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Abstract. We present a zero-knowledge argument system of representation of a committed value. Specifi-
cally, for commitments C = Commit1(y), D = Commit2(x), of value y and a tuple x = (x1, . . . , xL),
respectively, our argument system allows one to demonstrate the knowledge of (x, y) such that x is a repre-
sentation of y to bases h1, . . . , hL. That is, y = hx1

1 · · ·h
xL
L . Our argument system is zero-knowledge and

hence, it does not reveal anything such as x or y. We note that applications of our argument system are enor-
mous. In particular, we show how round-optimal cryptography systems, where privacy is of a great concern,
can be achieved. We select three interesting applications with the aim to demonstrate the significance our
argument system. First, we present a concrete instantiation of two-move concurrently-secure blind signa-
ture without interactive assumptions. Second, we present the first compact e-cash with concurrently-secure
withdrawal protocol. Finally, we construct two-move traceable signature with concurrently-secure join. On
the side note, we present a framing attack against the original traceable signature scheme within the original
model.

1 Introduction

The notion of zero-knowledge proof protocol was put forth by Goldwasser, Micali and Rackoff in
[33]. In a zero-knowledge proof protocol, a prover convinces a verifier that a statement is true, while
the verifier learns nothing except the validity of the assertion. A proof-of-knowledge [6] is a protocol
such that the verifier is convinced that the prover knows a certain quantity w satisfying some kinds of
relation R with respect to a commonly known string x. That is, the prover convinces the verifier that
he knows some w such that (w, x) ∈ R. If it can be done in such a way that the verifier learns nothing
besides the validity of the statement, this protocol is called a zero-knowledge proof-of-knowledge
(ZKPoK) protocol. Various efficient ZKPoK protocols about knowledge of discrete logarithms and
their relations have been proposed in the literature. For instance, knowledge of discrete logarithm [45],
polynomial relations of discrete logarithms [14, 26], inequality of discrete logarithms [17], range of
discrete logarithms [12] and double discrete logarithm [18].

ZKPoK protocols have been used extensively as building blocks of many cryptosystems. In this
paper, we present a ZKPoK protocol for the knowledge of representation of a committed value. We
demonstrate that our protocol can be used to construct round-optimal cryptosystems, including blind
signatures, traceable signatures and compact e-cash.

1.1 Related Work

ZKPoK of Double-Discrete Logarithm Our protocol generalizes the ZKPoK protocol of double
discrete logarithm ,introduced by Stadler [46], when it is used to construct a verifiable secret sharing
scheme. Roughly speaking, a double discrete logarithm of an element y to base g and h is an element
? This paper is the full version of the paper to appear in ACISP 2010 under the same title.
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x such that y = gh
x
. Stadler introduces a ZKPoK protocol to demonstrate the knowledge of such x

with respect to y. This protocol was employed in the construction of group signatures [18, 2] and a
divisible e-cash scheme [19]. Looking ahead, our zero-knowledge protocol further extends Stadler’s
protocol in which it allows the prover to demonstrate the knowledge of a set of values (x1, . . . , xL, r)
such that y = gh

x1
1 ···h

xL
L gr0. We would like to stress that there is a subtle difference between Stadler’s

protocol and ours when L = 1. Specifically, with the introduction of the variable r, no information
about x is leaked to the verifier. This turns out to be very useful when the prover wishes to demonstrate
the same x, without being linked, to different verifiers.

Blind signatures Introduced by Chaum [22], blind signature schemes allow a user to obtain inter-
actively a signature on message m from a signer in such a way that the signer learns nothing about
m (blindness) while at the same time, the user cannot output more signatures than the ones produced
from the interaction with the signer (unforgeability). The formal definition of blind signatures was
first proposed in [44], with the requirement that any user executing the protocol ` times with the
signer cannot output ` + 1 valid signatures on ` + 1 distinct messages. One important feature of se-
curity offered by any blind signature construction is whether the execution of the signing protocol
can be performed concurrently, that is, in an arbitrarily-interleaved manner. As pointed out in [30],
a notable exception to the problems of constructing schemes secure against interleaving executions
are those with an optimal two-move signing protocol, of which the problem of concurrency is solved
immediately.

Table 1 summarizes existing schemes that are secure under concurrent execution. Note that [35],
[30] and [34] provide generic construction only. [30] relies on generic NIZK while [34] utilizes ZAP.
On the other hand, as pointed out in [34], [35] makes use of generic concurrently-secure 2-party
computation and constructing such a protocol without random oracle or trusted setup is currently an
open problem. Lindell’s result [39] states that it is impossible to construct concurrently-secure blind
signatures in the plain model if simulation-based definitions are used. Hazay et al. [34] overcome this
limitation by employing a game-based definition. A construction achieving all properties is proposed
in [31] recently.

Schemes Round-Optimal? W/o RO? Non-Interactive Assumption? Instantiation?
[34] × X X ?
[35] × X X ×
[30] X X X ?
[7] X × × X
[9] X × × X
[41] × X X X
[31] X X X X
Our Scheme X × X X

Table 1. Summary of Existing Blind Signatures Secure under Concurrent Signature Generation

Traceable Signatures Introduced by Chaum and van Heyst [23], group signatures allow a group
member to sign anonymously on behalf of the group. Whenever required, the identity of the signature’s
originator can be revealed only by the designated party. Traceable signatures, introduced in [36], are
group signatures with added functionality in which a designated party could output some tracing
information on a certain user that allows the bearer to trace all signatures generated by that user.
Subsequently, another traceable signature is propose in [24]. We discover a flaw in the security proof



Proof-of-Knowledge of Representation of Committed Value and Its Applications 3

of [36] and are able to develop a concrete attack against their scheme under their model. Table 2
summarizes existing traceable signatures. Note that none of the existing schemes is secure when the
join protocol is executed concurrently. In contrast, group signature scheme with concurrent join has
been proposed in [38] and can also be constructed based on group encryption [21].

Schemes Round-Optimal? W/o RO? Support Concurrent-Join? Secure?
[36] × × × ×
[24] × × × X
Our Scheme X × X X

Table 2. Summary of Existing Traceable Signatures

Compact E-Cash Invented by Chaum [22], electronic cash (E-Cash) is the digital counterpart of
paper cash. In an e-cash scheme, a user withdraws an electronic coin from the bank and the user can
spend it to any merchant, who will deposit the coin back to the bank. Compact e-cash, introduced
in [15], aims at improving bandwidth efficiency. In compact e-cash, users can withdraw efficiently a
wallet containing K coins. These coins, however, must be spent one by one. Other constructions of
compact e-cash include [4, 3, 20]. Table 3 summarizes existing compact e-cash. Note that none of the
existing schemes is secure when the withdrawal protocol is executed concurrently.

