed. To sign a message m 2 Zp�1 Alice chooses a random number k 2 Z�p�1. Shecomputes r := �k (mod p) and solves the congruencem � xAr + ks (mod p� 1) (1)for the parameter s. The triple (m; r; s) is the signed message. It can be veri�ed by checking thecongruence �m � yrArs (mod p): (2)The Meta-ElGamal signature schemeInstead of signature generation by the equation (1) we can also choose the general equationA � xAB + kC (mod q) (3)with q 2 P ; qj(p�1), and choose A;B;C as general functions e; f; g : Zq3 ! Zq with argumentsm; r and s. As m 2 Zp�1 we imply that m is reduced modulo q before it is used as an argumentbut in the following description we omit this for the sake of clearness.The parameter s should either be used as argument in only one of the three functions or thefunctions have to be chosen carefully, such that the signature equation can be solved. Also all ofthe parametersm; r; s have to occur at least once. If two or three functions use exactly the samearguments, then they should be chosen as di�erent operations. The occurrence of the insecurers� and ms�variants [HMP394], where the parameters r and s (m and s) occur exactly in oneof the three functions e; f and g together but neither r nor s (m nor s) occurs in one of thetwo other, should be avoided. All four conditions apply also for equivalent variants, in which thesignature equations can be transformed into each other. Furthermore none of the three functionsshould be equal to zero. To get e�cient variants, in the functions should be chosen, such thats can be easily extracted (e.g. without inversion). It's also an advantage to choose one of thefunctions equal to one, to obtain an e�cient signature veri�cation. This veri�cation is done bychecking the equation �A � yBArC (mod p): (4)2



As there are numerous variants, in the following we will only consider some e�cient special casesof permutations, namely to choose A;B;C as a permutation of one of the following �ve typesEG I { EG V, which have been analyzed in detail in [HMP394]:EG I: (m; r; s);EG II: (f(m; r); s; 1);EG III: (f(m; r); g(m; s); 1);EG IV: (f(m; r); g(r; s); 1);EG V: (f(m; s); g(r; s); 1):The functions f; g : Zq2 ! Zq have to be invertible in the argument s to guarantee the solubilityof the general signature equation (3) for the signature parameter s.For every type we get one of the following six permutations of the coe�cients, which areenumerated by No: 1 { 6: 1 : (a; b; c) 2 : (a; c; b) 3 : (c; b; a)4 : (c; a; b) 5 : (b; c; a) 6 : (b; a; c)For example (a; b; c) = (m; r; s) in Type EG I and (a; b; c) = (f(m; r); s; 1) in Type EG II. Wecan use more general (+A;+B;+C); (+A;+B;�C); (+A;�B;+C); (+A;�B;�C) instead of(A;B;C) in the signature equation and refer to them with �(1); �(2); �(3) and �(4).Additionally we can generalize the computation of the parameter r by choosingr0 := �k (mod p) and computing r := d(r0; m) with a suitable function d : Zp2 ! Zp.It also possible to vary the mode of operation that determines the group orders and the lengthof the parameters [HMP394]:XL: ElGamal mode with jpj = jqj = 512,L: Schnorr mode [Schn89, Schn91] with jpj = 512; jqj = 160,M: DSA mode [NIST91] with jpj = 512; jqj= 160, r reduced modulo q, andS: small mode [Schn89, Knob94] with jpj = 512; jqj = 160 and a q1 bit numberh(r) (50 � jq1j � 160) reduced by any hash function h.Some generalizations have already been proposed by Schnorr [Schn91]. They can be embeddedin the Meta-ElGamal scheme [HMP294]. All these generalizations can also be applied to theElGamal signature scheme with two message blocks (Type EG VI { EG X) and the signaturescheme with three message blocks (Type EG XI) [ElGa84, HMP394]. Combining the describedvariations we get the Meta-ElGamal signature scheme which can be written asMEG = (Mode:Type:No:�; d; e; f; g):The parameters are chosen in the following way:� Mode 2 fXL, L, M, Sg gives the mode of operation,� No 2 f1, 2, 3, 4, 5, 6g gives the number of the permutation,� Type 2 fEG I, EG II, : : : , EG XIg gives the type of permutation,� � 2 f�(1); �(2); �(3); �(4)g �xes the signs,� d : Zp2 ! Zp speci�es the computation of r,� e; f; g : Zq3 ! Zq invertible in the argument s.In a simpli�ed manner, we can also describe the Meta-ElGamal scheme by the tuple(Mode; d; e; f; g) but then we loose useful structural information for the security analysis. There-fore we prefer the �rst notation even if it contains redundancy.3



3. The Meta-Message recovery schemeThe basic Message recovery schemeThis scheme has been proposed by Nyberg and Rueppel [NyR193]. Let p and q be primes withqj(p � 1). Let � 2 Z�p be an element of order q. The signer Alice chooses xA and yA as in theElGamal scheme. To sign the message m 2 Zp�1, satisfying a redundancy scheme, she choosesa random k 2 Z�q , computes r := ��km (mod p) and solves the equation s := k� xAr (mod q).The tuple (r; s) is the signature on the message m, which can be recovered by computing m :=�syrAr (mod p):3.1 The Meta-Message recovery scheme for one message blockTo develop a signature scheme giving message recovery from the Meta-ElGamal signatureschemes, we can use the general message recovery approach, which has been described in[NyRu94]:1. Multiply the exponential (or its inverse) in the commitment r with the message m(or m�1),2. replace the message m by 1 in equation (3),3. rebuild the veri�cation equation, such that the exponential �k is computed and the messagecan be recovered from the commitment part r of the signature.We can apply this approach to the Meta-ElGamal scheme.General functionsInstead of computing r0 := �k (mod p) and r := (r0)�1m (mod p) we can apply a general func-tion d : Zp2 ! Zp to the arguments r0; m, such thatr0 := �k (mod p); r := d(r0; m);where d is invertible in the second argument, that is m := d�1(r; r0). The general signatureequation is of the form A � xAB + kC (mod q) (5)with A;B;C permutations of the general functions e; f; g : Zq2 ! Zq with arguments r and s.The message recovery can be done by verifying the equationm � d�1 �r; �AC�1y�BC�1A (mod p)� (6)and checking if m satis�es the given redundancy scheme. The correctness of the scheme can beveri�ed by the following congruence:d�1 �r; �AC�1y�BC�1A (mod p)� � d�1 �r; �(A�xAB)C�1 (mod p)�� d�1 �r; �kCC�1 (mod p)� � d�1(r; r0) =m:Type of equationIf we look carefully on the necessary conditions on the functions e; f; g which are the same asdescribed in chapter 2, we see that we get the following ten types of permutations:Type (�A;�B;�C) permutation ofMR I 1 r sMR II 1 s f(r; s)MR III 1 r f(r; s)MR IV 1 f(r; s) g(r; s)MR V r r f(r; s) Type (�A;�B;�C) permutation ofMR VI r s f(r; s)MR VII s s f(r; s)MR VIII r f(r; s) g(r; s)MR IX s f(r; s) g(r; s)MR X e(r; s) f(r; s) g(r; s)4



