
Succinct Non-Interactive Zero Knowledge
for a von Neumann Architecture

Eli Ben-Sasson
Technion

Alessandro Chiesa
MIT

Eran Tromer
Tel Aviv University

Madars Virza
MIT

August 31, 2014

Abstract

We build a system that provides succinct non-interactive zero-knowledge proofs (zk-SNARKs) for pro-
gram executions on a von Neumann RISC architecture. The system has two components: a cryptographic
proof system for verifying satisfiability of arithmetic circuits, and a circuit generator to translate program
executions to such circuits. Our design of both components improves in functionality and efficiency over
prior work, as follows.

Our circuit generator is the first to be universal: it does not need to know the program, but only
a bound on its running time. Moreover, the size of the output circuit depends additively (rather than
multiplicatively) on program size, allowing verification of larger programs.

The cryptographic proof system improves proving and verification times, by leveraging new algorithms
and a pairing library tailored to the protocol.

We evaluated our system for programs with up to 10,000 instructions, running for up to 32,000
machine steps, each of which can arbitrarily access random-access memory; and also demonstrated it
executing programs that use just-in-time compilation. Our proofs are 230 bytes long at 80 bits of security,
or 288 bytes long at 128 bits of security. Typical verification time is 5 milliseconds, regardless of the
original program’s running time.

Keywords: zero-knowledge, succinct arguments, computationally-sound proofs

1

Contents

1 Introduction 3
1.1 Goal . 3
1.2 Prior work . 3
1.3 Limitations of prior work on zk-SNARKs . 4
1.4 Results . 5
1.5 Roadmap . 7

2 Preliminaries 7
2.1 Notation . 7
2.2 Arithmetic circuits . 8
2.3 Quadratic arithmetic programs . 8
2.4 Pairings . 9
2.5 zk-SNARKs for arithmetic circuits . 9
2.6 A von Neumann RISC architecture . 9

3 Our circuit generator 10
3.1 Past techniques . 11
3.2 Our construction . 12

4 Our zk-SNARK for circuits 13
4.1 The PGHR protocol and the two elliptic curves . 14
4.2 An optimized verifier . 14
4.3 An optimized prover . 15
4.4 An optimized key generator . 16

5 Evaluation 17
5.1 Performance of our circuit generator . 17
5.2 Performance of our zk-SNARK for circuit satisfiability . 18
5.3 Performance of the combined system . 19
5.4 Comparison with prior work . 20

6 Conclusion 22

A Other prior work 23

B The PGHR zk-SNARK protocol 24

C Additional experimental data 25

D zk-SNARKs for vnTinyRAM 29
D.1 Informal definition . 29
D.2 Construction . 30

E Case study: memcpy with just-in-time compilation 31

References 32

2

1 Introduction

1.1 Goal
Consider the setting where a client owns a public input x, a server owns a private input w, and the client
wishes to learn z := F (x,w) for a program F known to both parties. For instance, x may be a query, w a
confidential database, and F the program that executes the query on the database.
Security. The client is concerned about integrity of computation: how can he ascertain that the server
reports the correct output z? In contrast, the server is concerned about confidentiality of his own input: how
can he prevent the client from learning information about w?

Cryptography offers a powerful tool to address these security concerns: zero-knowledge proofs [GMR89].
The server, acting as the prover, attempts to convince the client, acting as the verifier, that the following NP
statement is true: “there exists w such that z = F (x,w)”. Indeed:
• The soundness property of the proof system guarantees that, if the NP statement is false, the prover cannot

convince the verifier (with high probability). Thus, soundness addresses the client’s integrity concern.
• The zero-knowledge property of the proof system guarantees that, if the NP statement is true, the prover

can convince the verifier without leaking any information about w (beyond was is leaked by the output z).
Thus, zero knowledge addresses the server’s confidentiality concern.

Moreover, the client sometimes not only seeks soundness but also proof of knowledge [GMR89, BG93],
which guarantees that, whenever he is convinced, not only can he deduce that a witness w exists, but also
that the server knows one such witness. This stronger property is often necessary to security if F encodes
cryptographic computations, and is satisfied by most zero-knowledge proof systems.
Efficiency. Besides the aforementioned security desiderata, many settings also call for efficiency desiderata.
The client may be either unable or unwilling to engage in lengthy interactions with the server, or to perform
large computations beyond the “bare minimum” of sending the input x and receiving the output z. For
instance, the client may be a computationally-weak device with intermittent connectivity (e.g., a smartphone).

Thus, it is desirable for the proof to be non-interactive [BFM88, NY90, BDSMP91]: the server just
send the claimed output z̃, along with a non-interactive proof string π that attests that z̃ is the correct output.
Moreover, it is also desirable for the proof to be succinct: π has size Oλ(1) and can be verified in time
Oλ(|F |+ |x|+ |z|), where Oλ(·) is some polynomial in a security parameter λ; in other words, π is very
short and easy to verify (i.e., verification time does not depend on |w|, nor F ’s running time).
zk-SNARKs. A proof system achieving the above security and efficiency desiderata is called a (publicly-
verifiable) zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-SNARK). zk-SNARK
constructions can be applied to a wide range of security applications, provided these constructions deliver
good enough efficiency, and support rich enough functionality (i.e., the class of programs F that is supported).

Remark 1.1. In the zero-knowledge setting above, the client does not have the server’s input, and so cannot
conduct the computation on his own. Hence, it is not meaningful to compare “efficiency of outsourced
computation at the server” and “efficiency of native execution at the client”, because the latter was never an
option. Non-interactive zero-knowledge proofs (and zk-SNARKs) are useful regardless of cross-over points.

Our goal in this paper is to construct

a zk-SNARK implementation supporting executions on a universal von Neumann RISC machine.

1.2 Prior work

zk-SNARKs. Many works have obtained zk-SNARK constructions [Gro10a, Lip12, GGPR13, BCIOP13,
PGHR13, BCGTV13a, Lip13, BFRS+13]. Three of these [PGHR13, BCGTV13a, BFRS+13] provide
implementations, and thus we briefly recall them. Parno et al. [PGHR13] present two main contributions.

3

• A zk-SNARK, with essentially-optimal asymptotics, for arithmetic circuit satisfiability, based on quadratic
arithmetic programs (QAPs) [GGPR13]. They accompany their construction with an implementation.
• A compiler that maps C programs with fixed memory accesses and bounded control flow (e.g., array

accesses and loop iteration bounds are compile-time constants) into corresponding arithmetic circuits.
Ben-Sasson et al. [BCGTV13a] present three main contributions.
• Also a QAP-based zk-SNARK with essentially-optimal asymptotics for arithmetic circuit satisfiability, and

a corresponding implementation. Their construction follows the linear-interactive proofs of [BCIOP13].
• A simple RISC architecture, TinyRAM, along with a circuit generator for generating arithmetic circuits

that verify correct execution of TinyRAM programs.
• A compiler that, given a C program, produces a corresponding TinyRAM program.
Thus, both [PGHR13, BCGTV13a] have two main components: a zk-SNARK for a low-level language,
and method to translate a high-level language to the low-level language. Finally, Braun et al. [BFRS+13]
re-implemented the protocol of [PGHR13] and combined it with a circuit generator that incorporates memory-
checking techniques [BEGKN91] to support random-access memory [BCGT13a].

Outsourcing computation to powerful servers. Numerous works [SBW11, SMBW12, SVPB+12, SBVB+13,
CMT12, TRMP12, VSBW13, Tha13, BFRS+13] seek to verifiably outsource computation to untrusted pow-
erful servers, e.g., in order to make use of cheaper cycles or storage. (See Appendix A for a summary.) We
stress that verifiable outsourcing of computations is not our goal. Rather, as mentioned, we study functionality
and efficiency aspects of non-interactive zero-knowledge proofs, which are useful even when applied to
relatively-small computations, and even with high overheads.

Compared to most protocols to outsource computations, known zk-SNARKs use “heavyweight” tech-
niques, such as probabilistically-checkable proofs [BFLS91] and expensive pairing-based cryptography.
The optimal choice of protocol, and whether it actually pays off compared to local native execution, are
complex, computation-dependent questions [VSBW13], and we leave to future work the question of whether
zk-SNARKs are useful for the goal of outsourcing computations.

1.3 Limitations of prior work on zk-SNARKs
Recent work has made tremendous progress in taking zk-SNARKs from asymptotic theory into concrete
implementations. Yet, known implementations suffer from several limitations.

Per-program key generation. As in any non-interactive zero-knowledge proof, a zk-SNARK requires
a one-time trusted setup of public parameters: a key generator samples a proving key (used to generate
proofs) and a verification key (used to check proofs). However, current zk-SNARK implementations
[PGHR13, BCGTV13a] require the setup phase to depend on the program F , which is hard-coded in the
keys. Key generation is costly (quasilinear in F ’s runtime) and is thus difficult to amortize if conducted anew
for each program. More importantly, per-program key generation requires, for each new choice of program, a
trusted party’s help.

Limited support for high-level languages. Known circuit generators have limited functionality or effi-
ciency: (i) [PGHR13]’s circuit generator only supports programs without data dependencies, since memory
accesses and loop iteration bounds cannot depend on a program’s input; (ii) [BFRS+13]’s circuit generator
allows data-dependent memory accesses, but each such access requires expensive hashing to verify Merkle-
tree authentication paths; (iii) [BCGTV13a]’s circuit generator supports arbitrary programs but its circuit
size scales inefficiently with program size (namely, it has size Ω(`T) for `-instruction T -step TinyRAM
programs). Moreover, while there are techniques that mitigate some of the above limitations [ZE13], these
only apply in special cases, and not do address general data dependencies, a common occurrence in many
programs.