Schemes Round-Optimal? W/o RO? Support Concurrent-Withdrawal?
[15] × × ×
[4] × × ×
[3] × × ×
[20] × × ×
Our Scheme X × X

Table 3. Summary of Existing Compact E-Cash Systems

1.2 Overview of Our Approach

As discussed in [38], the most efficient and conceptually simple joining procedure for a group signa-
ture is for the user to choose a one way function f and compute x = f(x′) for some user secret x′.
Next, the user sends x to the group manager (GM) and obtains a signature σ on x. A group signature
from the user will then consist of a probabilistic encryption of x into ψ under the GM’s public key,
and a signature-of-knowledge of (1) the correctness of ψ as an encryption of some value x, (2) knowl-
edge of x′, a pre-image of x, and (3) knowledge of σ which is a valid signature on x. This approach
is suggested by Camenisch and Stadler [18], and is given the name “single-message and signature-
response paradigm” in [38]. Nonetheless, it turns out that a concrete instantiation of this approach is
not as simple as it looks, since it is hard to choose a suitable signature scheme and function f so that
efficient and secure proof is possible.

It turns out that our argument system together with the Boneh-Boyen signature [10] fits in per-
fectly with the above paradigm. In our construction, f is chosen to be a perfectly hiding malleable
commitment scheme which allows the commitment of a block of values. This expands the flexibility
of the paradigm and allows the construction of traceable signatures, compact e-cash as well as blind
signature. Taking traceable signature as an example, a user first computes a commitment f(x) of a
secret value x. Due to the malleability of the commitment scheme, the group manager changes it to
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a commitment of a block of values f(x, t) and issues a signature σ on this commitment. To gener-
ate a traceable signature, the user computes a probabilistic encryption of f(x, t) into ψ1, a random
base g̃ = gr and a tracing tag T = g̃t. Next, the user generates a signature-of-knowledge of (1) the
correctness of ψ, g̃ and T with respect to x and t, (2) knowledge of x, t, a pre-image of f(x, t), and
(3) knowledge of σ which is a valid signature on f(x, t). To trace the user, the GM simply outputs t
and everyone can test whether the tracing tag T and the random base g̃ associated with each group
signature satisfies T = g̃t.

1.3 Organization of The Paper

The rest of this paper is organized as follows. In Section 2, we review preliminaries that will be used
throughout this paper. We then present our argument system, its security and efficiency analysis in
Section 3. Then, we apply our argument system in constructing blind signatures, traceable signatures
and compact e-cash. Those constructions are presented in Section 4, 5 and 6, respectively. Finally, we
conclude the paper in Section 7.

2 Preliminaries

2.1 Notations

We employ the following notation throughout this paper. Let G1 be a cyclic group of prime order p.
Let Gq ⊂ Z∗p be a cyclic group of prime order q. This can be generated by setting p to be a prime of
the form p = γq + 1 for some integer γ and set Gq to be the group generated by an element of order
q in Z∗p.

Let g, g0, g1, g2 ∈R G1 be random elements of G1 and h, h0, h1, . . . ,hL ∈R Gq be random
elements of Gq (with the requirement that none of them being the identity element of their respective
group). Since G1 and Gq are of prime order, those elements are generators of their respective groups.

We say that a function negl(λ) is a negligible function [5], if for all polynomials f(λ), for all
sufficiently large λ, negl(λ) < 1/f(λ).

2.2 Bilinear Map

A pairing is a bilinear mapping from a pair of group elements to a group element. Specifically, let GT

be cyclic group of prime order p. A function ê : G1 × G1 → GT is said to be a pairing if it satisfies
the following properties:

– (Bilinearity.) ê(ux, vy) = ê(u, v)xy for all u, v ∈ G1 and x, y ∈ Zp.
– (Non-Degeneracy.) ê(g, g) 6= 1GT , where 1GT is the identity element in GT .
– (Efficient Computability.) ê(u, v) is efficiently computable for all u, v ∈ G1.
– (Unique Representation.) All elements in G1, GT have unique binary representation.

Looking ahead, while we are assuming G1 is equipped with a bilinear map, it is not necessary for
our zero-knowledge proof of knowledge of representation of committed value. Its presence is mainly
for the many applications associated with our protocol.

1 In fact, this is for revealing signer’s identity and encryption of either f(x), x or σ also serves the purpose.
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2.3 Number-Theoretic Assumptions

We present below the number-theoretic problems related to the schemes presented in this paper. The
respective assumptions state that no PPT algorithm has non-negligible advantage in security parameter
in solving the corresponding problems. Let G = 〈g〉 = 〈g1〉 = · · · = 〈gk〉 be a cyclic group.

– The Discrete Logarithm Problem (DLP) in G is to output x such that Y = gx on input Y ∈ G.
– The Representation Problem (RP) [13] in G is to compute a k-tuple (x1, . . ., xk) such that Y =
gx1
1 · · · g

xk
k on input Y . RP is as hard as DLP if the relative discrete logarithm of any of the gi’s

are not known.
– The Decisional Diffie-Hellman Problem (DDHP) ∈ G is to decide if z = xy on input a tuple

(gx, gy, gz).
– The Decisional Linear Diffie-Hellman Problem (DLDH problem) [11] in G is to decide if z =
x+ y on input a tuple (gx1 , g

y
2 , g

z
3). The DLDH problem is strictly harder than the DDH problem.

– The q-Strong Diffie-Hellman Problem (q-SDH problem) [10] in G is to compute a pair (A, e) such
that Ax+e = g on input (gx, gx

2
, . . . , gx

q
).

– The y-Decisional Diffie-Hellman Inversion Problem (y-DDHI problem) [28, 15] in G is to decide
if z = 1/x on input (gx, gx

2
, . . ., gx

y
, gz).

2.4 Cryptographic Tools

Commitment Schemes A commitment scheme is a protocol between two parties, namely, committer
Alice and receiver Bob. It consists of two stages: the Commit stage and the Reveal stage. In the Commit
stage, Alice receives a value x as input, which is revealed to Bob at the Reveal stage. Informally
speaking, a commitment scheme is secure if at the end of the Commit stage, Bob cannot learn anything
about the committed value (a.k.a. hiding) while at the Reveal stage, Alice can only reveal one value,
that is x (a.k.a. binding). Formally, we review the security notion from [32].

Definition 1. A commitment scheme (Gen,Commit)2 is secure if holding the following two proper-
ties:

1. (Perfect Hiding.) For all algorithm A (even computationally unbounded one), we require that

Pr

param← Gen(1λ); (x0, x1)← A(param);
b ∈R {0, 1}; r ∈R {0, 1}λ;
C = Commit(param, xb; r); b′ ← A(C);

: b′ = b

 ≤ 1
2

+ negl(λ).

2. (Binding.) No PPT adversary A can open a commitment in two different ways. Specifically,

Pr

param← Gen(1λ); (x0, x1, r0, r1)← A(param) :
x0 6= x1 ∧
Commit(param, x0; r0) = Commit(param, x1; r1)

 = negl(λ).