Among these only the types MR I, III and V are solvable for all choices of e; f; g. The moste�cient types are Type MR I { IV if we choose the parameter C = 1, because we need noinversion during message recovery. In Type MR II, IV, VI { X we have to choose suitablefunctions e; f; g to guarantee the solvability for the parameter s. In Type MR IV, we have tochoose di�erent functions f; g without homomorphic properties to guarantee the security of thesignature scheme. Type MR I has been obtained from Type EG I of the Meta-ElGamal scheme,Type MR II from Type EG IV and Type MR III from Type EG V. The other types result fromvarious variants of the Meta-ElGamal scheme which haven't been enumerated yet [HMP394].Table 1 gives an overview about all permutations of the �rst four types with d(r0; m) =(r0)�1m (mod p), where we �nd the most e�cient variants (C = 1). Variant MR I.3 has �rstbeen proposed in [NyR193], variant MR I.2 in [Pive93], variants MR I.1 and MR I.5 in [NyR293]and independently in [HoP294] and variants MR I.4 and MR I.6 in [NyR293, NyRu94].No. A �B C signature message recoveryMR I.1 1 r s 1 � �xAr + ks m � �s�1yrs�1A rMR I.2 1 s r 1 � �xAs+ kr m � �r�1ysr�1A rMR I.3 s r 1 s � �xAr + k m � �syrArMR I.4 s 1 r s � �xA + kr m � �sr�1yr�1A rMR I.5 r s 1 r � �xAs + k m � �rysArMR I.6 r 1 s r � �xA + ks m � �rs�1ys�1A rMR II.1 s f(r; s) 1 s � �xAf(r; s) + k m � �syf(r;s)A rMR II.2 s 1 f(r; s) s � �xA + kf(r; s) m � �sf(r;s)�1yf(r;s)�1A rMR II.3 1 f(r; s) s 1 � �xAf(r; s) + ks m � �s�1yf(r;s)s�1A rMR II.4 1 s f(r; s) 1 � �xAs+ kf(r; s) m � �f(r;s)�1ysf(r;s)�1A rMR II.5 f(r; s) 1 s f(r; s) � �xA + ks m � �f(r;s)s�1ys�1AMR II.6 f(r; s) s 1 f(r; s) � �xAs+ k m � �f(r;s)ysArMR III.1 r 1 f(r; s) r � �xA + kf(r; s) m � �rf(r;s)�1yf(r;s)�1A rMR III.2 r f(r; s) 1 r � �xAf(r; s) + k m � �ryf(r;s)A rMR III.3 f(r; s) 1 r f(r; s) � �xA + kr m � �f(r;s)r�1yr�1AMR III.4 f(r; s) r 1 f(r; s) � �xAr + k m � �f(r;s)yrArMR III.5 1 f(r; s) r 1 � �xAf(r; s) + kr m � �r�1yf(r;s)r�1A rMR III.6 1 r f(r; s) 1 � �xAr + kf(r; s) m � �f(r;s)�1yrf(r;s)�1A rMR IV.1 f(r; s) g(r; s) 1 f(r; s) � �xAg(r; s)+ k m � �f(r;s)yg(r;s)A rMR IV.2 f(r; s) 1 g(r; s) f(r; s) � �xA + kg(r; s) m � �f(r;s)g(r;s)�1yg(r;s)�1A rMR IV.3 1 g(r; s) f(r; s) 1 � �xAg(r; s)+ kf(r; s) m � �f(r;s)�1yg(r;s)f(r;s)�1A rMR IV.4 1 f(r; s) g(r; s) 1 � �xAf(r; s) + kg(r; s) m � �g(r;s)�1yf(r;s)g(r;s)�1A rMR IV.5 g(r; s) 1 f(r; s) g(r; s)� �xA + kf(r; s) m � �g(r;s)f(r;s)�1yf(r;s)�1AMR IV.6 g(r; s) f(r; s) 1 g(r; s)� �xAf(r; s) + k m � �g(r;s)yf(r;s)A rTable 1: Message recovery for one message blockMode of operationWe also have to consider di�erent modes of operation for the message recovery schemes. TheMode XL in which jpj = jqj = 512 is not very e�cient. The Mode L has been referred asElGamal� in [NyRu94]. For Mode M and S we get two di�erent possibilities of computing theparameter r (of length q1) as pointed out in [NyRu94] for Mode M:1. m 2 Zq1 , d : Z2q1 !Zq1 , r0 := h ��k (mod p)�, r := d(r0; m) = d �h(�k (mod p)� ; m),2. m 2 Zp�1, d : Z2p !Zp, r0 := �k (mod p), r := h (d(r0; m)) = h �d(�k; m)�.5



The �rst variant gives message recovery for m 2 Zq1 :m := d�1 �r; h(�AC�1(yA)�BC�1)� :As the signed message is very small in this case we won't consider it any more.The second variant was proposed by Schnorr [Schn89] and forModeMby Nyberg and Rueppeland has been generalized in the seventh generalization of the Meta-ElGamal signature schemein [HMP394]. It doesn't give message recovery and can thus be used only in text hashing mode(where we have to transmitm additionally) like the e�cient DSA-variants proposed in [HMP394].Summarizing the above results, we see thatMode L is best suited for message recovery schemes,because the expansionrate of the signature is minimal.The Meta-scheme:Combining the described variations we get the Meta-Message recovery scheme (MMR) for onemessage block which can be written asMMR1 = (Mode:Type:No:�; d; e; f; g):The parameters can be chosen out of the following:� Mode 2 fXL, L, M, Sg gives the mode of operation,� No 2 f1, 2, 3, 4, 5, 6g gives the number of the permutation,� Type 2 fMR I, MR II, : : : , MR Xg gives the type of permutation,� � 2 f�(1); �(2); �(3); �(4)g �xes the signs,� d : Zp2 ! Zp invertible in the argument m,� e; f; g : Zq2 ! Zq invertible in the argument s.3.1.1 Security of the Meta-Message recovery schemeThe security of the Meta-Message recovery scheme is similar to the mr�variants of the Meta-ElGamal signature scheme, which has been analyzed in detail in [HMP394]. If we are substitutingthe parameter r in the signature equation by the function d(r0; m) then we see, that the equationsin Type MR I are like the equations in Type EG II if we choose d = f . The same property holdsfor all other types, only the corresponding types in the Meta-ElGamal scheme haven't beenenumerated yet.The security analysis for a total break of the signature scheme and universal forgery of mes-sages can be adapted from the Meta-ElGamal scheme. Only the existential forgery has to beconsidered again, because we get some obvious attacks, as described in [NyR193].1. An attacker can choose signature parameters r; s at random and calculate the correspond-ing message m by the message recovery equation (6). To avoid this attack, the message mshould be in a redundancy scheme, such that the probability of success for such an attackis negligible.2. For some variants one can compute valid signatures (r; s+ t) from a given valid signatureS(m) = (r; s). For example the following equations holdMR I.2: S �m(yr�1A )t� = (r; s+ t) MR I.3: S(m�t) = (r; s+ t)MR I.4: S �m(�r�1)t� = (r; s+ t) MR I.5: S(mytA) = (r; s+ t)For special choices of the functions f and g this property also exists for some variants ofthe other types of signature schemes. This corresponds to the homomorphic property ofthe RSA signature scheme. 6