Ultimately, large general programs rely on external libraries (providing, e.g., mathematical subroutines
or data structures), which contribute to program size. Thus, it is crucial to seek circuits that simultaneously

4

support arbitrary programs and that efficiently scale with program size.

Generic sub-algorithms. The aforementioned zk-SNARKs use several sub-algorithms, and in particular
elliptic curves and pairings. Protocol-specific optimizations are a key ingredient in fast implementations of
pairing-based protocols [Sco05], yet prior implementations only utilize off-the-shelf cryptographic libraries,
and miss key optimization opportunities.

1.4 Results
We present two main contributions: a new circuit generator and a new zk-SNARK for circuits. These can be
used independently, or combined to obtain an overall system.

1.4.1 A new circuit generator

We design and build a new circuit generator that incorporates the following two main improvements.

(1) Our circuit generator is universal: when given input bounds `, n, T , it produces a circuit that can verify
the execution of any program with ≤ ` instructions, on any input of size ≤ n, for ≤ T steps. Instead, all
prior circuit generators [SVPB+12, SBVB+13, PGHR13, BCGTV13a, BFRS+13] hardcoded the program
in the circuit. Combined with a zk-SNARK for circuits (or any NP proof system for circuits), we achieve a
notable conceptual advance: once-and-for-all key generation that allows verifying all programs up to a given
size. This removes major issues in all prior systems: expensive per-program key generation, and the thorny
issue of conducting it anew in a trusted way for every program.

Our circuit generator supports a universal machine that, like modern computers, follows the von Neumann
paradigm (program and data lie in the same read/write address space). Concretely, it supports a von Neumann
RISC architecture called vnTinyRAM, a modification of TinyRAM [BCGTV13b]. Thus, we also support
programs leveraging techniques such as just-in-time compilation or self-modifying code [GESA+09, RP06].

To compile C programs to the vnTinyRAM machine language, we ported the GCC compiler to this
architecture, building on the work of [BCGTV13a].

See Figure 1 for a functionality comparison with prior circuit generators (for details, see [BFRS+13, §2]).

Supported functionality [SVPB+12, SBVB+13, PGHR13] [BCGTV13a] [BFRS+13] this work
side-effect free computations X X X X
data-dependent memory accesses × X X X
data-dependent control flow × X × X
self-modifying code × × × X
universality × × × X

Figure 1: Comparison of the functionality supported by our and previous circuit generators.

(2) Our circuit generator efficiently handles larger arbitrary programs: the size of the generated circuit C`,n,T
in terms of the bounds `, n, T , is

O
(
(`+ n+ T) · log(`+ n+ T)

)
gates.

Thus, the dependence on program size is additive, instead of multiplicative as in [BCGTV13a], where
the generated (non-universal) circuit has size Θ

(
(n + T) · (log(n + T) + `)

)
. As Figure 2 shows, our

efficiency improvement compared to [BCGTV13a] is not merely asymptotic but yields sizable concrete
savings: as program size ` increases, our amortized per-cycle gate count is essentially unchanged, while that
of [BCGTV13a] grows without bound, becoming orders of magnitudes more expensive.

An efficiency comparison with other non-universal circuit generators [SVPB+12, SBVB+13, PGHR13,
BFRS+13] is not well-defined. First, they support more restricted classes of programs, so a programmer must
“write around” the limited functionality. Second, their efficiency is not easily specified, since the output circuit
is ad hoc for the given program, and the only way to know its size is to actually run the circuit generator. We

5

n = 102 |C`,n,T |/T improvement
T = 220 [BCGTV13a] this work
` = 103 1,872 1,368 1.4×
` = 104 10,872 1,371 7.9×
` = 105 100,872 1,400 72.1×
` = 106 1,000,872 1,694 590.8×

Figure 2: Per-cycle gate count improvements over [BCGTV13a].

expect, and find, that such circuit generators perform better than ours for programs that are already “close to
a circuit”, and worse for programs rich in data-dependent memory accesses and control flow.

1.4.2 A new zk-SNARK for circuits

Our third contribution is a high-performance implementation of a zk-SNARK for arithmetic circuits.

(3) We improve upon and implement the protocol of Parno et al. [PGHR13]. Unlike previous zk-SNARK
implementations [PGHR13, BCGTV13a, BFRS+13], we do not use off-the-shelf cryptographic libraries.
Rather, we create a tailored implementation of the requisite components: the underlying finite-field arithmetic,
elliptic-curve group arithmetic, pairing-based checks, and so on.

To facilitate comparison with prior work, we instantiate our techniques for two specific algebraic setups:
we provide an instantiation based on Edwards curves [Edw07] at 80 bits of security (as in [BCGTV13a]), and
an instantiation based on Barreto–Naehrig curves [BN06] at 128 bits of security (as in [PGHR13, BFRS+13]).

On our reference platform (a typical desktop), proof verification is fast: at 80-bit security, for an n-byte
input to the circuit, verification takes 4.7 + 0.0004 · n milliseconds, regardless of circuit size; at 128-bit
security, it takes 4.8 + 0.0005 · n. The constant term dominates for small inputs, and corresponds to the
verifier’s pairing-based checks; in both cases, it is less than half the time for separately evaluating the 12
requisite pairings of the checks. We achieve this saving by merging parts of the pairings’ computation in a
protocol-dependent way — another reason for a custom implementation of the underlying math.

Key generation and proof generation entail a per-gate cost. For example, for a circuit with 16 million
gates: at 80 bits of security, key generation takes 81µs per gate and proving takes 109µs per gate; at 128 bits
of security, these per-gate costs mildly increase to 100µs and 144µs.

As in previous zk-SNARK implementations, proofs have constant size (independent of the circuit or
input size); for us, they are 230 bytes at 80 bits of security, and 288 bytes at 128 bits of security.

Compared to previous implementations of zk-SNARKs for circuits [PGHR13, BCGTV13a, BFRS+13],
our implementation improves both proving and verification times, e.g., see Figure 3.

80 bits of security 128 bits of security
[BCGTV13a] this work improvement [PGHR13] this work improvement

Key generator 306 s 97 s 3.2× 123 s 117 s 1.1×
Prover 351 s 115 s 3.1× 784 s 147 s 5.3×
Verifier 66.1ms 4.9ms 13.5× 9.2ms 5.1ms 1.8×
Proof size 322B 230B 1.4× 288B 288B (same)

Figure 3: Comparison with prior zk-SNARKs for a 1-million-gate arithmetic circuit and a 1000-bit input, running on our bench-
marking machine, using software provided by the respective authors. Since [BFRS+13] is a re-implementation of [PGHR13], we
only include the latter’s performance. (N = 5 and std < 2%)

1.4.3 The two new components: independent or combined

Our new circuit generator and our new zk-SNARK for circuits can be used independently. For instance,
the circuit generator can (up to interface matching) replace the circuit generators in [SVPB+12, SBVB+13,

6

PGHR13, BCGTV13a, BFRS+13], thus granting these systems universality: once-and-for-all key generation.
Similarly, our zk-SNARK for circuits can replace the underlying zk-SNARKs in [PGHR13, BCGTV13a,
BFRS+13], or be used directly in applications where a suitable circuit is already specified.

Combining these two components, we obtain a full system: a zk-SNARK for proving/verifying correctness
of vnTinyRAM computations; see Figure 4 and Figure 5 for diagrams of this system. We evaluated this
overall system for programs with up to 10,000 instructions, running for up to 32,000 steps. Verification
time is, again, only few milliseconds, independent of the running time of the vnTinyRAM program, even
when program size and input size are kilobytes. Proofs, as mentioned, have a small constant size. Key
generation and proof generation entail a per-cycle cost, with a dependence on program size that “tapers off”
as computation length increases. For instance, at 128-bit security and vnTinyRAM with a word size of 32
bits, key generation takes 210 ms per cycle and proving takes 100 ms per cycle, for 8K-instruction programs.

circuit
generator

zk-SNARK
key generator

proving key

verification key

program size bound

time bound
input size bound

universal
circuit

OFFLINE PHASE (ONCE)
Key Generator

Figure 4: Offline phase (once). The key generator outputs a proving key and verification key, for proving and verifying correctness
of any program execution meeting the given bounds.

witness
map

zk-SNARK
prover

zk-SNARK
verifier

proving key program input

proof auxiliary
input

(nondeterminism)

accept/
reject

verif. key

circuit
assignment

ONLINE PHASE (ANY NUMBER OF TIMES)
Prover Verifier

program input

Figure 5: Online phase (any number of times). The prover sends a short and easy-to-verify proof to a verifier. This can be repeated
any number of times, each time for a different program and input.

JIT case study: efficient memcpy. Besides evaluating individual components, we give an example demon-
strating the rich functionality supported by the integrated system. We wrote a vnTinyRAM implementation
of memcpy that leverages just-in-time compilation (in particular, dynamic loop unrolling) to require fewer
cycles. While ours is a simple case study, just-in-time compilation is a widely-used powerful technique with
many applications, e.g., increasing the performance of interpreted programming languages such as JavaScript
in web browsers [GESA+09] or Python [RP06]. As the efficiency of zk-SNARK implementations improves,
more and more of these applications will become feasible.