In this paper, we restrict ourselves to a well-known non-interactive commitment scheme, the Ped-
ersen Commitment [42], which is reviewed very briefly here. On input a value x ∈ Zp, the committer
randomly chooses r ∈ Zp, computes and outputs commitment C = gx0g

r as the commitment of value
x. To reveal commitment C, the committer outputs (x, r). Everyone can test if C = gx0g

r. Sometimes
(x, r) is referred to as an opening of the commitment C.

2 With Gen being the parameter generation function.
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Recall that Pedersen Commitment is perfect hiding and computationally binding provided that
the g0 and g are randomly and independently generated and that relative discrete logarithm of g0 to
base g is unknown. One can easily extend the scheme to allow commitment of a block of values,
say, x = (x0, x1, . . . , xk) by setting the commitment C = gx0

0 gx1
1 · · · g

xk
k g

r with additional random
generators g1, . . . , gk of G1.

Boneh-Boyen Short Signature Boneh and Boyen introduced a short signature scheme in [10], which,
is used extensively in the applications of our argument system. Hereafter, we shall refer to this scheme
as BB-signature.

KeyGen. Let α, β ∈R Z∗p and u = gα and v = gβ . The secret key sk is (α, β) while the public key
pk is (ê,G1,GT , p, g, u, v).

Sign. Given message m ∈ Z∗p, pick a random e ∈R Zp and compute A = g
1

α+m+βe . The term
α +m+ βe is computed modulo p. In case it is zero, choose another e. The signature σ on m is
(A, e).

Verify. Given a message m and signature σ = (A, r), verify that

ê(A, ugmve) = ê(g, g)

If the equality holds, output valid. Otherwise, output invalid.

Σ-Protocol We restrict ourselves to a special class of ZKPoK protocol called Σ-protocol which is
defined below. Informally speaking, Σ-protocols only guarantee zero-knowledgeness when the veri-
fier is honest. We are interested in Σ-protocol since they can be transformed to 4-move perfect zero-
knowledge ZKPoK protocol [25]. They can also be transformed to 3-move concurrent zero-knowledge
protocol in the auxiliary string model using trapdoor commitment schemes [27].

Definition 2. AΣ-protocol for a binary relationR is a 3-round ZKPoK protocol between two parties,
namely, a prover P and a verifier V . For every input (w, x) ∈ R to P and x to V , the first round of the
protocol consists of P sending a commitment t to V . V then replies with a challenge c in the second
round and P concludes by sending a response z in the last round. At the end of the protocol, V outputs
accept or reject. We say a protocol transcript (t, c, z) is valid if the output of an honest verifier V is
accept. A Σ-protocol has to satisfy the following two properties:

– (Special Soundness.) A cheating prover can at most answer one of the many possible challenges.
Specifically, there exists an efficient algorithm KE, called knowledge extractor, that on input x, a
pair of valid transcripts (t, c, z) and (t, c′, z′) with c 6= c′, outputs w such that (w, x) ∈ R.

– (Special Honest-Verifier Zero-Knowledgeness(HVZK).) There exists an efficient algorithm KS,
called zero-knowledge simulator, that on input x and a challenge c, outputs a pair (t, z) such that
(t, c, z) is a valid transcript having the same distribution as a real protocol transcript resulted
from the interaction between P with input (w, x) ∈ R and an honest V .

Signature of Knowledge Any Σ-protocol can be turned into non-interactive form, called signature
of knowledge [18], by setting the challenge to the hash value of the commitment together with the
message to be signed [29]. Pointcheval and Stern [43] showed that any signature scheme obtained this
way is secure in the random oracle model [8].
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3 A Zero-Knowledge Proof-of-Knowledge Protocol for RCV

We present the main result of this paper, namely, a zero-knowledge proof-of-knowledge protocol of
Representation of Committed Value, RCV. Specifically, let C = gx0g

r
1 ∈ G1 be a commitment of x

with randomness r. Let D = hm1
1 · · · h

mL
L hs ∈ Gq be the commitment of x’s representation (to bases

h1, . . . ,hL, denoted as m) with randomness s ∈R Zq. We construct a ZKPoK protocol of (x,m),
denoted as PKRCV. Technically speaking, our protocol is an argument system rather than a proof
system in the sense that soundness in our system only holds against a PPT cheating prover. This is
sufficient for all our purposes when adversaries in the applications of our PKRCV are modeled as PPT
algorithms. PKRCV for C, D can be abstracted as follows.

PKRCV

{
(x, r, s,m1, . . . ,mL) :

C = gx0g
r ∧ D = hm1

1 · · · h
mL
L hs ∧ x = hm1

1 · · · h
mL
L

}
The construction of PKRCV consists of two parts. Note that while we describe them separately, they
can be executed in parallel in its actual implementation.

3.1 The Actual Protocol

We construct a Σ-Protocol of PKRCV. Let λk be a security parameter. In practice, we suggest λk
should be at least 80. The first part of PKRCV is a zero-knowledge proof-of-knowledge of representa-
tion of an element, and we adapt the protocol from [40].

(Commitment.) The prover randomly generates ρx, ρr ∈R Zp, computes and sends T = gρx0 gρr to
the verifier.

(Challenge.) The verifier returns a random challenge c ∈R {0, 1}λk .
(Response.) The prover, treating c as an element in Zp3, computes zx = ρx−cx ∈ Zp, zr = ρr−cr ∈

Zp and returns (zx, zr) to the verifier.
(Verify.) Verifier accepts if and only if T = Ccgzx0 g

zr .

The second part is more involved and can be thought of as the extension of the ZKPoK of double-
discrete logarithm in combination with ZKPoK of equality of discrete logarithm.

(Commitment.) For i = 1 to λk, the prover randomly generates ρm1,i, . . ., ρmL,i, ρs,i ∈R Zq and

ρr,i ∈R Zp. Then the prover computes T1,i = g
h
ρm1,i
1 ···h

ρmL,i

L
0 gρr,i ∈ G1 and T2,i =h

ρm1,i

1 · · · hρmL,iL

hρs,i ∈ Gq. After that, the prover sends (T1,i, T2,i)
λk
i=1 to the verifier.

(Challenge.) The verifier returns a random challenge c ∈R {0, 1}λk .
(Response.) Denote c[i] as the i-th bit of c. That is, c[i] ∈ {0, 1}. For i = 1 to λk, the prover computes
zm1,i = ρm1,i − c[i]m1 ∈ Zq, . . ., zmL,i = ρmL,i − c[i]mL ∈ Zq, zs,i = ρs,i − c[i]s ∈ Zq and
zr,i = ρr,i − c[i]h

zm1,i

1 · · · hzmL,iL r ∈ Zp. The prover sends
(
zm1,i, . . . , zmL,i, zs,i, zr,i

)λk
i=1

to the
verifier.

(Verify.) The verifier accepts if the following equations hold for i = 1 to λk.