These attacks have to be prevented by the choice of a suitable redundancy scheme R in whichno two of the above messages are within this scheme.Equivalent security of the variantsAs already mentioned in [NyRu94, HMP394] some of the variants o�er equivalent security. Forarbitrary choices of the functions d; e; f; g the equations� 1 and 6,� 2 and 4,� 3 and 5,for all types provide equivalent security, because only the roles of the generator � and thepublic key yA are changed. Additionally, some variants of the Meta-Message recovery schemeare strongly equivalent [NyRu94] to other variants of the Meta-ElGamal scheme for some spe-cial choices of the function d. For example for a message m 2 Zq in Mode S, if we choosed(r0; m) = r0m�1 then Type MR I is strongly equivalent to Type EG I: If (r; s) is a signaturefor m in Type EG I then �rm�1 (mod q); sm�1 (mod q)� is a signature for m in Type MRI. Conversely, given a signature (r; s) in MR I, we �rst recover m and obtain the signature(rm (mod q); sm (mod q)) in EG I.3.1.2 Performance of the Meta-Message recovery schemeThe most e�cient variants are those, in which Alice doesn't need to compute any inversionmodulo q for signature generation and additionally Bob doesn't need to compute any inversefor message recovery. These conditions are satis�ed for variants MR I.3, MR II.1, MR III.4 ifwe choose a suitable function f , for which the inverse can be computed without computingmultiplicative inverses modulo q.3.2 The Meta-Message recovery scheme for two message blocksThe ideas of the Meta-ElGamal scheme can also be applied for two message blocks using thegeneral construction principle described above. In this case, only one message block m1 can berecovered, the other one m2 has to be transmitted together with the signature parameters r; s.Thus we can put for example a hash value h(m1) and the identity IDA of user A into this secondblock. This value has to be transferred in any case, by this approach it's already authenticated.This can be useful for e-mail distributions of messages. The block m1 needs no longer to bewithin a suitable redundancy scheme and can be chosen at random in Zp�1 for Mode L. If wechoose for example a t bit hash value and l bits for the identity, then the message block m2 canbe submitted as a l+ t bit message. We can also add additional information, like timestamps togive a date of expire for the message.The general signature equation is nearly the same as in section 3.1 with the di�erence that thefunctions e; f; g : Zq3 ! Zq use the arguments m2; r; s. If we consider the e�cient variants, wehave to choose one function equal to 1. Hence we get the remaining ten types of permutationsif we also consider the necessary conditions on the functions e; f; g described in chapter 2 .Type (�A;�B;�C) permutation of Type (�A;�B;�C) permutation ofMR XI f(m2; r) s 1 MR XVI f(m2; r) g(m2; r; s) 1MR XII f(m2; r) g(m2; s) 1 MR XVII f(m2; r; s) r 1MR XIII f(m2; r) g(r; s) 1 MR XVIII f(m2; r; s) s 1MR XIV f(m2; s) g(r; s) 1 MR IXX f(m2; r; s) g(r; s) 1MR XV f(m2; s) g(m2; r; s) 1 MR XX f(m2; r; s) g(m2; r; s) 1The types MR XI, XII, XIII, XVI, XVII are solvable for all possible choices of f; g. Themost e�cient variants are those in which the functions f; g have only two arguments and theparameter C = 1, this is respective the case for two variants of Type MR XI { XIV which aregiven in the following table 2. 7



No. �A �B signature message recoveryMR XI.3 s f(m2; r) s � �xAf(m2; r) + k m1 � �syf(m2 ;r)A rMR XI.6 f(m2; r) s f(m2; r) � �xAs+ k m1 � �f(m2;r)ysArMR XII.3 g(m2; s) f(m2; r) g(m2; s) � �xAf(m2; r) + k m1 � �g(m2;s)yf(m2 ;r)A rMR XII.6 f(m2; r) g(m2; s) f(m2; r) � �xAg(m2; s) + k m1 � �f(m2;r)yg(m2 ;s)A rMR XIII.2 f(m2; r) g(r; s) f(m2; r) � �xAg(r; s) + k m1 � �f(m2;r)yg(r;s)A rMR XIII.4 g(r; s) f(m2; r) g(r; s) � �xAf(m2; r) + k m1 � �g(r;s)yf(m2 ;r)A rMR XIV.1 f(m2; s) g(r; s) f(m2; s) � �xAg(r; s) + k m1 � �f(m2;s)yg(r;s)A rMR XIV.6 g(r; s) f(m2; s) g(r; s) � �xAf(m2; s) + k m1 � �g(r;s)yf(m2 ;s)A rTable 2: E�cient variants for Message recovery with two message blocksIf we choose one coe�cient out of the setfr; s; e(r; s); e(m2; r); e(m2; s); e(m2; r; s)ginstead of the coe�cient 1, we get further 60 types (MR XXIII { MR LXXXII) which are notvery e�cient.Combining the described variations we get the Meta-Message recovery scheme for two messageblocks which can be written asMMR2 = (Mode:Type:No:�; d; e; f; g):The parameters are the same as for one message block, except that Type can be chosen out offMR XI, MR XII, : : : , MR XX, MR XXIII, : : : , MR LXXXg:3.3 The Meta-Message recovery scheme for three message blocksIn the case of three message blocks we can also recover only one message block m1, such that wehave to transmit the other two blocks m2; m3 together with the signature. The general signatureequation is as above in section 3.1 with the di�erence that the functions e; f; g : Zq4 ! Zqhave the arguments m2; m3; r; s. If we consider only the e�cient variants we should choose onefunction equal to 1, such that we can choose the parameter C = 1 and don't need any inversionfor message recovery. Among these variants the following one in table 3 is most e�cient withsuitable functions f; g. Because we can also apply the same attack as for the ms� variant in theMeta-ElGamal signature scheme [HMP394] in which an attacker can universally forge messageblocks m3 with the knowledge of one signed message (m1; m2; m3; r; s) we have to choose forexample the last t bit of the message block m2 as the hash value h(m1; m02; m3) of a suitablehash function (m02 denotes a jpj � t bit message, m2 = m02jjh(m1; m02; m3) and the parametert 2 Zp�1 an additional security parameter). The most secure scheme is the one, in which wechoose �A;�B;�C as a permutation of m2; f(m3; r) and s. In this case an attacker can onlystart an existential forgery on the message blockm3, which can be prevented either by the choiceof a suitable hash function or a redundancy scheme. This variant is also given in the followingtable 3:4. Meta-ElGamal blind signaturesThe basic schemeWe �rst give a short review of the �rst blind signature scheme, which has been presented byOkamoto in 1992 [Okam92]. Okamotos approach is best suited for signature schemes, where themessage is only hidden in the function d, that means m doesn't appear as argument in thefunctions e; f and g. This is the case in Schnorr's signature scheme [Schn89], which is the basisfor Okamoto's protocol. 8