1.5 Roadmap
In Section 2 we provide preliminaries. In Section 3 we describe our circuit generator. In Section 4 we
describe our zk-SNARK for circuits. In Section 5 we evaluate our circuit generator and zk-SNARK, as well
as the system resulting by combining the two. In Section 6 we conclude the paper.

2 Preliminaries

2.1 Notation
We denote by F a finite field and Fn is the field of size n; when n is prime, we identify elements of Fn with
integers modulo n. Field elements are denoted with Greek letters (e.g. α, β, γ). We denote by F[z] the ring
of univariate polynomials over F, and by F≤d[z] the subring of polynomials of degree ≤ d. Vectors are
denoted by arrow-equipped letters (such as ~a); their entries carry an index but not the arrow (e.g., a1 or a2).
Concatenation of vectors (and scalars) is denoted by the operator ◦.

7

2.2 Arithmetic circuits
The circuits that we consider are not boolean but arithmetic. Given a finite field F, an F-arithmetic circuit
takes inputs that are elements in F, and its gates output elements in F. The circuits we consider only have
bilinear gates.1 Arithmetic circuit satisfiability is analogous to the boolean case:

Definition 2.1. Let n, h, l respectively denote the input, witness, and output size. The circuit satisfaction
problem of a circuit C : Fn × Fh → Fl with bilinear gates is defined by the relation RC = {(~x,~a) ∈
Fn × Fh : C(~x,~a) = 0l};2 and its language is LC = {~x ∈ Fn : ∃~a ∈ Fh, C(~x,~a) = 0l}.

Our circuit generator reduces the correctness of program executions to arithmetic circuit satisfiability (see
Section 3), and our zk-SNARK implementation produces/verifies proofs for this language (see Section 4).

All the arithmetic circuits we consider are over prime fields Fp. In this case, when passing boolean
strings as inputs to arithmetic circuits, we pack the string’s bits into as few field elements as possible: given

s ∈ {0,1}m, we use [[s]]mp to denote the vector ~x ∈ F
|m|p
p , where |m|p := dm/blog pce, such that the binary

representation of xi ∈ Fp is the i-th block of dlog pe bits in s (padded with 0’s if needed). We extend the
notation [[s]]mp to binary strings s ∈ {0,1}n with n < m bits via padding: [[s]]mp := [[s0m−n]]mp .

2.3 Quadratic arithmetic programs
Our zk-SNARK leverages quadratic arithmetic programs (QAPs), introduced by Gennaro et al. [GGPR13].

Definition 2.2. A quadratic arithmetic program of size m and degree d over F is a tuple (~A, ~B, ~C,Z),
where ~A, ~B, ~C are three vectors, each of m+ 1 polynomials in F≤d−1[z], and Z ∈ F[z] has degree exactly d.

Like a circuit, a QAP induces a satisfaction problem:

Definition 2.3. The satisfaction problem of a size-m QAP (~A, ~B, ~C,Z) is the relationR(~A, ~B, ~C,Z) of pairs
(~x,~s) such that (i) ~x ∈ Fn, ~s ∈ Fm, and n ≤ m; (ii) xi = si for i ∈ [n] (i.e., ~s extends ~x); and (iii) the
polynomial Z(z) divides the following one:

(A0(z) +
∑m

i=1 siAi(z)) · (B0(z) +
∑m

i=1 siBi(z))− (C0(z) +
∑m

i=1 siCi(z)) .

We denote by L(~A, ~B, ~C,Z) the language ofR(~A, ~B, ~C,Z).

Gennaro et al. [GGPR13] showed that circuit satisfiability can be efficiently reduced to QAP satisfiability
(which can then be proved and verified using zk-SNARKs):

Lemma 2.4. There exist two polynomial-time algorithms QAPinst,QAPwit that work as follows. For any
circuit C : Fn × Fh → Fl with a wires and b gates, (~A, ~B, ~C,Z) := QAPinst(C) is a QAP of size m and
degree d over F that satisfies the following three properties.
• EFFICIENCY. It holds that m = a and d = b+ l + 1.
• COMPLETENESS. For any (~x,~a) ∈ RC , it holds that (~x,~s) ∈ R(~A, ~B, ~C,Z), where ~s := QAPwit(C, ~x,~a).
• PROOF OF KNOWLEDGE. For any (~x,~s) ∈ R(~A, ~B, ~C,Z), it holds that (~x,~a) ∈ RC , where ~a is a prefix of ~s.
• NON-DEGENERACY. The polynomials A0, . . . , An are nonzero and distinct.

The intuition behind Lemma 2.4 is the following. The third condition in Definition 2.3 implies that
〈1 ◦ ~s, ~A(ω)〉 · 〈1 ◦ ~s, ~B(ω)〉 = 〈1 ◦ ~s, ~C(ω)〉 for all roots ω of Z. In other words, membership inR(~A, ~B, ~C,Z)

is characterized by degZ = d rank-1 quadratic constraints in the variable ~s. By suitably selecting coefficients
for the polynomials ~A, ~B, ~C, one can encode satisfiability of an arithmetic circuit C into such constraints.

1A gate with inputs x1, . . . , xm ∈ F is bilinear if the output is 〈~a, (1, x1, . . . , xm)〉 · 〈~b, (1, x1, . . . , xm)〉 for some ~a,~b ∈ Fm+1.
In particular, these include addition, multiplication, and constant gates.

2We identify a circuit (which is a directed acyclic graph with labeled vertices) with the function it computes.

8

2.4 Pairings
The zk-SNARK constructions that we consider are based on cryptographic pairings, which we now introduce.

Let G1 and G2 be two cyclic groups of order r. We denote elements of G1,G2 via calligraphic letters
such as P,Q. We write G1 and G2 in additive notation. Let P1 be a generator of G1, i.e., G1 = {αP1}α∈Fr
(α is also viewed as an integer, hence αP1 is well-defined); let P2 be a generator for G2. A pairing is an
efficient map e : G1×G2 → GT , where GT is also a cyclic group of order r (which we write in multiplicative
notation), satisfying the following properties: (i) bilinearity: for every nonzero elements α, β ∈ Fr, it holds
that e(αP1, βP2) = e(P1,P2)αβ; (ii) non-degeneracy: e(P1,P2) is not the identity in GT .

For high-level discussions of zk-SNARK constructions, the choice of instantiation of G1,G2,GT , as
well as the choice of pairing e, does not matter. However, later, when discussing optimizations in our
implementation (see Section 4), these choices matter a great deal.

2.5 zk-SNARKs for arithmetic circuits
A (preprocessing) zk-SNARK for F-arithmetic circuit satisfiability (see, e.g., [BCIOP13]) is a triple of
polynomial-time algorithms (G,P, V), called key generator, prover, and verifier. The key generator G,
given a security parameter λ and an F-arithmetic circuit C : Fn × Fh → Fl, samples a proving key pk and a
verification key vk; these are the proof system’s public parameters, which need to be generated only once per
circuit. After that, anyone can use pk to generate non-interactive proofs for the language LC , and anyone
can use the vk to check these proofs. Namely, given pk and any (~x,~a) ∈ RC , the honest prover P (pk, ~x,~a)
produces a proof π attesting that ~x ∈ LC ; the verifier V (vk, ~x, π) checks that π is a valid proof for ~x ∈ LC .
A proof π is both a proof of knowledge, and a (statistical) zero-knowledge proof. The succinctness property
requires that π has length Oλ(1) and V runs in time Oλ(|~x|), where Oλ hides a (fixed) polynomial in λ.

Constructions. Several zk-SNARK constructions are known [Gro10a, Lip12, GGPR13, BCIOP13, PGHR13,
BCGTV13a, Lip13]. The most efficient ones are based on quadratic span programs (QSPs) [GGPR13, Lip13]
or quadratic arithmetic programs (QAPs) [GGPR13, BCIOP13, PGHR13, BCGTV13a]. We focused on QAP-
based constructions, because QAPs allow for tighter reductions from arithmetic circuits (see Lemma 2.4).
Concretely, we build on the QAP-based zk-SNARK protocol of Parno et al. [PGHR13] (see Section 4).

Remark 2.5 (full succinctness). The key generator G takes C as input, and so its complexity is linear in
|C|. One could require G to not take C as input, and have its output keys work for all (polynomial-size)
circuits C; then, G’s running time would be independent of C. A zk-SNARK satisfying this stronger
property is fully succinct. Theoretical constructions of such zk-SNARKs are known, based on various
cryptographic assumptions [Mic00, Val08, BCCT13]. Despite achieving essentially-optimal asymptotics
[BFLS91, BGHSV05, BCGT13b, BCGT13a, BCCT13] no implementations of them have been reported
to date.3

2.6 A von Neumann RISC architecture
Ben-Sasson et al. [BCGTV13a] introduced TinyRAM, a Harvard RISC architecture with word-addressable
memory. We modify TinyRAM to obtain vnTinyRAM, which differs from it in two main ways. First,
vnTinyRAM follows the von Neumann paradigm, whereby program and data are stored in the same read-
write address space; programs may use runtime code generation. Second, vnTinyRAM has byte-addressable
memory, along with instructions to load/store bytes or words.4

3In concurrent work, Ben-Sasson et al. [BCTV14] build a fully-succinct zk-SNARK, by following the approach of [BCCT13].
See [BCTV14] for a discussion about the tradeoffs between our construction and theirs.