T2,i
?= Dc[i]h

zm1,i

1 · · · hzmL,iL hzs,i

T1,i
?= g

h
zm1,i
1 ···h

zmL,i

L
0 gzr,i if c[i] = 0

T1,i
?= Ch

zm1,i
1 ···h

zmL,i

L gzr,i if c[i] = 1

3 Consequently, the bit-length of p should be longer than λk.
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The two parts should be executed in parallel using the same challenge. Regarding the security of
PKRCV, we have the following theorem whose proof can be found in Appendix A.

Theorem 1. PKRCV is a Σ-Protocol.

3.2 Efficiency Analysis of PKRCV

Table 4 summarizes the time and space complexities of PKRCV. We breakdown the time complexity of
the protocol into the number of multi-exponentiations (multi-EXPs)4 in various groups. Note that with
pre-processing, prover’s online computation is minimal and does not involve any exponentiations. As
for the bandwidth requirement, the non-interactive version is more space-efficient since the prover
does not need to include the commitment using the technique of [1].

In practice, we can take λk = 80 and p (resp. q) to be a 1024-bit (resp. 160-bit) prime. Thus,
Zp, Zq and G1 will take 1024, 160 and roughly 1024 bit, respectively. The non-interactive form (of
which our applications employ) takes up around (12 + 1.5L)kB. Looking ahead, L is 1, 3 and 3 in
our construction of blind signature, traceable signature and compact e-cash, respectively. The most
dominant operation in our applications is the Multi-EXPs in group G1 since we are using the elliptic
curve group equipped with pairing. As a preliminary analysis, we find out that one multi-EXP in G1

takes about 25ms. The timing is obtained on a Dell GX620 with an Intel Pentium 4 3.0 GHz CPU
and 2GB RAM running Windows XP Professional SP2 as the host. We used Sun xVM VirtualBox
2.0.0 to emulate a guest machine of 1GB RAM running Ubuntu 7.04. Our implementation is written
in C and relies on the Pairing-Based Cryptography (PBC) library (version 0.4.18). G1 is taken to be
an elliptic curve group equipped with type A1 pairing and the prime p is 1048 bits. In a nutshell, the
verifier takes around 2 seconds in verifying the proof PKRCV.

Time Complexities
Prover

Verifier
w/o Preproc. w/ Preproc.

G1 multi-EXP λk + 1 0 λk + 1
Gq multi-EXP λk(dL/3e+ 1) + 1 0 λk(dL/3e+ 2)

Bandwidth Requirement
Interactive Form Non-Interactive Form

G1 2λk + 1 0
Zp λk + 2 λk + 2
Zq λk(L+ 1) λk(L+ 1)

Table 4. Time and Space Complexities of PKRCV.

4 Application to Round-Optimal Concurrently-Secure Blind Signature without
Interactive Assumptions

4.1 Syntax

We review the definition of blind signature from Hazay et al. [34].

Definition 3. A blind signature scheme is a tuple of PPT algorithms BGen, BVer and an interactive
protocol BSign between a user and a signer such that:

4 A multi-EXP computes the product of exponentiations faster than performing the exponentiations separately. Normally,
a multi-based exponentiation takes only 10% more time compared with a single-based exponentiation. We assume that
one multi-EXP operation multiplies up to 3 exponentiations.
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– BGen: On input security parameter 1λ, this algorithm outputs a key pair (pk, sk).
– BSign: Signer, with private input sk interacts with a user having input pk and a messagem in the

protocol. At the end of the execution, user obtains a signature σm on the message m, assuming
neither party abort.

– BVer: On input pk,m, σm, outputs valid or invalid.

As usual, correctness requires that for all (pk, sk) output by BGen(1λ), and for all σm which is the
output of the user upon successful completion of the protocol run of BSign with appropriate inputs
((pk, m) and sk for user and signer respectively) to both parties, BVer with input pk,m, σm outputs
valid.

Definition 4. Blind signature scheme (BGen, BSign, BVer) is unforgeable if the winning probability
for any PPT adversary A in the following game is negligible:

– BGen outputs (pk, sk) and pk is given to A.
– A interact concurrently with ` signer clones with input sk in BSign protocol.
– A outputs `+ 1 signatures σi on `+ 1 distinct messages mi.

A wins the game if all mi are distinct and BVer(pk,mi, σi) = 1 for all i = 1 to `+ 1.

Definition 5. Blind signature scheme (BGen, BSign, BVer) satisfies blindness if the advantage for
any PPT adversary A in the following game is negligible:

– A outputs an arbitrary public key pk and two equal-length messages m0, m1.
– A random bit b ∈R {0, 1} is chosen, andA interacts concurrently with two user clones, sayU0 and
U1, with input (pk,mb) and (pk,m1−b) respectively. Upon completion of both protocols, define
σ0 and σ1 as follows:
• If either of the U0 or U1 aborts, set (σ0, σ1) = (⊥,⊥).
• Otherwise, define σi be the output of Ui for i = 0 and 1.

(σ0, σ1) are given to A.
– A outputs a guess bit b′ ∈ {0, 1}.

A wins the game if all b′ = b. The advantage of A is defined as |Pr[b′ = b]− 1/2|.

4.2 Construction

BGen. Let α, β ∈R Zp and u = gα and v = gβ . Let H : {0, 1}∗ → Zq be a collision-resistant hash
function. The signer’s secret key sk is (α, β) while its public key pk is (G1, GT , ê, Gq, p, q, g, u, v,
h, h0, h1, H).
BSign. On input message m ∈ Zq, the user computes x = hm0 hs for some randomly generated

s ∈R Zq. The user sends x to the signer. The signer selects e ∈R Zp and computes A = g
1

α+x+βe . The
signer returns (A, e) to the user.

The user computes Πm as an non-interactive zero-knowledge proof-of-knowledge of a BB signa-
ture (A, e) on a hidden value x, and that x is a commitment of m and output Πm as the signature of
m.

Specifically, denote y = hs. The user computes A1 = Agr12 , A2 = gr11 g
r2
2 , A3 = gy

1g
r3
2 for

some randomly generated r1, r2, r3 ∈R Zp and A4 = hs0h
t for some randomly generated t ∈R Zq.

Parse M = A1||A2||A3||A4. The user computes the following non-interactive zero-knowledge proof-
of-knowledge Πm comprising two parts, namely, SPK1 and SPK2. SPK1 can be computed using
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standard techniques, while SPK2 is computed using our newly constructed PKRCV. Finally, parse
Πm as (A1, A2, A3, A4, SPK1, SPK2).

Πm :



SPK1

{
(r1, r2, r3, y, e, β1, β2, β3, β4) :

A2 = gr11 g
r2
2 ∧ 1 = A−e2 gβ1

1 gβ2
2 ∧

1 = A
−y
2 gβ3

1 gβ4
2 ∧ A3 = gy

1g
r3
2 ∧

ê(A1,u)
ê(g,g) =

ê(g2, u)r1 ê(A1, v)−eê(g2, v)β1 ê(A1, g
hm0 )−yê(g2, ghm0 )β3

}
(M)

SPK2

{
(r3, y, s, t) : A3 = gy

1g
r3
2 ∧A4 = hs0h

t ∧ y = hs0
}

(M)

BVer. On input message m and its signature Πm, parse Πm as (A1, A2, A3, A4, SPK1, SPK2) and
verify that SPK1 and SPK2 are valid.