No. A �B C signature message recoveryMR XXI.1 1 f(m2; r) g(m3; s) 1 � �xAf(m2; r) + kg(m3; s) �g(m3;s)�1yf(m2 ;r)g(m3 ;s)�1A rMR XXI.2 1 g(m3; s) f(m2; r) 1 � �xAg(m3; s) + kf(m2; r) �f(m2;r)�1 yg(m3 ;s)f(m2;r)�1A rMR XXI.3 g(m3; s) f(m2; r) 1 g(m3; s) � �xAf(m2; r) + k �g(m3;s)yf(m2 ;r)A rMR XXI.4 g(m3; s) 1 f(m2; r) g(m3; s) � �xA + kf(m2; r) �g(m3;s)f(m2;r)�1yf(m2 ;r)�1A rMR XXI.5 f(m2; r) 1 g(m3; s) f(m2; r) � �xA + kg(m3; s) �f(m2;r)g(m3 ;s)�1yg(m3 ;s)�1A rMR XXI.6 f(m2; r) g(m3; s) 1 f(m2; r) � �xAg(m3; s) + k �f(m2;r)yg(m3 ;s)A rMR XXII.1 m2 f(m3; r) s m2 � �xAf(m3; r) + ks �m2s�1yf(m3 ;r)s�1A rMR XXII.2 m2 s f(m3; r) m2 � �xAs + kf(m3; r) �m2f(m3 ;r)�1ysf(m3;r)�1A rMR XXII.3 s f(m3; r) m2 s � �xAf(m3; r) + km2 �sm�12 yf(m3 ;r)m�12A rMR XXII.4 s m2 f(m3; r) s � �xAm2 + kf(m3; r) �sf(m3;r)�1ym2f(m3;r)�1A rMR XXII.5 f(m3; r) m2 s f(m3; r) � �xAm2 + ks �f(m3;r)s�1ym2s�1A rMR XXII.6 f(m3; r) s m2 f(m3; r) � �xAs+ km2 �f(m3;r)m�12 ysm�12A rTable 3: Message recovery for three message blocksOkamoto's blind Schnorr signaturesOwner Alice Channel Notary Nancya; b 2 Zq ~k 2 Z�p~r0  � ~r0 := �~k (mod p)r0 := ~r0y�aN �b (mod p)r := h(r0; m)~r := r + a �! ~r~s  � ~s := xN ~r + ~k (mod q)s := ~s + b (mod q)The signature on the message m is given by (r; s). It's veri�cation can be done by checking theequation h(�sy�rN ; m) = r:This equation is true, because of the following congruence:h(�sy�rN (mod p); m) = h(�~k+~rxN+b��xN r (mod p); m) = h(�~k�axN+b; m) = h(r0; m) = rThe Meta-schemeNow we present the Meta-ElGamal based blind signature scheme founded on the ElGamalbased blind signature scheme in [CaPS94]. For the sake of clearness the function d is chosen asd(r;m) := r and we only focus on the Mode L. The adoption to the other modes is straightfor-ward.The idea is that notary Nancy chooses the blinded parameter ~r := �~k (mod p) herself (witha random ~k 2 Zq�) and the owner Alice chooses the unblinded r := ~ra�b (mod p) (with randoma; b 2 Zq�). Nancy signs the blinded message ~m using the equation~A � xN ~B + ~k ~C (mod q); (7)which is equivalent to ~k � ~C�1( ~A� xN ~B) (mod q) where xN is the secret key of Nancy. Theunblinded signed message is given by (m; r; s). Its validity is checked by the equation�A � yBNrC (mod p): (8)For the correctness of the signature scheme, it is necessary, that this equation is satis�ed.Thus we haveyBNrC � �xNB�(a~k+b)C � �xNB+C(a ~C�1( ~A�xN ~B)+b) � y(B�a ~C�1 ~BC)N �a ~C�1 ~AC+bC (mod p)9



and this should be equivalent to �A modulo p. Hence we get the equationsA = a ~AC ~C�1 + bC (mod q) (9)B = a ~BC ~C�1 (mod q) (10)If the value s does not appear in C then it is possible to transform these two equations to get~m :=  (a; b;m; r;~r) and s := �(a; b;m; r; ~m; ~r; ~s). Note that s or ~s are not allowed in the equationfor ~m. Furthermore we can transform the signature equation (7) to get ~s := �(xN ; ~k; ~m; ~r). Hencefollows the Meta-ElGamal blind signature scheme:Meta-ElGamal blind signature schemeparameter: p; q prime, � generator, m messageOwner Alice Channel Notary Nancya; b 2R Z�q ~k 2R Zp�~r  � ~r := �~k (mod p)r := ~ra�b (mod p)~m :=  (a; b;m; r;~r) �! ~m~s  � ~s := �(xN ; ~k; ~m; ~r)s := �(a; b;m; r; ~m; ~r; ~s)The signature on the message m is given by (r; s). Its veri�cation can be done by checkingthe equation �A � yBNrC (mod p):We illustrate the Meta-scheme by giving equations for some e�cient variants in table 4.No. equation (9) equation (10)MB I.2 m � a~r�1 ~mr + br s � a~r�1~srMB I.3 s � a ~m�1~sm+ bm r � a ~m�1~rmMB I.4 s � a~r�1~sr + br m � a~r�1 ~mrMB I.5 r � a ~m�1~rm+ bm s � a ~m�1~smMB II.2 1 � af( ~m; ~r)�1f(m; r) + bf(m; r) s � af( ~m; ~r)�1~sf(m; r)MB II.3 s � a~s + b f(m; r) � af( ~m; ~r)MB II.4 s � af( ~m; ~r)�1~sf(m; r) + bf(m; r) 1 � af( ~m; ~r)�1f(m; r)MB II.5 f(m; r) = af( ~m; ~r) + b s � a~sMB III.2 1 � ag( ~m; ~s) + bf(m; s) g(m; s) � af( ~m; ~r)�1g( ~m; ~s)f(m;r)MB III.3 g(m; s) � ag( ~m; ~s) + b f(m; r) � af( ~m; ~r)MB III.4 g(m; s) � af( ~m; ~r)�1g( ~m; ~s)f(m; s) + bf(m; s) 1 � af( ~m; ~r)�1f(m; r)MB III.5 f(m; r) � af( ~m; ~r) + b g(m; s) � ag( ~m; ~r)MB IV.2 1 � af( ~m; ~r)�1f(m; r) + bf(m; r) g(r; s) � af( ~m; ~r)�1g(~r; ~s)f(m;r)MB IV.3 g(r; s) � ag(~r; ~s) + b f(m; r) � af( ~m; ~r)MB IV.4 g(r; s) � af( ~m; ~r)�1g(~r; ~s)f(m; r) + bf(m; r) 1 � af( ~m; ~r)�1f(m; r)MB IV.5 f(m; r) � af( ~m; ~r) + b g(r; s) � ag(~r; ~s)MB V.2 1 � af( ~m; ~s)�1f(m; s) + bf(m; s) g(r; s) � af( ~m; ~s)�1g(~r; ~s)f(m;s)MB V.3 g(r; s) � ag(~r; ~s) + b f(m; s) � af( ~m; ~s)MB V.4 g(r; s) � af( ~m; ~s)�1g(~r; ~s)f(m; s) + bf(m; s) 1 � af( ~m; ~s)�1f(m; s)MB V.5 f(m; s) � af( ~m; ~s) + b g(r; s) � ag(~r; ~s)Table 4: Meta-ElGamal blind signature schemesNote that for those schemes in which the parameter s appears in C we can't get blind signatureschemes for general functions f and g, because s and ~s are not allowed as arguments in thefunction  . Thus we can't get a blind signature scheme using the basic ElGamal signaturescheme.A signature scheme is called blind, if all (blinded) parameters which are known by Nancy arestatistically independent from the unblinded parameters of the signature. If it can be shown thatfor any blinded and unblinded parameters there are unique a and b which are chosen at random10