4Byte-addressing is common in programs performing array or string operations (and is a deeply-ingrained assumption in the GCC
and LLVM compilers), while word-addressing in programs performing arithmetic. Simultaneous support for both greatly simplifies
compiling higher-level languages to vnTinyRAM.

9

Besides the above main differences, vnTinyRAM is very similar to TinyRAM. Namely, it is parametrized
by the word size, denoted W , and the number of registers, denoted K. The CPU state of the machine consists
of (i) a W -bit program counter; (ii) K general-purpose W -bit registers; (iii) a 1-bit condition flag. The full
state of the machine also includes memory, which is a linear array of 2W bytes, and two tapes, each with a
string of W -bit words, and read-only in one direction. One tape is for a primary input x and the other for an
auxiliary input w (treated as nondeterministic, untrusted advice).

In memory, an instruction is represented as a double word (one word for an immediate, and another for
opcode, etc.). Thus, a program P is a list of address/double-word pairs specifying the initial contents of
memory; all other memory locations assume the initial value of 0.

At every time step, the machine executes the instruction encoded by pc-th double word in memory, where
pc is program counter pc (with its lowest 2W/8 set to 0); every instruction increments pc by 2W/8 (which is
number of bytes in a double word), unless it explicitly modifies pc. The machine’s only input is via the input
tapes and initial memory, and only output is via an answer instruction (which halts execution) having a
single argument A, representing the return value, where A = 0 means “accept”.

Language of accepting computations. Formally, when saying “prover/verify correct execution” we mean
“membership in the language of accepting computations”. This language is defined as follows.

Definition 2.6. Fix bounds `, n, T . The language L`,n,T consists of pairs (P, x) such that: (i) P is a
program with ≤ ` instructions, (ii) x is a primary input with ≤ n words, (iii) there exists an auxiliary input w
s.t. P(x,w) accepts in ≤ T steps. We denote byR`,n,T the relation corresponding to L`,n,T .

For more details about vnTinyRAM, see [BCGTV13b].

3 Our circuit generator
A circuit generator translates the correctness of suitably-bounded program executions into circuit satisfiability:
given input bounds `, n, T , it produces a circuit that can verify the execution of any program with ≤ `
instructions, on any input of size ≤ n, for ≤ T steps. More precisely, using the notations [[s]]p (for packing
the binary string s into field elements) and |s|p (for computing the number of field elements required to pack
s) introduced in Section 2.2, we define a (universal) circuit generator for vnTinyRAM as follows.

Definition 3.1. A (universal) circuit generator of efficiency f(·) over a prime field Fp is a polynomial-
time algorithm circ, together with an efficient witness map wit, working as follows. For any program size
bound `, time bound T , and primary-input size bound n, C := circ(`, n, T) is an Fp-arithmetic circuit
C : Fmp × Fhp → Flp, for m := |`2W |p + |nW |p and some h, l, where W is the word size (cf. Section 2.6).
• EFFICIENCY. The circuit C has f(`, n, T) gates.
• COMPLETENESS. Given any program P, primary input x, and witness w such that

(
(P, x),w

)
∈ R`,n,T ,

it holds that (~x,~a) ∈ RC , where ~x := [[P]]`2Wp ◦ [[x]]nWp and ~a := wit(`, n, T,P, x,w).
• PROOF OF KNOWLEDGE. There is a polynomial-time algorithm such that, given any (~x,~a) ∈ RC , outputs

a witness w for (P, x) ∈ L`,n,T .

The circuit C output by circ is universal because it does not depend on the program P or primary input
x, but only on their respective size bounds ` and n (as well as the time bound T). When combined with
any proof system for circuit satisfiability (e.g., our zk-SNARK), this fact enables the generation of the proof
systems’ parameters to be universal as well. Namely, it is possible to generate keys for all bound choices (e.g.,
in powers of 2) up to some constant, once and for all; afterwards, one can pick the keys corresponding to
bounds fitting a given computation. This avoids expensive per-program key generation and, more importantly,
the need for a trusted party to conduct key generation anew for every program.

We construct a universal circuit generator with the following efficiency:

10

Theorem 3.2. There is a circuit generator of efficiency f(`, n, T) = O
(
(`+ n+ T) · log(`+ n+ T)

)
over

any prime field Fp of size p > 22W , where W is the word size (cf. Section 2.6).

Remark 3.3. The prime p is determined by the zk-SNARK construction with which the circuit generator is
combined, and in our case is at least 160 bits (so that inverting discrete logarithms in related groups is hard).
Thus, the condition p > 22W is not really a restriction, even for large word sizes (e.g., W = 64). Regardless,
Theorem 3.2 in fact holds for any field F, but the construction, when char(F) ≤ 22W , is more complex, and
our code does not currently support it.

3.1 Past techniques
Most of the difficulties that arise when designing a circuit generator have to do with data dependencies. A
circuit’s topology does not depend on its inputs but, in contrast, program flow and memory accesses depend
on the choice of program and the program’s inputs. Thus, a circuit tasked with verifying program executions
must be “ready” to support a multitude of program flows and memory accesses, despite the fact that its
topology has already been fixed. Various techniques have been applied to the design of circuit generators.
Program analysis. In the extreme, if both the program P and its inputs (x,w) are known in advance,
designing a circuit generator is simple: construct a circuit that evaluates P on (x,w) by preparing the circuit’s
topology to match the pre-determined program flow and memory accesses. But now suppose that only P
is known in advance, but not its inputs (x,w). In this case, by analyzing P piece by piece (e.g., separately
examine the various loops, branches, and so on), one could try to design a circuit CP that can handle different
choices of inputs. Most prior circuit generators [SVPB+12, SBVB+13, PGHR13, BFRS+13] take this
approach.

However, this approach suffers from several limitations. First, the class of supported programs P is not
rich, because support for data dependencies is limited. E.g., [PGHR13] requires array accesses and loop
iteration bounds to be compile-time constants; also, while [BFRS+13] supports data-dependent memory
accesses, most program flow is also restricted to be known (or bounded) at compile-time; mitigations are
possible, but only in special cases [ZE13]. Second, and more importantly, this approach does not seem to
allow for designing universal circuit generators, because the program P is not known in advance and thus
there is no program to analyze.
Multiplex every access. Computers are universal random-access machines (RAMs), so one approach of
designing a universal circuit is to mimic a computer’s execution, building a layered circuit as follows. The
i-th layer contains the entire state of the machine (CPU state and random-access memory) at time step i, and
layer i+ 1 is computed from it by evaluating the transition function of the machine, handling any accesses
to memory via multiplexing. While this approach supports arbitrary program flow, memory accesses are
inefficiently supported; indeed, if memory has S addresses, the resulting circuit is huge: it has size Ω(TS).
Nondeterministic routing. Ben-Sasson et al. [BCGT13a] suggested using nondeterministic routing on a
Beneš network to support memory accesses efficiently; indeed, sorting and routing are ubiquitous techniques
in fast simulation results between nondeterministic models of computation [Ofm65, Sch78, GS89, Rob91].
Our circuit generator builds on the techniques of [BCGT13a, BCGTV13a], so we briefly review the main
idea behind nondeterministic routing.

Following [BCGT13a], Ben-Sasson et al. [BCGTV13a] introduced a simple computer architecture, called
TinyRAM, and constructed a routing-based circuit generator for TinyRAM. They define the following notions.
A CPU state, denoted S, is the CPU’s contents (e.g., program counter, registers, flags) at a given time step.
An execution trace for a program P, time bound T , and primary input x is a sequence tr = (S1, . . . , ST)
of CPU states. An execution trace tr is valid if there is an auxiliary input w such that the execution trace
induced by P running on inputs (x,w) is tr.

We seek an arithmetic circuit C for verifying that tr is valid. We break this down by splitting validity into
three sub-properties: (i) validity of instruction fetch (for each time step, the correct instruction is fetched);

11

(ii) validity of instruction execution (for each time step, the fetched instruction is correctly executed); and
(iii) validity of memory accesses (each load from an address retrieves the value of the last store to that
address).

The first two properties are verified as follows. Construct a circuit CP so that, for any two CPU states S
and S′, CP(S, S′, g) is satisfied for some “guess” g if and only if S′ can be reached from S (by fetching from
P the instruction indicated by the program counter in S and then executing it), for some state of memory.
Then, properties (i) and (ii) hold if CP(Si, Si+1, ·) is satisfiable for i = 1, . . . , T − 1. Thus, C contains T − 1
copies of CP, each wired to a pair of adjacent states in tr.

The third property is verified via nondeterministic routing. Assume that C also gets as input MemSort(tr),
which equals to the sorting of tr by accessed memory addresses (breaking ties via timestamps), and write a
circuit Cmem so that validity of memory accesses holds if Cmem is satisfied by each pair of adjacent states
in MemSort(tr). (Roughly, Cmem checks consistency of “load-after-load”, “load-after-store”, and so on.)
However, C merely gets some auxiliary input tr∗, which purports to be MemSort(tr). So C works as follows:
(a) C has T − 1 copies of Cmem, each wired to a pair of adjacent states in tr∗; (b) C separately verifies that
tr∗ = MemSort(tr) by routing on a O(T log T)-node Beneš network. The switches of the routing network
are set according to non-deterministic guesses (i.e., additional values in the auxiliary input), and the routing
network merely verifies that the switch settings induce a permutation; this allows for a very tight reduction.
(Known constructions that compute the correct permutation hide large constants in big-oh notation [AKS83].)