Regarding the security of our construction, we have the following theorems whose proofs can be
found in Appendix B.

Theorem 2. Our blind signature is unforgeable under the q-SDH assumption in G1 and DL assump-
tion in Gq in the random oracle model.

Theorem 3. Our blind signature satisfies blindness unconditionally in the random oracle model.

5 Application to Traceable Signatures with Concurrent Join

We describe the construction of our traceable signatures. Since traceable signatures are group signa-
tures with added functionalities, it is easy to modify our scheme into a ‘regular’ group signature. An
attack to the traceable signature due to [36] is given in Appendix C.

5.1 Syntax

We review briefly the definition of traceable signature from Choi et al. [24] which is an adaptation of
the definition of traceable identification from Kiayias et al. [36]. Note that Traceable identifications
can be turned into traceable signatures using the Fiat-Shamir Heuristics [29].

Definition 6. A traceable signature scheme is a tuple of nine PPT algorithms / protocols (GGen,
Join, GSign, GVer, Open, Trace, Claim, ClaimVer) between three entities, namely group manager
(GM), users and tracing agents:

– GGen: On input security parameter 1λ, this algorithm outputs a key pair (pk, sk) for the group
manager.

– Join: This is a protocol between a user and GM. Upon successful completion of the protocol, user
Ui obtains a membership certificate certi. The GM stores the whole protocol transcript Jtransi.

– GSign: User Ui with membership certificate certi signs a message m and produces a group
signature σm.

– GVer: On input pk,m, σm, outputs valid or invalid.
– Open: On input m,σm, the group manager outputs the identity of the signer.
– Reveal: On input Jtransi, the group manager outputs tracing information tri, which is the tracing

trapdoor that allows party to identity signatures generated by user Ui.
– Trace: On input a signature σ and a tracing information tri, output 0/1 indicating the signature

is generated by user Ui or not.
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– Claim: On input a signature σ and a membership certificate certi, user Ui produces a proof τ to
prove that he is the originator of the signature.

– ClaimVer” On input a signature σ, a proof τ , output 0/1 indicating the signature is generated by
claimer or not.

Security Requirements. We informally review the security notion of a traceable signature. Due to
page limitation, please refer to [36, 24] for formal definition. A traceable signature should be secure
against three types of attack.

(Misidentification.) The adversary is allowed to observe the operation of the system while users are
engaged with GM during the joining protocol. It is also allowed to obtain a signature from existing
users on any messages of its choice. They are also allowed to introduce users into the system. The
adversary’s goal is to produce a valid signature on new message that is not open to users controlled
by the adversary.

(Anonymity.) The adversary is allowed to observe the operation of the system while users are en-
gaged with GM during the joining protocol. It is also allowed to obtain signature from existing
users on any messages of its choice. They are also allowed to introduce users into the system. Fi-
nally, the adversary chooses a message and two target users he does not control, and then receives
a signature of the message he returned from one of these two target users. The adversary’s goal is
to guess which of the two target users produced the signature.

(Framing.) The adversary plays the role of a malicious GM. It is considered successful with the
following scenarios. Firstly, the adversary may construct a signature that opens to an honest user.
Secondly, it may construct a signature, output some tracing information and that when traced, this
maliciously-constructed signature will be traced to be from an honest user. Thirdly, it may claim
a signature that was generated by an honest user as its own.

5.2 Construction

GGen. Let α, β ∈R Z∗p and u = gα and v = gβ . H : {0, 1}∗ → Zq be a collision-resistant

hash function. Further, randomly generate γ1, γ2 ∈R Zp, w3 ∈R G1 and compute w1 = w
1
γ1
3 and

w2 = w
1
γ2
3 . GM’s secret key sk is (α, β, γ1, γ2) while its public key pk is (ê, G1, GT , Gq, p, q, g, u,

v, w1, w2, w3, h, h0, h1, . . ., h4, H).
Join. A user Ui randomly selects s, x ∈R Zq and sends C′ = hs0h

x
1 ∈ Gq to GM. GM computes

t = H(C′) ∈ Zq. It then computes C = C′ht2 and selects e ∈R Zp. Next, it computes A = g
1

α+C+βe .
The GM returns (A, e, t) to the user. User checks if ê(A, uveghs0hx1ht2) = ê(g, g) and t = H(C′). He
then stores (A, e, s, t, x) as his membership certificate certi. GM records t as the tracing information
tri for this user. GM also stores the whole communication transcript.
GSign. Let the user membership certificate be (A ,e, s, t, x). The user computes S = hk3 , U = hk

′
3 for

some randomly generated k, k′, k′′ ∈R Zq and T1 = St, T2 = Sk
′′
, T3 = hs0h

x
1T

k′′
1 , V = Ux. Denote

y = hs0h
x
1ht2. The user then randomly generates r1, r2, r3 ∈R Zp, computes A1 = Awr1+r2

3 , A2 =
wr11 , A3 = wr22 , A4 = gy

1g
r3
2 and A5 = hrhs0h

x
1ht2 for some randomly generated r ∈R Zq. To generate

a traceable signature for message m, parse M = m||S||U ||T1||T2||T3||V ||A1||A2||A3||A4||A5.
The user computes the following non-interactive zero-knowledge proof-of-knowledge Πgrp com-

prising two parts, namely, SPK3 and SPK4. SPK3 can be computed using standard techniques, while
SPK4 is computed using PKRCV. Finally, parse Πgrp as (A1, A2, A3, A4, A5, SPK3, SPK4) and the
signature σm as (Πgrp, S, T1, T2, T3, U, V ).



12 Man Ho Au, Willy Susilo and Yi Mu

Πgrp :



SPK3

{
(r1, r2, r3, y, e, β1, β2, β3, β4, r, s, t, x, k, k

′, k′′) :

A2 = wr11 ∧ 1 = A−e2 wβ1
1 ∧ 1 = A

−y
2 wβ2

1 ∧
A3 = wr22 ∧ 1 = A−e3 wβ3

1 ∧ 1 = A
−y
3 wβ4

1 ∧
A4 = gy

1g
r3
2 ∧ A5 = hrhs0h

x
1ht2 ∧

S = hk3 ∧ T1 = St ∧ T2 = Sk
′′ ∧ T3 = hs0h

x
1T

k′′
1 ∧

U = hk
′

3 ∧ V = Ux ∧ ê(A1,u)
ê(g,g) =

ê(w3, u)r1+r2 ê(A1, v)−eê(w2, v)β1+β3 ê(A1, g)−yê(w3, g)β2+β4

}
(M)

SPK4

{
(r3, y, r, s, t, x) :

A4 = gy
1g

r3
2 ∧A5 = hrhs0h

x
1ht2 ∧ y = hs0h

x
1ht2
}

(M)

Basically, A1, A2 and A3 is the linear encryption of A (part of the membership certificate), T1,
T2, T3 is the El-Gamal encryption of hs0h

x
1 (under the public key St), while the rest of the proof is to

assure the verifier that the encryptions are properly done and that values U , V , S are correctly formed
with respective to values s, t, x, r.
Open. On input a signature σm, GM computes A := A1

A
γ1
2 A

γ2
3

. From A, GM looks up its list of join
transcripts and identify the underlying user.
Reveal. To allow tracing of user Ui, the GM outputs tracing information tri.
Trace. Given a valid signature σm = (Πgrp, S, T1, T2, T3, U, V ) and tracing information tri, everyone

can test if the signature is from user Ui by testing T1
?= Stri and tri

?= H( T3

T
tri
2

).