by the owner then the signature scheme is truly blind. Generalizing Theorem 2 in [CaPS94] wecan show that all variants are blind signature schemes:Theorem 1: For any pair of triples ( ~m; ~s; ~r), (m; s; r) with m; r; ~r 2 Z�p; ~r � �~k (mod p),~A � ~BxN + ~C~k (mod q), �A � yBNrC (mod p) and A;B;C chosen from the table above, thereexist unique a; b 2 Zq with r � ~ra�b (mod p) (11)A = a ~C�1 ~AC + bC (mod q) (12)B = a ~C�1 ~BC (mod q) (13)Proof: Choose a; b 2 Zq with a = B ~C ~B�1C�1 (mod q) (14)b = (A� ~AB ~B�1)C�1 (mod q) (15)Using the signature equation (7) from above we geta~k + b � (B ~C ~B�1C�1)~k+ (A� ~AB ~B�1)C�1 (16)� C�1(A+ B( ~C ~B�1~k � ~A ~B�1))� C�1(A+ B(( ~A� xN ~B) ~B�1 � ~A ~B�1))� C�1(A� BxN ) (mod q)Thus we have~ra�b � �a~k+b � �C�1(A�BxN ) � (�Ay�BN )C�1 � rCC�1 � r (mod p)The validity of the relations for a and b is trivial. Moreover the choice of a and b is unique,because congruence (16) must be satis�ed. Hence the Meta-ElGamal blind signature scheme canbe written as MEB = (Mode:Type:No; d; e; f; g)similar to the Meta-ElGamal scheme (MEG).4.1 Security considerationsTotal break of the schemeTo avoid a total break of the scheme, which means that an attacker can compute the secret keyxN of the notary Nancy, Nancy should be aware that she doesn't sign a blinded message ~m ifthe coe�cient ~B or ~C is equal to zero or (p� 1)=2 in Mode XL.� As already described in [HMP294], the variants of the ElGamal signature scheme canbe totally broken, if the coe�cient C is chosen equal to (p � 1)=2 (mod p) in ModeXL (or equal to 0 (mod q) in modes L, M and S). In these cases every veri�er cancompute the secret key xN . The signature equation is A � xNB + kC (mod p � 1).If C = (p � 1)=2 then this equation simpli�es to A � xNB (mod p � 1) if k is evenand to A � xNB + (p� 1)=2 (mod p� 1) if k is odd. In both cases xA can be com-puted if gcd(B; p � 1) = 1. In the case of C � 0 (mod q) the equation simpli�es toA � xNB (mod q), which can always be solved for xN if B 6= 0.To avoid this kind of attack, it is necessary, that either the parameter C can't be chosenequal to (p� 1)=2 or 0 without knowledge of the notary, or the parameter B should alsobe equal to (p� 1)=2 or 0 in this case, such that xN can't be extracted, as the conditiongcd(B; p� 1) = 0 is not satis�ed.If we look at the equation (10), we see that if C = 0 then the parameter B or ~B must alsobe equal to zero, such that either the notary gets a zero coe�cient ((p� 1)=2 respectively)or the equation is trivial and leaks no information about xN .11



� The same kind of attack applies to the secret parameter k. This can be extracted, if B � 0(or B � (p�1)=2 inMode XL) and C 6= 0. In this case, only k can be extracted, which is arandom number used only once, such that there is no immediate use from this knowledge.But with the knowledge of k the parameter ~k := (k � b)a�1 can also be computed. Thiscan be used, to solve the blinded equation ~A � xN ~B+ ~k ~C (mod q) for the parameter xN ,if this equation is not trivial in the sense, that ~B is also equal to (p�1)=2 or 0 in this case.If we look again at the equation (10), we see that with the choice of B = 0, the coe�cient~B or C must also be equal to zero. If ~B is equal to zero then the notary won't sign themessage, in the other case k can't be extracted as C = 0.Universal and existential forgeryThere are three di�erent persons with di�erent views who are able to cheat:� The notary Nancy knows the blinded parameters and perhaps later some unblinded ones.She wants to �nd out some relationship between the blinded and unblinded parametersand she does not need to follow the protocol.� The veri�er Bob knows some unblinded and blinded parameters but not necessarily therelated ones and can try to forge a signature. He cannot in
uence the protocol.� The owner Alice knows the related blinded and unblinded parameters and her aim is toget more valid signatures to arbitrarily chosen messages than is allowed to get. She doesnot need to follow the protocol.We have already proved that the scheme is truly blind. Thus Nancy doesn't get additionalinformations and is not able to cheat.The blinded parameters don't help veri�er Bob because as we have seen there are uniqueparameters a; b such that a blinded and an unblinded triple of signature parameters correspondto each other. Hence we get no further informations from the unblinded parameters and canreduce this case to the Meta-ElGamal scheme. This type of possible cheating has already beenanalyzed in [HMP394].Last we examine the case that Alice try to cheat. If she follows the protocol then wecan reduce this case to the problem how to get an additional valid signature triple outof t given signature triples. We assume that t pairs of signature triples are known, theseare (m1; s1; r1); ( ~m1; ~r1; ~s1); � � � ; (mt; st; rt); ( ~mt; ~rt; ~st). She can try to choose the parameterk � a~k + b (mod q) such that k � k1 (mod p) with k1 � a1~k1 + b1 (mod q). Then us-ing the equations A = xNB + kC and A = xNB + k1C Alice can compute the secret key xNbecause the parameters m1; s1; r1; m; s; r which appear in A;B;C are known and we have twoequations and two unknown variables k and xN . Note that k is still unknown for Alice (Other-wise she can compute ~k and xN using the blinded signature equation ~A = ~BxN + ~C~k.). Nowshe can solve the equations to get xN and k.If k and k1 are equal then r and r1 are equal either. Thus the problem is how to choosea; b; a1; b1 such that ~r1a1�b1 � ~ra�b (mod p):or 1 � ~r1�a1 ~ra�b�b1 (mod p):This is the representation problem [Bran93] and is equivalent to the discrete logarithm problem.Thus this attack is not successful.But how can Alice cheat if she doesn't follow the protocol ? Note that she can compute theparameters r; ~m and s totally di�erent. But then she doesn't get any valid signature on anymessage m and it will be hard for her to combine several non-signatures into one signature.12



4.2 Generalized designInstead of using d(r;m) := r we can also use the general suitable function d(r0; m) wherer0 := ~ra�b (mod p) if m does not appear as argument in the functions e; f; g. The resultingMeta-scheme is given in the following table:Meta-blind scheme for d-variantsparameter: p; q prime, � generator, m messageOwner Alice Channel Notary Nancya; b 2R Z�q ~k 2R Zp�~r0  � ~r0 := �~k (mod p)r0 := ~r0a�b (mod p)r := d(r0; m)~r :=  (a; b; r) �! ~r~s  � ~s := �(xN ; ~k; ~r)s := �(a; b; r;~r; ~s)Further, instead of using the equation (A1) r0 := (~r0)a�b � �~ka+b (mod p) we can alsouse (A2) r0 := ~r0y�aN �b � �~k�xNa+b (mod p) as suggested by Okamoto in [Okam92], (A3)r0 := (~r0)aybN � �~ka+xN b (mod p) or (A4) r0 := (~r0)ayN�b � �~ka+xN+b (mod p) which haven'tbeen proposed before. This leads to slightly modi�ed general equations (9), (10) from which weobtain many additional e�cient variants. We get the following equations:(A2) A = bC + ~AC ~C�1 (mod q) (17)B = aC � ~B ~C�1 (mod q) (18)(A3) A = a ~AC ~C�1 (mod q) (19)B = a ~BC ~C�1 + bC (mod q) (20)(A4) A = a ~AC ~C�1 + bC (mod q) (21)B = a ~BC ~C�1 � 1 (mod q) (22)The approach (A3) is interesting for the d�variants and the message recovery variants as wecan choose here A = s; B = r; C = 1 and d(r0; m) = m+ r. Then we get the following equationsfor ~r and s: r := ~ra+ b; s = ~sa and s = xNr + k:Security considerationsThe attack described above for the total break also applies here, if the notary doesn't examinethe coe�cients ~B and ~C carefully.5. Meta-Message recovery blind signaturesNow we present the Meta-Message recovery blind signature scheme based on the message re-covery blind signatures [CaPS94]. The idea is that notary Nancy chooses the blinded parameter~t := �~k herself (with a random ~k 2 Zq) and the owner Alice chooses the unblinded r := m~ta�b(with random a; b 2 Zq). Nancy signs the blinded parameter ~r using the equation~A � xN ~B + ~k ~C (mod q); (23)which is equivalent to ~k � ~C�1( ~A � xN ~B) (mod q); where xN is the secret key of Nancy. Thesignature on the unblinded message m is given by (r; s). Its validity is checked by the messagerecovery equation m := �AC�1y�BC�1N r (mod p): (24)13