Past inefficiencies. After filling in additional details, the construction of [BCGTV13a] reviewed above
gives a circuit of size Θ

(
(n+ T) · (log(n+ T) + `)

)
= Ω(` · T). The Ω(` · T) arises from the fact that all of

the ` instructions in P are hardcoded into each of the T − 1 copies of CP. Thus, besides being non-universal,
the circuit scales inefficiently as ` grows (e.g., for ` = 104, CP’s size is already dominated by P’s size).

3.2 Our construction
In comparison to [BCGTV13a], our circuit generator is universal and, moreover, its size only grows with
` + T (additive dependence on program size) instead of with ` · T (multiplicative dependence). As our
evaluation demonstrates (see Section 5.1), the size improvement actually translates into significant savings in
practice.

Instead of hardcoding the program P into each copy of the circuit CP, we follow the von Neumann
paradigm, where the program P lies in the same read/write memory space as data. We ensure that P is loaded
into the initial state of memory, using a dedicated circuit; we then verify instruction fetch via the same routing
network that is used for checking data loads/stores. While the idea is intuitive, realizing it involves numerous
technical difficulties, some of which are described below.

Routing instructions and data. We extend an execution trace to not only include CPU states but also
instructions: tr = (S1, I1, . . . , ST , IT) where Si is the i-th CPU state, and Ii is the i-th executed instruction.
We seek an arithmetic circuit C that checks tr, in this “extended” format, for the same three properties as
above: (i) validity of instruction fetch; (ii) validity of instruction execution; (iii) validity of memory accesses.

As in [BCGTV13a], checking that tr satisfies property (ii) is quite straightforward. Construct a circuit
Cexe so that, given two CPU states S, S′ and an instruction I , Cexe(S, S

′, I, g) is satisfied, for some guess g,
if and only if S′ can be reached from S, by executing I , for some state of memory. Then, C contains T − 1
copies ofCexe, each wired to adjacent CPU states and an instruction, i.e., the i-th copy isCexe(Si, Si+1, Ii, gi).

Unlike [BCGTV13a], though, we verify properties (i) and (iii) jointly, via the same routing network.
The auxiliary input now contains tr∗ = (A1, . . . , A2T), purportedly equal to the memory-sorted list of both
instructions fetches and CPU states. (Since the program P lies in the same read-write memory as data, an
instruction fetch from P is merely a special type of memory load.) Thus, to check that tr satisfies properties
(i) and (iii), we design C to (a) verify that tr∗ = MemSort(tr) via nondeterministic routing, and (b) verify
validity of all (i.e., instruction and data) memory accesses, via a new circuit C ′mem applied to each pair of

12

adjacent items Ai, Ai+1 in tr∗. Thus, in this approach, P is never replicated T times; rather, the fetching of
its instructions is verified together with all other memory accesses, one instruction fetch at a time.

Multiple memory-access types. Each copy of C ′mem inspects a pair of items in tr∗ and (assuming tr∗ =
MemSort(tr)) must ensure consistency of “load-after-load”, “load-after-store”, and so on. However, unlike in
[BCGTV13a], the byte-addressable memory of vnTinyRAM is accessed in different-sized blocks: instruction-
size blocks for instruction fetch; word-size blocks when loading/storing words; and byte-size blocks when
loading/storing bytes. The consistency checks in C ′mem must handle “aliasing”, i.e., accesses to the same
point in memory via different addresses and block sizes.

We tackle this difficulty as follows. Double-word blocks are the largest blocks in which memory is
accessed (as instructions are encoded as double words; cf. Section 2.6). We thus let each item in tr∗ always
specify a double-word, even if the item’s memory access was with respect to a smaller-sized block (e.g., word
or byte). With this modification, we can let C ′mem perform consistency checks “at the double-word level”, and
handling word/byte accesses by mapping them to double-word accesses with suitable shifting and masking.

Booting the machine. We have so far assumed that the program P, given as input to C, already appears
in memory. However, the circuit C sketched so far only verifies the validity of tr with respect to a machine
whose memory is initialized to some state, corresponding to the execution of some program. But C must
verify correct execution of, specifically, P, and so it must also verify that memory is initialized to contain P.
Since C does not explicitly maintain memory (not even the initial one) and only implicitly reasons about
memory via the routing network, it is not clear how C can perform this check.

We tackle this difficulty as follows. We further modify the the execution trace tr, by extending it with an
initial boot section, preceding the beginning of the computation, during which the input program P is stored
into memory, one instruction Pi at a time. This extends the length of both tr and tr∗ from 2T to `+ 2T , for
`-instruction programs, and introduces a new type of item, “boot input store”, in tr∗. Similarly, the routing
network is now responsible for routing `+ 2T , rather than 2T , packets.

Further optimizations. The above construction sketch (depicted in Figure 6) is only intuitive, and does
not discuss other optimizations that ultimately yield the performance that we report in Section 5.1.

For example, while [BCGTV13a] rely on Beneš networks, we rely on arbitrary-size Waksman networks
[BÉ02], which only requireN(logN−0.91) switches to routeN packets, instead of 2dlogNe(dlogNe−0.5).
Besides being closer to the information-theoretic lower bound of N(logN − 1.443), such networks eliminate
costly rounding effects in [BCGTV13a], where the size of the network is doubled if N is just above a power
of 2 (since the height of a Beneš network is 2dlogNe).

As another example, we want C to not only support programs with exactly ` instructions but also with at
most `, and similarly for the bound n on the size of primary inputs (which our discussion has so far omitted);
we work out the details for C to efficiently support such upper bounds.

Compiling to vnTinyRAM. To enable verification of higher-level programs, written in C, we ported the GCC
compiler to the vnTinyRAM architecture, by modifying the Harvard-architecture, word-addressible TinyRAM
C compiler of [BCGTV13a]. Given a C program, written in the same subset of C as in [BCGTV13a], the
compiler produces the initial memory map representing a program P. This also served to validate the
vnTinyRAM architectural choices (e.g., the move to byte-addressing significantly, and added instructions,
improved efficiency for many programs).

4 Our zk-SNARK for circuits
We discuss our second main contribution: a high-performance implementation of a zk-SNARK for arithmetic
circuit satisfiability. Our approach is to tailor the requisite mathematical algorithms to the specific zk-SNARK
protocol at hand. While our techniques can be instantiated in many algebraic setups and security levels, we

13

𝐶୫ୣ୫
𝐶୫ୣ୫
⋮

boot

𝐶ୣ୶ୣ 𝐼ଵ

𝐼ଶ

𝑆்

𝑆ଵ

𝑆ଶ

𝐼்

⋮

𝐏ଵ
𝐏𝟐

𝐏ℓ𝓁
⋮

𝑆ଷ
𝐶ୣ୶ୣ

⋮

𝐶ୣ୶ୣ

𝐴ଶ

𝐴ସ

𝐴ଵ

𝐴ଷ

𝐴ହ

𝐴

𝐴ଶାℓ𝓁ିଵ

𝐴

𝐴଼

𝐴ଶାℓ𝓁

⋮
𝐶୫ୣ୫
𝐶୫ୣ୫
𝐶୫ୣ୫
𝐶୫ୣ୫
𝐶୫ୣ୫
𝐶୫ୣ୫

𝐶୫ୣ୫

routing
network

⋮

Figure 6: Outline of our universal circuit construction with the extended trace tr on the left and (allegedly) its memory sort tr∗ on the
right. All inputs to the circuit, with the exception of P (and the primary input x, not shown), are nondeterministic guesses.

demonstrate them in two specific settings, to facilitate comparison with prior work. Later, in Section 5.2, we
provide benchmarks for our zk-SNARK.

4.1 The PGHR protocol and the two elliptic curves
See Section 2.5 for an informal definition of a zk-SNARK for arithmetic circuit satisfiability. We improve
upon and implement the zk-SNARK of Parno et al. [PGHR13]. For completeness the “PGHR protocol” is
summarized in Figure 10, which provides pseudocode for its key generator G, prover P , and verifier V . The
construction is based on QAPs, introduced in Section 2.3.

Like most other zk-SNARKs, the PGHR protocol relies on a pairing, which is specified by a prime r ∈ N,
three cyclic groups G1,G2,GT of order r, and a bilinear map e : G1 ×G2 → GT . (See Section 2.4.)

A pairing is typically instantiated via a pairing-friendly elliptic curve. Concretely, suppose that one uses a
curve E defined over Fq, with embedding degree k with respect to r, to instantiate the pairing. Then GT is set
to µr, the subgroup of r-th roots of unity in F∗

qk
. The instantiation of G1 and G2 depends on the choice of e;

typically, G1 is instantiated as an order-r subgroup of E(Fq), while, for efficiency reasons [BKLS02, BLS04],
G2 as an order-r subgroup of E′(Fk/d) where E′ is a d-th twist of E. Finally, the pairing e is typically a
two-stage function e(P,Q) := FE(ML(P,Q)), where ML : G1 × G2 → Fkq is known as Miller loop, and
FE : Fkq → Fkq is known as final exponentiation and maps α to FE(α) := α(qk−1)/r.

As mentioned, we instantiate our techniques based on two different curves: an Edwards curve for the
80-bit security level (as in [BCGTV13a]) and a Barreto–Naehrig curve for the 128-bits security level (as
in [PGHR13, BFRS+13]). We selected both the Edwards curve and Barreto–Naehrig curve so that r − 1
has high 2-adic order (i.e., r − 1 is divisible by a large power of 2), because this was shown to improve the
efficiency of the key generator and the prover [BCGTV13a].