Claim. On input a message σm = (Πgrp, S, T1, T2, T3, U, V ), the originator can produce an non-
interactive proof τ as

τ : SPKτ{(x) : V = Ux}(σm)

ClaimVer. Given a signature σm and τ , everyone can verify τ .
Regarding the security of traceable signature, we have the following theorem whose proof can be

found in Appendix B.

Theorem 4. Our traceable signature is secure under the q-SDH assumption, the DLDH assumption
in G1 and DL assumption in Gq in the random oracle model.

6 Compact E-Cash With Concurrent Withdrawal

Our technique can also be applied to construct compact e-cash systems with concurrently-secure with-
drawal protocol. A high-level description is given here. In compact e-cash, there are three entities,
namely, the bank, users and merchants. To withdraw a wallet of K coins, user obtains a BB signature
cert on commitment of values (s, t, x), in a similar manner as user obtains a membership certificate
in our construction of traceable signatures. Note that the major difference being in this case, none of
the values are known to the bank (with s being a random number jointly generated by the bank and
user).

To spend a electronic coin to a merchant, user computes a serial number S = h
1

s+J+1

3 , a tracing

tag T = hs0h
t
1h
x
2h

R
t+J+1

3 , where J is the counter of the number of times the user has spent his wallet
andR is a random challenge issued by the merchant. User sends the pair (S, T ) to the merchant, along
with a signature of knowledge Π$, stating that S and T are correctly formed. Specifically, the proof
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assures the merchant that (1)user is in possession of a valid BB signature from the bank on values
(s, t, x); (2)counter 0 ≤ J < K; (3)S and T are correctly formed with respect to (s, t, x).

In the deposit protocol, merchant sends the coin (Π$, S, T,R) to the bank. Since counter J runs
from 0 toK−1, user can at most spend his wallet forK times. If the user uses the counter for a second
time, the serial number S of the double-spent coins will be the same and will thus be identified. Next,
the bank can compute a value C := (T

R′

T ′R
)1/(R

′−R), the commitment of (s, t, x) which allows the bank
to identify the underlying double-spender.

6.1 Syntax and Construction

EBGen. This is the key generation algorithm for the bank, which includes the wallet size K of the
system.
Let α, β ∈R Z∗p and u = gα and v = gβ . Let K be the size of the wallet and H : {0, 1}∗ → Zq be
a collision-resistant hash function. The bank’s secret key bsk is (α, β) while its public key bpk is (ê,
G1, GT , Gq, p, q, g, u, v, h, h0, h1, . . ., h4, K, H).
Withdrawal. User withdraws a wallet of K coins from the bank in this protocol.
A user Ui randomly selects s′, t, x ∈R Zq and sends C′ = hs

′
0 ht1h

x
2 ∈ Gq to the bank. The bank

computes randomly selects s′′ ∈R Zq, computes C = C′hs
′′

0 and selects e ∈R Zp. It then computes

A = g
1

α+C+βe . The bank returns (A, e, s′′) to the user. User computes s = s′ + s′′ mod Zq, checks
if ê(A, uveghs0ht1hx2 ) = ê(g, g). He then stores (A, e, s, t, x, J), where J is a counter initialized to
0, as his wallet. The bank records C as the identifer for this user. The bank also stores the whole
communication transcript.
Spend. User spends a electronic coin to a merchant in this protocol.
Let the user wallet be (A ,e, s, t, x, J) such that J < K. The user engages with merchant with identity
I and they first agree on the transaction information info. Both parties compute R = H(info, I)
locally.

Next, the user computes S = h
1

s+J+1

3 and T = hs0h
t
1h
x
2h

R
t+J+1

3 . S is the unique serial number
associated with the electronic coin. Denote y = hs0h

t
1h
x
2 . The user randomly generates r1, r2, r3 ∈R

Zp, computes A1 = Agr13 , A2 = gr11 g
r2
2 , A3 = gy

1g
r3
2 and A4 = hrhs0h

t
1h
x
2 for some randomly

generated r ∈R Zq. Parse M = R||S||T ||A1||A2||A3||A4.
The user computes the following non-interactive zero-knowledge proof-of-knowledge Π$ com-

prising two parts, namely, SPK5 and SPK6. SPK5 can be computed using standard techniques, while
SPK6 is computed using PKRCV. Finally, parse Π$ as (A1, A2, A3, A4, SPK5, SPK6) and the elec-
tronic coin σ$ is (Π$, S, T,R). The user increases counter J by 1.

Π$ :



SPK5

{
(r1, r2, r3, y, e, β1, β2, β3, β4) :

A2 = gr11 g
r2
2 ∧ 1 = A−e2 gβ1

1 gβ2
2 ∧ 1 = A

−y
2 gβ3

1 gβ4
2 ∧

A3 = gy
1g

r3
2 ∧ A4 = hrhs0h

t
1h
x
2 ∧ A4 = A−t4 A−J4 hβ5hβ6

0 hβ7
1 hβ8

2 ∧
S
h3

= SsSJ ∧ T
hR3

= T−tT−Jhβ6
0 hβ7

1 hβ8
2 ∧ 0 ≤ J < K ∧

ê(A1,u)
ê(g,g) = ê(g2, u)r1 ê(A1, v)−eê(g2, v)β1 ê(A1, g)−yê(g2, g)β3

}
(M)

SPK6

{
(r3, y, r, s, t, x) : A3 = gy

1g
r3
2 ∧A4 = hrhs0h

t
1h
x
2 ∧ y = hs0h

t
1h
x
2

}
(M)

The user sends σ$ to the merchant, who accepts the coin if Π$ is valid.
Deposit. Merchant deposit a electronic coin to the bank in this protocol.
To deposit, the merchant simply sends σ$, along with info to the bank. The bank verifies the transcript
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exactly as the merchant did. In addition, the bank has to verify that I is indeed the identity of the
merchant and R = H(info, I) is fresh. This is to prevent colluding users and merchants from submit-
ting a double spent coin (which have identical transcripts). It also prevents a malicious merchant from
eavesdropping an honest transaction and depositing it (in that case, identity of the malicious merchant
does not match with I). The bank stores (σ$, R) to the database.
Revoke. The bank employs this algorithm to reveal the identity of the double-spender.
When a new coin σ$ = (Π$, S, T,R) is received, the bank checks if S exists in the database. If yes,
then it is a double-spent coin. The bank identifies the double-spender as follows. Let the entry in the
database be (Π$, S, T

′, R′). The bank computes C := (T
R′

T ′R
)1/(R

′−R) and identity the user.