For the correctness of the scheme it is necessary, that this equation is satis�ed. Thus we have�AC�1y�BC�1N r � �AC�1�xNBC�1+a~k+bm ��AC�1�xNBC�1+a( ~C�1( ~A�xN ~B))+bm � �(C�1A+a ~C�1 ~A+b)�xN (C�1B+a ~C�1 ~B)m (mod p)and this should be equivalent to m modulo p. Hence we get the equationsA = �a ~AC ~C�1 � bC (mod q) (25)B = �a ~B ~C�1C (mod q) (26)Note that we get nearly the same equations as in the Meta-ElGamal blind signature scheme.If the value s does not appear in C then it is possible to transform these two equations to get~r :=  (a; b; r;~t) and s := �(a; b; r;~r; ~s; ~t). Note that s and ~s are not allowed in the equation for~r. Furthermore we can transform the signature equation (23) to get ~s := �(xN ; ~k; ~r). From thisthe Meta-Message recovery scheme follows:Meta-Message recovery blind signature schemeParameter: p; q prime, � generator, m messageOwner Alice Channel Notary Nancya; b 2R Zq ~k 2R Zp�~t  � ~t := �~k (mod p)r := m~ta�b (mod p)~r :=  (a; b; r;~t) �! ~r~s  � ~s := �(xN ; ~k; ~r)s := �(a; b; r; ~r; ~s; ~t)The signature of the message m is (r; s). The message recovery is done by calculatingm := �AC�1y�BC�1N r (mod p)and checking, if m satis�es the redundancy scheme. We summarize the equations for somee�cient types in table 5:No. signature equation(25) equation(26)MB I.2 1 � �xN ~s + ~k~r 1 � �a~r�1r � br s � �a~r�1~srMB I.3 ~s � �xN ~r + ~k s � �a~s � b r � �a~rMB I.4 ~s � �xN + ~k~r s � �a~r�1~sr � br 1 � �a~r�1rMB I.5 ~r � �xN ~s + ~k r � �a~r � b s � �a~sMB II.1 ~s � �xN f(~r; ~s) + ~k s � �af(~r; ~s) � b f(r; s) � �af(~r; ~s)MB II.6 f(~r; ~s) � �xN ~s + ~k f(r; s) � �a~s � b s � �a~sMB III.2 ~r � �xN f(~r; ~s) + ~k r � �a~r � b f(r; s) � �af(~r; ~s)MB III.3 f(~r; ~s) � �xN + ~k~r f(r; s) � �a~r�1f(~r; ~s)r � br 1 � �a~r�1rMB III.4 f(~r; ~s) � �xN ~r + ~k f(r; s) � �af(~r; ~s) � b r � �a~rMB III.5 1 � �xNf(~r; ~s) + ~k~r 1 � �a~r�1r � br f(r; s) � �a~r�1f(~r; ~s)rTable 5: E�cient variants of the Message recovery blind signature schemeNote that in the schemes listed in table 5 we can get the functions  and � by transformingthe equations (25) and (26) with a general function f . In any other variant of Type MB I { IVthis is not possible for general functions f and g.The proof of blindness is similar to the proof given for the Meta-ElGamal blind signaturescheme above. 14



Theorem 2: For any pair of triples (~r; ~s; ~t), (m; s; r) with m; r;~t 2 Z�p; ~t � �~k (mod p)~A � ~BxN + ~C~k (mod q), �AC�1y�BC�1N r � m (mod p) and A;B;C chosen from the tableabove, there exist unique a; b 2 Zq withr � m~ta�b (mod p) (27)A = �a ~C�1 ~AC � bC (mod q) (28)B = �a ~C�1 ~BC (mod q) (29)(30)Proof: Choose a; b 2 Zq with a = �B ~C ~B�1C�1 (mod q) (31)b = (�A+ ~AB ~B�1)C�1 (mod q) (32)Using the signature equation (23) from above we geta~k + b � (�B ~C ~B�1C�1)~k + (�A+ ~AB ~B�1)C�1 (33)� C�1(�A�B( ~C ~B�1~k � ~A ~B�1))� C�1(�A�B(( ~A � xN ~B) ~B�1 � ~A ~B�1))� C�1(�A+BxN ) (mod q)Thus we havem~ta�b � m�a~k+b � m�C�1(�A+BxN ) � m��AC�1yBC�1N � r (mod p)The validity of the relations for a and b is trivial. Moreover the choice of a and b is unique,because congruence (33) must be satis�ed.Hence we can de�ne Meta-Message recovery blind signature schemeMRB = (Mode:Type:No; d; e; f; g)similar to the Meta-Message recovery scheme.5.1 Security considerations5.2 E�ciency considerationsFor a detailed security and e�ciency analysis we refer to the �nal version of this paper.6. E�cient variantsE�cient Meta-ElGamal blind signaturesRecently Harn published a digital signature scheme [Harn94], which is variant EG II.3 of theMeta-ElGamal scheme. From this we get the following blind signature scheme:The signature equation for notary Nancy is~s � xN( ~m+ ~r)� ~k (mod q):Thus we have A := s; B := (m + r); C := �1 and we can substitute the equations (10) and(9) to get m + r = a( ~m + ~r) and s = a~s � b. We have ~m :=  (a; b; r;~r;m) = a�1(m + r) � ~r;s := �(a; b; ~s; ~r; r; ~m;m) = a~s � b and ~s := �( ~m; ~r; xN ; ~k) = xN ( ~m+ ~r)� ~k.We get the following scheme: 15