Next, we describe the optimizations that we have applied to the zk-SNARK verifier (Section 4.2), then to
the prover (Section 4.3), and, finally, to the key generator (Section 4.4).

4.2 An optimized verifier
The verifier V takes as input a verification key vk, input ~x ∈ Fnr , and proof π, and checks if π is a valid proof
for the statement “~x ∈ LC”. The computation of V consists of two parts. First, use vkIC,0, . . . , vkIC,n ∈ G1

14

(part of vk) and input ~x to compute vk~x := vkIC,0 +
∑n

i=1 xivkIC,i(see Step 1 in Figure 10c). Second, use vk,
vk~x, and π, to compute 12 pairings and perform the required checks(see Step 2, Step 3, Step 4 in Figure 10c).
In other words, V performs O(n) scalar multiplications in G1, followed by O(1) pairing evaluations.

With regard to V ’s first part, variable-base multi-scalar multiplication techniques can be used to reduce
the number of G1 operations needed to compute vk~x [BCGTV13a, PGHR13]. With regard to V ’s second
part, even if the pairing evaluations take constant time (independent of the input size n), these evaluations are
very expensive and dominate for small n. Our focus here is to minimize the cost of these pairing evaluations.

When only making “black-box” use of a pairing, the verifier must evaluate 12 pairings(see Figure 10c),amounting
to 12 Miller loops plus 12 final exponentiations. The straightforward approach is to compute these using a
generic high-performance pairing library. We proceed differently: we obtain high-performance implementa-
tions of sub-components of a pairing, and then tailor their use specifically to V ’s protocol.

Namely, first, we obtain state-of-the-art implementations of a Miller loop and final exponentiation.
We utilize optimal pairings [Ver10] to minimize the number of loop iterations in each Miller loop, and,
to efficiently evaluate each Miller loop, rely on the formulas of [ALNR11] (for Edwards curves) and
[BGDMO+10] (for BN curves). As for final exponentiation, we use multiple techniques to speed it up:
[SBCDPK09, GS10, FCnKRH12, KKC13].

Next, building on the above foundation, we incorporate in V the following optimizations.

(1) Sharing Miller loops and final exponentiations. The verifier V computes two products of two
pairings(see Step 3 and Step 4 in Figure 10c).We leverage the fact that a product of pairings can be evaluated
faster than evaluating each pairing separately and then multiplying the results [Sol03, Sco05, GS06, Sco07].
Concretely, in a product of m pairings, the Miller loop iterations for evaluating each factor can be carried out
in “lock-step” so to share a single Miller accumulator variable, using one Fqk squaring per loop instead of m.

In a similar vein, one can perform a single final exponentiation on the product of the outputs of the m
Miller loops, instead of m final exponentiations and then multiplying the results. In fact, since the output of
the pairing can be inverted for free (as the element is unitary so that inverting equals conjugating [SB04]), the
idea of “sharing” final exponentiations extends to a ratio of pairing products. Thus, in the verifier we only
need to perform 5, instead of 12, final exponentiations.

Our implementation incorporates both of the above techniques. For example, at the 80-bit security level,
separately computing 12 optimal pairings costs 13.6 ms, but the above techniques reduce the time to only
8.1 ms. We decrease this further as discussed next.

(2) Precomputation by processing the verification key. Of the 12 pairings the verifier needs to evaluate,
only one is such that both of its inputs come from the proof π. The other 11 pairings have one fixed input,
either a generator of G1 or G2, or coming from the verification key vk.

Whenever one of the two inputs to a pairing is fixed, precomputation techniques apply [GHS02, BLS03,
Sco07], especially in the case when the fixed input is the base point in Miller’s algorithm. In V , this holds
for 9 out of the 11 pairing evaluations. We thus split the verifier’s computation into an offline phase, which
consists of a one-time precomputation that only depends on vk, and a many-time online phase, which depends
on the precomputed values, input ~x, and proof π. More precisely, the result of the offline phase is a processed
verification key vk∗. While vk∗ is longer than vk, it allows the online phase to be faster.

E.g., at the 80-bit security level, vk∗ decreases the total cost of pairing checks from 8.1 ms to 4.7 ms.

4.3 An optimized prover

The prover P takes as input a proving key pk (which includes the circuit C : Fnr × Fhr → Flr), input
~x ∈ Fnr , and witness ~a ∈ Fr. The prover P is tasked to produce a proof π, attesting that ~x ∈ LC .
The computation of P consists of two main parts. First, compute the coefficients ~h of the polynomial
H(z) := A(z)B(z)−C(z)

Z(z) (see Step 4 in Figure 10b), where A,B,C ∈ Fr[z] are derived from the QAP instance

15

(~A, ~B, ~C,Z) := QAPinst(C) and QAP witness ~s := QAPwit(C, ~x,~a). Second, use the coefficients ~h, QAP
witness ~s, and public key pk to compute π(see Step 6 in Figure 10b).

With regard to the first part of P , the coefficients ~h can be efficiently computed via FFT techniques
[BCGTV13a, PGHR13]; our implementation follows [BCGTV13a], and leverages the high 2-adic order
of r − 1 for both of the elliptic curves we use.5 With regard to P ’s second part, computing π requires
solving large instances of the following problem: given elements Q1, . . . ,Qn all in G1 (or all in G2) and
scalars α1, . . . , αn ∈ Fr, compute 〈~α, ~Q〉 := α1Q1 + · · ·+ αnQn. Previous work [PGHR13, BCGTV13a]
has leveraged generic multi-scalar multiplication to compute π. We observe that these algorithms can be
tailored to the specific scalar distributions arising in P . In P , the vector ~α is one of two types: (i) ~α ∈ Fd+1

r

and represents the coefficients of the degree-d polynomial H; or (ii) ~α = (1 ◦ ~s ◦ δ1 ◦ δ2 ◦ δ3) ∈ F4+m
r , for

random δ1, δ2, δ3 ∈ Fr.
In case i, the entries in of ~α are random-looking. We use the Bos–Coster algorithm [BC89] due to

its lesser memory requirements (as compared to, e.g., [Pip80]). We follow [BDLSY11]’s suggestions and
achieve an assembly-optimized heap to implement the Bos–Coster algorithm.

In case ii, the entries in ~s depend on the input (C, ~x,~a) to QAPwit; in turn, (C, ~x,~a) depends on our
circuit generator (Section 3). Using the above algorithm “as is” is inefficient: the algorithm works well when
all the scalars have roughly the same bit complexity, but the entries in ~c have very different bit complexity.
Indeed, ~α equals to ~s augmented with a few entries; and ~s, the QAP witness, can be thought of as the list
of wire values in C when computing on (~x,~a); the bit complexity of a wire value depends on whether it is
storing a boolean value, a word value, and so on. We observe that there are only a few “types” of values, so
that the entries of ~α can be clustered into few groups of scalars with approximately the same bit complexity;
we then apply the algorithm of [BC89] to each such group.

4.4 An optimized key generator

The key generator G takes as input a circuit C : Fnr × Fhr → Flr, and is tasked to compute a proving key pk
and a verification key vk. The computation of G consists of two main parts. First, evaluate each Ai, Bi, Ci at
a random element τ , where (~A, ~B, ~C,Z) := QAPinst(C) is the QAP instance. Second, use these evaluations
to compute pk and vk(see Step 3 and Step 4 in Figure 10a).

With regard to G’s first part, we follow [BCGTV13a] and again leverage the fact that Fr has a primitive
root of unity of large order. With regard to G’s second part, it is dominated by the cost of computing pk,
which requires solving large instances of the following problem: given an element P in G1 or G2 and
scalars α1, . . . , αn ∈ Fr, compute α1P, . . . , αnP . Previous work [PGHR13, BCGTV13a], used fixed-base
windowing [BGMW93] to efficiently compute such fixed-base multi-scalar multiplications.

In our implementation, we achieve additional efficiency, in space rather than in time. Specifically, we
leverage a structural property of QAPs derived from arithmetic circuits, in order to reduce the size of the
proving key pk, as we now explain. Lemma 2.4 states that an F-arithmetic circuit C : Fn × Fh → Fl, with
α wires and β gates, can be converted into a corresponding QAP of size m = α and degree d ≈ β over F.
Roughly, this is achieved in two steps. First, construct three matrices A,B,C ∈ F(m+1)×d that encode C’s
topology: for each j ∈ [d], the j-th column of A,B respectively encodes the “left” and “right” coefficients
of the j-th bilinear gate in C, while the j-th column of C encodes the coefficients of the gate’s output.
Second, letting S ⊂ F be a set of size d, define Z(z) :=

∏
ω∈S(z−ω) and, for i ∈ {0, . . . ,m}, let Ai be the

low-degree extension of the i-th row of A; similarly define each Bi and Ci. All prior QAP-based zk-SNARK
implementations exploit the fact that columns in the matrices A,B,C are very sparse.

In contrast, we also leverage a different kind of sparsity: we observe that it is common for entire rows

5If the 2-adic order of r − 1 is i then Fr contains a primitive root of unity of order 2i. Hence, one can use the classical radix-2
multiplicative FFT [CT65] and its inverse over domains of size 2i. These algorithms only require O(n logn) field operations for
degree-n polynomials, and are particularly efficient in practice.