6.2 Security Requirements.

We informally review the security requirements of a compact e-cash. Please refer to [15] for the formal
treatment of the subject.

(Balance.) It is required that no collusion of users and merchants together can deposit more than
they withdraw without being identified. More precisely, we require that collusion of users and
merchants, having run Withdrawal for n times, cannot deposit more than nk coins back to the
bank without being identified.

(Anonymity.) It is required that no collusion of users, merchants and the bank can ever learn the
spending habit of an honest user.

(Exculpability.) It is required that an honest user cannot be proven to have double-spent, even all
other users, merchants and the bank collude.

Regarding the security of our compact E-Cash system, we have the following theorem. See Ap-
pendix B for a brief discussion.

Theorem 5. Our compact e-cash scheme is secure under the q-SDH assumption in G1 and y-DDHI
assumption in Gq in the random oracle model.

7 Conclusion

We constructed a new zero-knowledge argument system and illustrated its significance with applica-
tions to blind signatures, traceable signatures and compact e-cash systems. We believe this system is
useful in other cryptographic applications.
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A Proof of Theorem 1

We show that PKRCV is a Σ-protocol by constructing a knowledge extractor and transcript simulator.

Soundness of PKRCV We construct a knowledge extractor KE for PKRCV. On input two tran-
scripts

(
T , (T1,i, T2,i)

λk
i=1, c, zx, zr, (zm1,i, . . ., zmL,i, zr,i, zs,i)

λk
i=1

)
and

(
T , (T1,i, T2,i)

λk
i=1, ĉ, ẑx,

ẑr, (ẑm1,i, . . . , ẑmL,i, ẑr,i, ẑs,i)
λk
i=1

)
, KE is constructed as follows.

Since T = Ccgzx0 g
zr and T = C ĉgẑx0 g

ẑr , we have C ĉ−c = gzx−ẑx0 gzr−ẑr . Denote δc as c − ĉ,
δx = zx − ẑx and δr = zr − ẑr. The simulator obtains a relation C = gx̃0g

r̃, where x̃ = −δx/δc and
r̃ = −δr/δc.

On the other hand, as c 6= ĉ, there exists a position i such that c[i] 6= ĉ[i]. Without the loss
of generality, assume c[i] = 0 and ĉ[i] = 1. We have T2,i = h

zm1,i

1 · · · hzmL,iL hzs,i and T2,i =

Dh
ẑm1,i

1 · · · hẑmL,iL hẑs,i . Thus, D = hδm1
1 · · · hδmLL hδs , where δm1 = zm1,i − ẑm1,i, . . . δmL = zmL,i −

ẑmL,i and δs = zs,i − ẑs,i.

We also have T1,i = g
h
zm1,i
1 ···h

zmL,i

L
0 gzr,i and T1,i = Ch

ẑm1,i
1 ···h

ẑmL,i

L gẑr,i . Substituting C =

gx̃0g
r̃ into the equation, we have gh

zm1,i
1 ···h

zmL,i

L
0 gzr,i = g

x̃h
ẑm1,i
1 ···h

ẑmL,i

L
0 gr̃h

ẑm1,i
1 ···h

ẑmL,i

L +ẑr,i . That is,

gx̃0g
r̃h
ẑm1,i
1 ···h

ẑmL,i

L = g
h
δm1
1 ···h

δmL
L

0 gδr,i , where δr,i is defined as zr,i− ẑr,i. Under the discrete logarithm

assumption in G1, x̃ = hδm1
1 · · · hδmLL and r̃ = δr,i/(h

ẑm1,i

1 · · · hẑmL,iL )5.
Thus, the extractor KE has successfully extracted a value x̃, whose representation is δm1 , . . . , δmL

such that C is a commitment of x with opening (x̃, r̃) and D is a commitment with opening
(
(δm1 ,

. . ., δmL), δs
)
. Thus, PKRCV is sound.

Honest Verifier Zero-Knowledgeness of PKRCV We construct a zero-knowledge simulator KS for
PKRCV that, on input a random challenge c, outputs a transcript which is indistinguishable from the
actual transcript of a real protocol run.

For a given commitmentsC and D and a random challenge c ∈R {0, 1}λk , the simulator randomly
generates zx, zr ∈R Zp and for i = 1 to λk, zri ∈R Zp, zs,i ∈R Zq and zm1,i ∈R Zq, . . ., zmL,i ∈R Zq.

5 Otherwise the discrete logarithm of g0 to base g can be computed as δr,i−r̃h
ẑm1,i
1 ···h

ẑmL,i

L

x̃−h
δm1
1 ···h

δmL
L
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Next, it computes T = Ccgzx0 g
zr , T2,i = Dc[i]h

zm1,i

1 · · · hzmL,iL hzs,i and T1,i = g
h
zm1,i
1 ···h

zmL,i

L
0 gzr,i if

c[i] = 0 or T1,i = Ch
zm1,i
1 ···h

zmL,i

L gzr,i if c[i] = 1. Finally, it outputs
(
T, c, zx, zr

)
as a transcript of

PK1 and
(
T1,i, T2,i, c[i], zm1,i, . . . , zmL,i, zs,i, zr,i

)λk
i=1

as a transcript of PK2.
It is straightforward to show that the distribution of the simulated transcript is indistinguishable

from a real transcript.

B Security Analysis

We prove the lemma below which is central in the proofs of Theorem 2, Theorem 4 and Theorem 5.

Lemma 1. Define param = (ê,G1,GT ,Gq, p, q, g, u = gα, v = gβ, h1, . . . ,hL), and an oracle
OBB that on input M , output a tuple σ = (A, e) such that ê(A, uvegM ) = ê(g, g). Also define
function F : ZLq → Gq as F : (m1, . . . ,mi) 7→

∏L
i=1 h

mi
i . Under the q-SDH assumption in G1 and

the DL assumption in Gq, no PPT algorithm A with input param and oracle OBB can output ` + 1
distinct tuples (Ai, ei,mi) ∈ (G1,Zp,ZLq ) such that ê(Ai, uveigF (mi)) = ê(g, g) for i = 1 to `+ 1,
making only ` adaptive and possibly interleaving query to OBB .

Proof. The proof is by reduction. Suppose there exists such a PPT algorithm A. A wins with two
possibilities. (1) For all i, F (mi) are distinct. (2) There exists distinct indexes i, j such that mi) =
mj . (3) There exists distinct indexes i, j such that F (mi) = F (mj) andmi 6= mj

Case (1) and (2): Obverse that OBB is an signing oracle of the BB-signature. Due to the distinct
nature of the ` + 1 tuples, (Ai, ei,mi), either A is able to output ` + 1 BB signatures on ` + 1
distinct messages defined as F (mi) (case I) or that A is able to output at least two different
BB signatures on the same message (case 2). Thus, a simulator can easily be constructed, having
blackbox access with A, to break the strong unforgeability of BB signature.