The blinded Harn digital signature schemeparameter: p; q prime, � generator, m messageowner Alice notary Nancya; b 2R Zq ~k 2R Zp�~r := �~k (mod p)~r  � ~rr := ~ra�b (mod p)~m := a�1(m+ r)� ~r �! ~m~s � xN( ~m+ ~r) + ~k (mod q).~s  � ~ss := a~s+ bPerformance analysis: Owner Alice needs to compute two on{line exponentiations modulo pwith a jqj bit exponent and one o�{line inverse modulo q. Notary Nancy needs just one o�-lineexponentiation modulo p with a jqj bit exponent. A veri�er needs to compute two exponentiationsinstead of three as usual for an ElGamal signature. Note that this scheme is more e�cient thanthe variant proposed in [CaPS94]. In that variant owner Alice additionally computes two on-line inversions modulo q. There are other variants with high e�ciency (EB II.4, EB III.3, EBIII.4, EB IV.3, EB IV.4, EB V.3, EB V.4) where the addition is used for the functions f and g[HMP394].E�cient Meta-Message recovery blind signaturesThe most e�cient variants for the message recovery blind signature scheme are the variants MBI.3, MB I.5, MB II.1, MB II.6, MB III.2 and MB III.4. Here the owner needs one on-line and oneo�-line exponentiation modulo p with a jqj bit exponent, the notary one o�-line exponentiationmodulo p with a jqj bit exponent and the veri�er two exponentiations modulo p with a jpj bitexponent.7. Applications of the Meta schemes7.1 Authentic message encryptionThe basic encryption scheme which can be developed from the ElGamal encryption scheme[ElGa84] has been proposed in [NyRu94]. In this scheme we have to submit three ciphertextblocks. An improvement of this scheme was proposed in [HMP194] in which we need to transmitonly two message blocks of length jpj+ jqj instead of 2jpj+ jqj in the basic encryption scheme.This scheme can also be generalized for the Meta-Message recovery scheme.The trusted third party chooses two large primes p; q 2 P with qj(p � 1), an element �of order q and a one-way function h : Zp� ! Zp�. These public parameters are authentic toall users. Each user i 2 fA;Bg chooses a secret key xi 2 Zq� and computes his public keyyi := �xi ( mod p). He publishes yi which is certi�ed by a trusted third party and keeps xi secret.To send a messagem 2 Zp�1 within a suitable redundancy scheme, the user Alice chooses a ran-dom k 2 Zq and computes r := h(ykB)�1m (mod p), ~r := r (mod q) and s := k � xA~r (mod q).Then she sends (r; s) to the receiver Bob, who computes ~r := r (mod q), recovers the messagem := h(ysBy~rxBA )r (mod p) and checks if m satis�es the redundancy scheme. We prove that thescheme is correct:h(ysByxB~rA ) � h(yk�xA~rB �xAxB~r)r � h(ykB) �h(ykB)��1m � m (mod p)16



7.1.1 Performance considerationsAlice has to compute one inverse modulo p, one exponentiation modulo p with a jqj bit exponentand executes g one time. Bob computes two exponentiations modulo p with a jqj bit exponentand executes g one time. The ciphertext for a jpj bit plaintext within the redundancy schemehas a length of jpj+ jqj bit. Thus the expansionrate is only (jpj+ jqj)=jpj= 1 + jqj=jpj:7.1.2 Security considerationsAn attacker, Carol, can try to forge the signature or break the encryption scheme. Forging thesignature scheme seems to be as hard as forging the Nyberg-Rueppel scheme and breaking theencryption scheme seems to be as hard as the Di�e-Hellman problem [DiHe76] (that is: given�xA and �xB , compute �xAxB). If the Di�e-Hellman problem can be solved then the scheme isno longer secure.Note that the one-way property of the function g is necessary because otherwise an attackerCarol can get the Di�e-Hellman-Key K := yxBA � yxAB (mod p) with just one known plaintext{ciphertext pair (m; r; s) by computingK � (g�1(r�1m)y�sB )(r0)�1 (mod p):Then Carol can read every further message with given ciphertext (r; s) by computingr0 := r (mod q) and recovering the message m := h(ysBKr0)r (mod p).Meta authentic encryption schemesWe can adopt the ideas of this kind of schemes to all Meta-Message recovery schemes. Theequations r0 := h(ykB) and r := d(r0; m) (mod p) are the same in every variant. Furthermore thesignature generation is like in the general equation (5). The message recovery can be done bythe equation m � d�1 �r; h(yAC�1B y�xBBC�1A )� (mod p): (34)The correctness of this equation is shown by the following congruence:d�1 �r; h(yAC�1B y�xBBC�1A )� � d�1 �r; h(y(A�xAB)C�1B )�� d�1 �r; h(ykCC�1B )� � d�1(r; r0) � m (mod p):Note that the variants in [HMP194] which are based on the rs�variants are not authentic aspointed out by Lim [Lim 94]. His attack can be countermeasured if the receiver checks whetherthe session key h(ykB) has been used before. As this solution is not very practical we recommendnot to use them.7.2 Self-certi�ed public keysBy applying the ideas described in [BaKn89, Guen89] we can create identity based certi�catesfor the public keys of identi�ed users with distinguished names, which results in the self-certi�edpublic keys [Gira91]. They have the following properties:� The public key can be computed as a function of the identity, the public parameters(generator �, prime modul p, public key of the trusted authority yZ) and the signatureparameter r, which isn't necessarily authentic. The secret key is computed by the trustedauthority as the signature parameter s.� The authenticity of the public key is not directly veri�ed, but only the authorized userknows the corresponding secret key and thus can bene�t of this public key.17



The basic schemeThe trusted authority Z signs the identity IDA of user Alice with the signature scheme givingmessage recovery proposed in [NyR193]. Z chooses a random number kA 2 Z�q , computes rA :=��kA IDA (mod p) and solves the signature equation for the parameter xA:xA := kA � xZrA (mod q):The tuple (rA; xA) is a signature on the message IDA. The parameter rA is published and theparameter xA is kept as secret key. The corresponding public key can be computed asyA := �xA � �kA�xZrA � �kAy�rAZ � y�rAZ r�1A IDA (mod p):Thus it can be computed as a function uA with arguments �; yZ ; rA and IDA, which are allpublic known.In the following, we will describe the general approach to obtain the self-certi�ed public keyyA of user Alice. For the sake of clearness we restrict the description to the Mode L.Using the Meta-Message recovery schemeThe trusted authority Z, who uses his public key yZ and his secret key xZ signs the identity IDAof Alice with the Meta-Message recovery scheme by choosing a random kA 2 Zq, computing r0A :=�kA (mod p), rA := d(r0A; IDA) and solving the general signature equation for the parameterxA: A � xZB + kAC (mod q) (35)with �A;�B;�C permutations of general functions e; f; g : Zq2 ! Zq and arguments rA andxA. This gives an equation of the form xA =: aA(xZ ; kA; rA)bA(xZ ; kA; rA)�1 (mod q), wherethe functions aA and bA are implicit de�ned by the chosen variant. The tuple (rA; xA) is asignature on the message IDA. The public key yA can be computed as yA := �xAA (mod p) withgenerator �A := �bA(xZ ;kA ;rA) =: tA(�; yZ ; rA; IDA) (mod p), such that the following congruenceholds for yA:yA � �xAA � �bA(xZ;kA;rA)aA(xZ;kA;rA)bA(xZ;kA;rA)�1 � �aA(xZ ;kA;rA) =: uA(�; yZ; rA; IDA) (mod p):(Note, that �xZ � yZ (mod p) and �kA � d�1(rA; IDA) (mod p) !) This means, that yA can becomputed as a function uA of the authentic public parameters �; yZ ; IDA and the parameter rA,which doesn't need to be authentic. To guarantee, that the last equivalence holds, the functionse; f and g have to be chosen as a composition of arithmetic operations.If we consider for example Type MR I with function d as d(r0; m) = r0 �m�1 and suitable signswe get the following public keys:No. signature �A = tA(�; yZ; rA; IDA) yA = uA(�; yZ ; rA; IDA)MR I.1 1 � �xZrA + kAxA rAIDA �yrAZMR I.2 1 � xZxA � kArA yZ �(rAIDA)rAMR I.3 xA � xZrA + kA � yrAZ rAIDAMR I.4 xA � xZ + kArA � yZ(rAIDA)rAMR I.5 rA � xZxA � kA yZ �rArAIDAMR I.6 rA � �xZ + kAxA rAIDA �rAyZThe main drawback of this general approach is, that the trusted authority creates the secretkeys of all users and therefore requires unconditional trust by the users.Using Meta blind signature schemesThis drawback can be prevented by signing the secret key xA with a hidden signature [HoKn91,HoP394, HMP494], such that it can be modi�ed by the user after signature generation withoutthe trusted authority knowing it [HoP294]. It can also be signed with one of the two Meta blindsignature schemes described above, to obtain a self-certi�ed public key for one pseudonym of auser. 18