16

of A,B,C to be all zeroes, causing the corresponding low-degree extensions to be zero polynomials.6 For
instance, our circuit generator typically outputs a circuit for which the percentage of non-zero polynomials in
~A, ~B, ~C is only about 52%, 15%, 71% respectively. The fact that many polynomials in ~A, ~B, ~C evaluate to
zero can be used towards reducing the size of pk, by switching from a dense representation to a sparse one.

In fact, we have engineered our circuit generator to reduce the number of non-zero polynomials in ~B as
much as possible, because computations associated to evaluations of ~B are conducted with respect to more
expensive G2 arithmetic, which we want to avoid as much as possible.7

5 Evaluation
We evaluated our system on a desktop computer with a 3.40 GHz Intel Core i7-4770 CPU (with Turbo Boost
disabled) and 32 GB of RAM. All experiments, except the largest listed in Figure 8 and Figure 9, used a small
fraction of the RAM. For the two largest experiments in Figure 9 we added a Crucial M4 solid state disk for
swap space. Finally, while our code supports multi-threading, we ran all of our experiments in single-thread
mode, for ease of comparison with prior work.

5.1 Performance of our circuit generator
In Section 3 we described our universal circuit generator; we now benchmark its performance.

Parameter choices. The circuit generator supports the architecture vnTinyRAM, which is parametrized by
two quantities: the word size W and the number of registers K (see Section 2.6). We report performance
for a machine with K = 16 registers, and two choices of word size: W = 16 and W = 32. Also, a circuit
generator is defined relative to a prime field Fp (see Definition 3.1) and its efficiency may in principle depend
on p; since our construction has the same number of gates for any p with p > 22W (a condition that holds for
any cryptographically-large p), in the discussion below we do not have to worry about the value of p.

Methodology. Theorem 3.2 provides an asymptotic efficiency guarantee: it states that our circuit generator
has efficiency f(`, n, T) = O

(
(`+n+T) · log(`+n+T)

)
. To understand concrete efficiency, we “uncover”

the constants hidden in the big-oh notation. By studying the number of gates in various subcircuits of the
generated circuit C := circ(`, n, T), we computed the following (quite tight) upper bound on C’s size:

(12 + 2W) · `+ (12 +W) · n+ |Cexe| · T + (|Cmem|+ 4 logH − 1.82) ·H
where H := (`+ n+ 2T) is the “height” of the routing network, and
• for (W,K) = (16,16): |Cexe| = 777 and |Cmem| = 211; and
• for (W,K) = (32,16): |Cexe| = 1114 and |Cmem| = 355.
In Figure 7, we give per-cycle gate counts (i.e., |C|/|T |) for various choices of (`, n, T); we also give sub-
counts divided among program/input boot, CPU execution, memory checking, and routing. (See Figure 11 in
Appendix C for an extended table with additional data.)

Discussion. We first go through the size expression, to understand it: The first two terms, (12 + 2W) · `+
(12 + W) · n, correspond to the pre-execution boot phase, during which an `-instruction program and an
n-word primary input are loaded into the machine. The term |Cexe| · T corresponds to the T copies of Cexe

used to verify each CPU transition, given the fetched instruction and two CPU states. The term |Cmem| ·H
corresponds to the H copies of Cmem used to verify consistency on the memory-sorted trace. Finally, the
term (4 logH − 1.82) · H corresponds to the routing network for routing H packets (two gates for each
of (2 logH − 0.91) ·H binary switches). Note that H = (`+ n+ 2T) because boot needs `+ n memory

6E.g., if the i-th wire never appears with a non-zero coefficient as the “left” input of a bilinear gate, then the i-th row of A is zero,
and thus Ai is the zero polynomial.

7Moreover, 15% non-zero polynomials in ~B is likely not optimal: one can verify that minimizing the number of non-zero
polynomials in ~B reduces to a minimum vertex cover problem [MR96]. It is an interesting open question whether approximation
algorithms for such a problem can be used to further improve efficiency, and go below 15%.

17

Per-cycle gate count of C := circ(`, n, T) with vnTinyRAM parameters (W,K)

n = 102, K = 16

W = 16 W = 32

|C|/T |C|/T divided among Per
cycle

|C|/T divided among
boot exec. mem. routing boot exec. mem. routing

`
=

1
0
3 T = 220 1,367.4 0.04 777.0 422.2 168.1 1,992.5 0.08 1,114.0 710.4 168.1

T = 224 1,399.0 0.00 777.0 422.0 200.0 2,024.0 0.00 1,114.0 710.0 200.0
T = 228 1,431.0 0.00 777.0 422.0 232.0 2,056.0 0.00 1,114.0 710.0 232.0

`
=

1
0
4 T = 220 1,370.3 0.41 777.0 424.0 168.8 1,997.0 0.72 1,114.0 713.4 168.8

T = 224 1,399.2 0.03 777.0 422.1 200.1 2,024.3 0.05 1,114.0 710.2 200.1
T = 228 1,431.0 0.00 777.0 422.0 232.0 2,056.0 0.00 1,114.0 710.0 232.0

`
=

1
0
5 T = 220 1,399.7 4.12 777.0 442.1 176.4 2,041.5 7.19 1,114.0 743.9 176.4

T = 224 1,401.1 0.26 777.0 423.3 200.6 2,027.2 0.45 1,114.0 712.1 200.6
T = 228 1,431.1 0.02 777.0 422.1 232.0 2,056.2 0.03 1,114.0 710.1 232.0

Figure 7: Performance of our circuit generator: per-cycle gate counts in C := circ(`, n, T) for different choices of (`, n, T) and
vnTinyRAM parameters (W,K).

stores (one for each program instruction and primary input word) and execution needs 2T memory accesses
(1 instruction fetch and 1 data store/load per execution cycle).

The gate counts in Figure 7 demonstrate the additive (instead of multiplicative) dependence on program
size of our universal circuit pays off. For example, for (W,K) = (32,16), a 100-fold increase in program
size, from ` = 103 to ` = 105, barely impacts the per-cycle gate count: for T = 220, it increases from
1,992.5 to only 2,041.5. Indeed, the cost of program size is incurred, once and for all, during the machine
boot; Figure 7 shows that the per-cycle cost of machine boot diminishes as T grows.

Second, less than half of C’s gates are dedicated to verifying accesses to random-access memory, while
the majority of gates are dedicated to verifying execution of the CPU; indeed, almost always, |Cexe|T > 1

2 |C|.
Put otherwise, C, which verifies an automaton with random-access memory (vnTinyRAM), has size that
is less than twice that for verifying an automaton with the same CPU but no random-access memory at all.
Moreover, note that the size of Cexe appears quite tight: for example, with (W,K) = (32,16), it has size
1114, not much larger than the size of the CPU state (545 bits).

5.2 Performance of our zk-SNARK for circuit satisfiability
In Section 4 we described our zk-SNARK implementation; we now benchmark its performance.
Methodology. We provide performance characteristics for each of the zk-SNARK algorithms, G, P and V ,
at the 80-bit and 128-bit security levels. We benchmark the system as follows.
(1) The key generator G takes as input an arithmetic circuit C : Fnr × Fhr → Flr. Its efficiency mostly depends
on the number of gates and wires in C, because these affect the size and degree of the corresponding QAP
(see Lemma 2.4). Thus, we evaluate G on a circuit with 2i gates and 2i wires for i ∈ {10,12, . . . ,24} (and
fixed n = h = l = 100). In Figure 8 we report the resulting running times and key sizes, as per-gate costs.
(2) The prover P takes as input a proving key pk, input ~x ∈ Fnr , and witness ~a ∈ Fhr . Its efficiency mostly
depends on the number of gates and wires in C (the circuit used to generate pk); we thus evaluate P on the
proving keys output by G, for the same circuits as above. In Figure 8 we report the resulting running times,
as per-gate costs, and (constant) proof sizes.
(3) The verifier V takes as input a verification key vk, input ~x ∈ Fnr , and proof π. Its efficiency depends only
on ~x (since the size of ~x determines that of vk). Thus, we evaluate V on a random input ~x ∈ Fnr of 2i bytes
for i ∈ {2,4, . . . ,20}. In Figure 8 we report the resulting running times, along with corresponding key sizes.
For completeness, Figure 12 in Appendix C reports the unnormalized measurements and additional informa-
tion (e.g., times for various subcomputations).