Case (3): The condition F (mi) = F (mj) such that mi 6= mj implies that hm1,i

1 · · · hmL,iL =
hm1,j

1 · · · hmL,jL . The simulator can easily setup the parameter hi’s in Gq so as to solve the relative
discrete logarithm amongst two of them.

No PPT algorithm A exists under the q-SDH assumption in G1 (strong unforgeability of BB
signature) and the DL assumption in Gq. ut

Proof of Theorem 2 is given below. Proof of Theorem 4 and Theorem 5 are similar and are thus
omitted. As a side note, since the signature of knowledge is probabilistic, our construction of blind
signature cannot be strongly unforgeable.

Proof (Sketch). Under Lemma 1, any PPT adversary A cannot generate ` + 1 distinct tuple of
(
Ai,

ei, (mi, si)
)

with only ` interactions with the signing oracle. Thus, any PPT adversary A will have
to produce a fake signature of knowledge Πm for some message m. This, however, happen only with
negligible probability due to the soundness of PKRCV.

More specifically, if there exists an adversary A with non-negligible probability in winning the
game in Definition 4, we can construct a PPT simulator S that invalidates Lemma 1, in the random
oracle model.

Suppose A makes qH query to the hash oracle H . S randomly chooses one of the hash queries,
denoted as query ∗. At the point of hash query ∗, S makes a copy of (fork) adversary A (into A′) and
replies with a different hash value. Finally,A andA′ both outputs `+1 signatures σi on `+1 distinct
messages mi. With probability ` + 1/qH , one of those outputs from A and A′ will be based on hash
query ∗. S can thus invoke the extractor KE of Πm to obtain the underlying tuple

(
Ai, ei, (mi, sI)

)
.

With probability at least 1/`+ 1, this tuple can be used to invalidate Lemma 1.
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Proof of Theorem 3 is given below. It should be noted that, in the random oracle model, we can
always ensure the signer generates the generators hi’s and g′is honestly by setting them as the output
of some hash functions on some publicly known seed. In fact, unless some of these generators is taken
to be the identity element, the signer cannot break the blindness property of our construction even if
it is computationally unbounded.

Proof (Sketch). Recall that a signature on message m consists of values (A1, A2, A3, A4, SPK1 and
SPK2). A2, A3, A4 are information theoretically secure commitments of values r1, y and s respec-
tively and thus leak no information to even computationally unbounded adversary. A1 is the product
of A (values known to the signer) and a random number gr1 and it also leaks no information. Finally,
SPK1 and SPK2 are just non-interactive zero-knowledge proof-of-knowledge (or more precisely,
signature-of-knowledge). Under the random oracle model and the honest-verifier zero-knowledge
property of Πm, it also leaks no information. Thus, our blind signature possesses blindness. ut

C A Framing Attack on KTY Traceable Signatures

In this section, we present a high level description of the traceable signatures from [36] (KTY) and a
concrete attack within their security model.

Overview of the KTY Traceable Signature

GGen: The group manager chooses a signature scheme. The signature scheme in KTY is in fact a
variant of the CL signature [16].

Join: User chooses a random number x′ and obtains a CL signature (denoted as cert) from the
GM on values x′, x using the signature generation protocol of CL signature. In particular, x′ is
unknown to GM while x is known. The value x is stored as the tracing information tr of the user.
User stores cert as his membership certificate.

GSign: To sign a message m, user with membership certificate cert on values x′, x first computes:
1. a tuple (T1, T2, T3), which is the El-Gamal encryption of part of cert.
2. a tuple (T4, T5) such that T5 = gk and T4 = T x5 for some random number k.
3. a tuple (T6, T7) such that T7 = gk

′
and T6 = T x

′
7 for some random number k′.

The traceable signature is a signature of knowledge σm such that (T1, . . . , T7) are correctly
formed.

GVer: The verifier simply verifies the signature-of-knowledge σm.
Open: On inputm,σm, the group manager outputs the identity of the signer by decrypting T1, T2, T3

and obtains cert of the user.
Reveal: On input Jtransi, the group manager outputs tracing information tr = x.
Trace: On input a signature σm and a tracing information tr, test whether T4

?= T x5 .
Claim/ClaimVer: To claim a signature, the signer produces a non-interactive proof-of-knowledge

of discrete logarithm of T6 to base T7 (which is x′).

The Framing Attack The framing attack is considered successful if the attacker can generate a
signature that traces to an honest user. Specifically, the adversary is considered successful if it can
output a signature σ∗m such that Trace(Reveal(Jtransi), σ∗m) = 1 and that user Ui is an honest user
who has not generated σ∗m himself. The attack is based on the fact that σ∗m does not need to open to Ui,
and the attacker knows the corresponding tracing information, that is, x, of an honest user. To frame
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an honest user, the adversary generates another membership certificate cert∗ on values x∗, x and uses
it to produce a signature σ∗m. Obviously, this signature will trace to the honest user.

The attack is possible due to a flaw in the security proof [37] (full version of [36] , Section 9.3),
in which it is stated that “Then if the adversary outputs an identification transcript that either opens
to user j traces to the user j, it is clear that we can rewind the adversary and obtain a witness for that
transcript that will reveal the logarithm of C base b, and thus solving the discrete-logarithm problem.”
The argument is true when the identification transcript opens to user j in which it helps solving the
discrete logarithm of C to base b (which is x′, the user secret). However the same argument is not
applicable to the case of tracing because the tracing information x for user j is in fact known to the
adversary. The adversary is not required to use the same x′ with the honest user in producing the
signature for framing to be successful.

The Proposed Fix It turns out that the same attack is not applicable to the pairing-based traceable
signatures [24] (CPY). The reason is that the tracing information tr is of the form gx and, although
tr is known to GM, the value x is unknown and correctness of tr is implicitly checked in a signature
of knowledge of x. The same idea, however, is not applicable to the original KTY scheme because
the tracing mechanism in CPY requires the use of a bilinear map6 which is not known to exists in the
group of which KTY is built on. Thus, we propose another fix. That is, the tracing information tr is no
longer randomly chosen. Instead, it is set to beH(Ci), whereCi = bx

′
i is known to GM during the join

protocol in KTY, for some collision-resistant hash function H . The group signature will be modified
so that the user will encrypt Ci under the public key gtr (using El-Gamal Encryption), together with a
proof-of-correctness, including the knowledge of Ci to base bi. The corresponding Trace algorithm is
also modified to include a test that tr ?= H(Ci) when tr is given. Indeed, this idea is employed in our
construction of traceable signatures.

6 Specifically, for each signature, user produces values T4, T5 such that the tracing agent test if ê(tr, T4)
?
= T5. The user

also includes a proof-of-knowledge of discrete logarithm (that is, knowledge of x) of T5 to base ê(g, T5) in the signature.