It should be mentioned that we can also compute identity-based public keys by signing themessagem := h(IDA)yA with a public hash function h to obtain a certi�cate (r; s) and recoveringthe public key as yA := mh(IDA)�1 (mod p) by using the identity IDA of the user [NyR193].This method can be applied to all Meta-Message recovery schemes.Performance in computing self-certi�ed public keysNote that the computation of the self-certi�ed public-keys is more e�cient in some variants thanin the previously known protocols. For example in variants MR I.3 and MR I.4 we just needone exponentiation modulo p where in the proposed schemes in [BaKn89, Guen89] we need twoexponentiations and one inversion.7.2.1 Authentication schemesIn the authentication schemes, the user Alice who wants to authenticate herself to the ver-i�er Bob proves the knowledge of the discrete logarithm xA of her self-certi�ed public keyyA := uA(�; yZ ; rA; IDA) to the basis �A = tA(�; yZ ; rA; IDA) by the Zero-Knowledge-proof ofChaum, Evertse and van de Graaf [ChEG87]. This can be done with all self-certi�ed publickeys obtained from the Meta-Message recovery scheme [HoP294]. It can also be applied to otherauthentication protocols, e.g. [ChEG87, BrMc90, Okam92].Meta-Zero-knowledge authentication schemeUser Alice Channel Veri�er BobvA 2 RAND(Zq)wA := �vAA (mod p) �! (IDA; rA; wA)�A := tA(�; yZ; rA; IDA)yA := uA(�; yZ; rA; IDA)cA  � cA 2 RAND[0 : 2t � 1]zA := vA + xAcA (mod q) �! vAccepted, ifwA � �vAA y�cAA (mod p)7.2.2 Authenticated key exchangeTo obtain a general authenticated key exchange protocol, we can adapt the ideas from [BaKn89,Guen89] or the SELANE-protocols [HoKn91] which both use self-certi�ed public keys.The �rst approach combines mutual authentication and key exchange by using the (authentic)data exchanged during the authentication protocol to construct the session key. The session keycan be computed from the authentic parameters yA; yB in the Meta-authentication scheme aboveand some exchanged, randomly chosen parameters eA := �dAA (mod p); eB := �dBB (mod p) inthe following manner:K := evAB wdAB � �vAdB+vBdAB � �vAdB+vBdAA � wdBA evBA (mod p):Obviously this is only correct if �A = �B and thus some variants can't be used.In the second approach, a Di�e-Hellman key is computed, which can only be known by the twoparties. The key has to be veri�ed after computation, to ensure that both sides know the samekey. Alice computes yB := uB(�; yZ; rB; IDB) and �B := tB(�; yZ; rB; IDB). Then she choosesa random number xA 2 Zq� and computes yA := �xAB (mod p). yA is transmitted to Bob whocomputes yA := uA(�; yZ ; rA; IDA) and �A := tA(�; yZ; rA; IDA). He chooses a random numberxB 2 Zq� and computes yB := �xBA (mod p), which he transmits to Alice. Alice computes hersession key KA := yxAB yxAB (mod p) and Bob his session key KB := yxBA yxBA (mod p). If thetransmission of the values yA and yB hasn't been disturbed by any attacker, the two sessionkeys are identically as proven by the following congruence:KA := wxAB yvAB � (�vBA )xA(�xBB )vA � (�vAB )xB(�xAA )vB � wxBA yvBA := KB (mod p):19



Note, that both sides can use functions ti and ui related to di�erent variants of the Meta-Messagerecovery scheme to compute their self-certi�ed public keys yi and the corresponding generators�i (i 2 fA;Bg).Both solutions are vulnerable to the triangle attack [Burm94] where under special circum-stances the session key of two users can be calculated using eavesdropped information andadditional information which is voluntarily given by the users to the attacker. This attack canbe countermeasured, but the amortized security can't be proven [YaSh89].A third possibility to exchange an authentic session key, is to sign as messagem a random valuewA := �vA (mod p) by Alice with one of the Meta-Message recovery schemes and also a valuewB := �vB (mod p) by Bob. Both parties can exchange their signatures, recover the values qAand wB and compute the session key as in the Di�e-Hellman key exchange [DiHe76, NyRu94]:KA := wvAB � �vAvB � wvBA := KB (mod p):7.3 Further applicationsFrom the Meta-Message recovery scheme we can develop hidden and weak blind signatureschemes giving message recovery as presented in [HoP394, HMP494]. Other applications of theMeta-Message recovery scheme are multisignatures, blind multisignatures [HMP694] and thresh-old cryptosystems as proposed in [HMP594, HMP294]. Details on this topic are very extensiveand can be found in the literature.8. ConclusionWe have presented Meta-Message recovery signature schemes for one, two and three messageblocks based on the Meta-ElGamal signature scheme. All previously known message recoveryschemes based on the discrete logarithm problem can be integrated into this approach. Forfurther discussions we have to consider only this Meta-scheme. We have shown how to generalizethe ElGamal- and the Message recovery blind signature schemes and discussed the most e�cientvariants. Furthermore some interesting applications like Meta-authentic encryption schemes,identity based public keys used for authentication and authenticated key exchange schemeshave been mentioned.References[BaKn89] F.Bauspie�, H.-J.Knobloch, "How to keep authenticity alive in a computer net-work", Lecture Notes in Computer Science 434, Advances in Cryptology: Proc.Eurocrypt '89, Berlin: Springer Verlag, (1990), pp. 38{46.[Bran93] S. Brands, "An e�cient o�-line electronic cash system based on the representationproblem", Lecture Notes in Computer Science , Advances in Cryptology: Proc. Eu-rocrypt '93, (1993), S. 26.1{26.15[BrMc90] E.F.Brickell, K.S.McCurley, "An Interactive Identi�cation scheme based on discretelogarithms and factoring", Lecture Notes in Computer Science 473, Advances inCryptology: Proc. Eurocrypt '90, Berlin: Springer Verlag, (1991), pp. 63{71.[Burm94] M.Burmester, "On the risk of opening distributed keys", Lecture Notes in ComputerScience 839, Advances in Cryptology: Proc. Crypto '94, Berlin: Springer Verlag,(1994), pp. 308 { 317.[CaPS94] J.L.Camenisch, J.-M.Piveteau, M.A.Stadler, "Blind signature schemes based on thediscrete logarithm problem", Preprint, presented at the Rump session of Eurocrypt'94, (1994), 5 pages.[Chau82] D. Chaum, "Blind signatures for untraceable payments", Advances in Cryptology:Proc. Crypto '82, New York: Plenum Press, (1983), pp. 199{203.20
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