18

80 bits of security 128 bits of security

key gen. G time/|C| |pk|/|C| time/|C| |pk|/|C|

n
=

1
0
0

|C| = 210 0.21ms 248.8B 0.21ms 304.1B
|C| = 212 0.16ms 252.5B 0.17ms 309.1B
|C| = 214 0.14ms 253.4B 0.16ms 310.3B
|C| = 216 0.12ms 253.7B 0.14ms 310.6B
|C| = 218 0.11ms 253.7B 0.12ms 310.7B
|C| = 220 0.10ms 253.7B 0.12ms 310.7B
|C| = 222 0.09ms 253.7B 0.11ms 310.7B
|C| = 224 0.08ms 253.7B 0.10ms 310.7B
|vk| 2.8KB 3.6KB

prover P time/|C| |π| time/|C| |π|
n
=

1
0
0

|C| = 210 0.18ms 230B 0.21ms 288B
|C| = 212 0.16ms 230B 0.18ms 288B
|C| = 214 0.14ms 230B 0.16ms 288B
|C| = 216 0.13ms 230B 0.15ms 288B
|C| = 218 0.12ms 230B 0.15ms 288B
|C| = 220 0.12ms 230B 0.15ms 288B
|C| = 222 0.11ms 230B 0.14ms 288B
|C| = 224 0.11ms 230B 0.14ms 288B

verifier V |vk|/|~x| time/|~x| |vk|/|~x| time/|~x|

|~x| = 4B 118.7B 1.2ms 123.4B 1.2ms
|~x| = 16B 29.7B 0.3ms 30.8B 0.3ms
|~x| = 64B 8.1B 76.7µs 8.7B 81.2µs
|~x| = 256B 2.8B 19.5µs 2.9B 20.3µs
|~x| = 1.0KB 1.5B 5.4µs 1.5B 5.9µs
|~x| = 4.1KB 1.1B 1.8µs 1.1B 2.1µs
|~x| = 16.4KB 1.1B 0.8µs 1.0B 1.0µs
|~x| = 65.5KB 1.0B 0.5µs 1.0B 0.7µs
|~x| = 262.1KB 1.0B 0.4µs 1.0B 0.6µs
|~x| = 1.0MB 1.0B 0.4µs 1.0B 0.5µs

Figure 8: Performance of our zk-SNARK for arithmetic circuit satisfiability: per-gate costs of the key generator and prover for
various circuit sizes; and per-byte costs of the verifier for various input sizes. (N = 10 and std < 1%)

Discussion. The data demonstrates that our zk-SNARK implementation works and scales as expected, as
long as sufficient memory is available (e.g., on a desktop computer with 32GB of DRAM: up to 16 million
gates); also, as expected, the higher security level entails higher costs. Key generation takes about 10 ms per
gate of C; the size of a proving key is about 300 B per gate, and the size of a verification key is about 1 B per
byte of input to C. Running the prover takes 11 ms to 14 ms per gate. For an n-byte input, proof verification
time is c1n+ c0, where c0 is a few milliseconds and c1 is a few tenths of microseconds.

Remark 5.1. Another factor affecting the efficiency of G and P is the number of non-zero polynomials in
the QAP instance obtained from the circuit C (see Section 4.4). In Figure 8 we reported worst-case numbers
in this respect: we only used circuits whose QAP has no non-zero polynomials. In general, QAP with more
zero polynomials make the key generator and prover faster; in particular, the circuits output by our circuit
generator induce QAP instances with many zero polynomials, so that the numbers reported in Section 5.3 are
somewhat better than what one would expect by merely multiplying the per-gate costs of Figure 8 with the
number of gates in the circuit output by the circuit generator.

5.3 Performance of the combined system
As discussed, our circuit generator (Section 3) and zk-SNARK for circuits (Section 4) can be used indepen-
dently, or combined to obtain a zk-SNARK for vnTinyRAM. For completeness, in Appendix D.2 we spell

19

out how these two components can be combined. Here we report measured performance of this combined
system, at the 128-bit security level, and for a word size W = 32 and number of registers K = 16.
Methodology. A zk-SNARK for vnTinyRAM is a triple of algorithms (KeyGen,Prove,Verify). Given
bounds `, n, T (for program size, input size, and time), the efficiency of KeyGen and Prove depends on
`, n, T , while that of Verify essentially depends only on `, n. Thus, we benchmark the system as follows.

We evaluate KeyGen and Prove for various choices of ` and T , while keeping n = 100. (Varying ` or
n affects efficiency in similar ways, so we fix n and vary `.) Instead, since the efficiency of Verify does
not depend on T , we evaluate Verify, for various choices of ` and n, on random `-instruction programs and
n-word inputs. In Figure 9, we report the following measurements: KeyGen’s running time, the sizes of the
keys pk and vk, Prove’s runtime, the (constant) proof size, and Verify’s running time. For quantities growing
with T , we divide by T and report the per-cycle cost.

For completeness, Figure 13 in Appendix C reports the unnormalized measurements and additional infor-
mation, such as times for various subcomputations (e.g., subtimes for the circuit generator and zk-SNARK).
Discussion. The measurements demonstrate that, on a desktop computer, our zk-SNARK for vnTinyRAM
scales up to computations of 32,000 machine cycles, for programs with up to 10,000 instructions. Key
generation takes about 200 ms per cycle; the size of a proving key is 500 KB to 650 KB per cycle, and the
size of a verification key is a few kilobytes in total. Running the prover takes 100 ms to 200 ms per cycle.
Verification times remain a few milliseconds, even for inputs and programs of several kilobytes.
Program-specific vk. The time complexity of Verify is O(`+ n), so verification time grows with program
size. This is inevitable, because Verify must read a program P (of at most ` instructions) and input x (of at
most n words) in order to check, via the given proof π, if (P, x) ∈ L`,n,T (cf. Definition 2.6). However, this
is inconvenient, e.g., when one has to verify many proofs relative to different inputs to the same program P.

In our zk-SNARK it is possible to amortize this cost as follows. Given vk and P, one can derive, in time
O(`), a program-specific verification key vkP, which can be used to verify proofs relative to any input to P.
Subsequently, the time complexity of Verify for any input x (to P) is only O(n), independent of `. Essentially,
one can pre-compute the program-specific part of vk~x (see Step 1 in Figure 10c), so that, later, one only needs
to compute the input-dependent part of vk~x and combine it with vkP. (Conversely, it is also possible to derive
an input-specific verification key, for verifying proofs relative to the same input to different programs.)

Figure 13 in Appendix C also reports the subtime to compute vkP, which represents the time saved when
one first precomputes vkP ahead of time.

5.4 Comparison with prior work

5.4.1 Comparison with prior circuit generators

Universality is the main innovative feature of our circuit generator. No previous circuit generator achieves
universality. (See Figure 1 and Section 3.)

Putting universality aside and focusing on efficiency instead, a comparison with previous circuit generators
is a multi-faceted problem. On one hand, due to a shared core of techniques, a comparison with [BCGTV13a]’s
circuit generator is straightforward, and shows significant improvements in circuit size, especially as program
size grows. See Section 1.4.1 and Figure 2 (the figure’s numbers are for W,K = 16).

Instead, a comparison with other circuit generators [SVPB+12, SBVB+13, PGHR13, BFRS+13] is
complex. First, they support a smaller class of programs (see Figure 1), so a programmer must “write around”
the limited functionality, somehow. And second, their efficiency is not easily specified: due to the use of
program-analysis techniques (see Section 3.1) the output circuit is ad hoc for the given program, and the only
way to know its size is to actually run the circuit generator.

Compared to [SVPB+12, SBVB+13, PGHR13, BFRS+13], our circuit generator performs better for
programs that are rich in memory accesses and control flow, and worse for programs that are more “circuit
like”.

20

128 bits of security
W = 32, K = 16

` = 2K ` = 4K ` = 6K ` = 8K ` = 10K

K
ey
G
en

ti
m
e/
T

n
=

1
0
0

T = 4K 209.8ms 232.1ms 257.5ms 275.9ms 306.4ms
T = 8K 190.9ms 205.9ms 216.1ms 228.9ms 238.8ms
T = 16K 195.4ms 198.1ms 204.2ms 213.6ms 218.3ms
T = 32K 206.0ms 208.4ms 211.2ms 213.5ms 223.7ms

|p
k
|/
T

T = 4K 584.2KB 653.6KB 727.1KB 784.0KB 876.8KB
T = 8K 552.4KB 585.2KB 618.1KB 655.1KB 683.7KB
T = 16K 539.4KB 553.9KB 570.4KB 586.9KB 605.5KB
T = 32K 533.8KB 541.1KB 548.3KB 555.6KB 563.4KB

|v
k
|

T = ∗ 17.0KB 33.1KB 49.2KB 65.3KB 81.5KB

P
ro
ve

ti
m
e/
T

n
=

1
0
0 T = 4K 75.7ms 86.7ms 103.4ms 104.8ms 133.7ms

T = 8K 69.2ms 79.7ms 97.0ms 110.4ms 113.0ms
T = 16K 89.0ms 89.1ms 98.4ms 99.6ms 103.3ms
T = 32K 98.9ms 98.6ms 102.3ms 102.1ms 114.2ms

V
er
if
y

ti
m
e

(i
nd

ep
.o

fT
) n = 0 19.0ms 30.0ms 40.6ms 51.2ms 61.3ms

n = 10 19.1ms 30.2ms 40.7ms 51.2ms 61.4ms
n = 102 19.6ms 30.7ms 41.3ms 51.8ms 61.9ms
n = 103 23.0ms 34.1ms 44.7ms 55.2ms 65.4ms
n = 104 48.9ms 60.0ms 70.6ms 81.1ms 91.3ms

Figure 9: Performance of our zk-SNARK for vnTinyRAM: per-cycle costs of KeyGen and Prove for various choices of program
size ` (all with input size n = 100), and total running time of Verify for various choices of ` and n.
(N = 10 and std < 1.5% for all, except that std < 5% whenever T = 32K)

Comparison with [SVPB+12, SBVB+13, PGHR13]. The circuit generators in [SVPB+12, SBVB+13,
PGHR13] restrict loop iteration bounds and memory accesses to be known at compile time; if a program
does not respect these restrictions, it must be first somehow mapped to another one that does. For simplicity,
we take [PGHR13]’s circuit generator (the latest one) as representative and, to illustrate the differences
between [PGHR13]’s and our circuit generator, we consider two “extremes”.

On one extreme, we wrote a simple C program multiplying two 10× 10 matrices of 16-bit integers. The
circuit generator in [PGHR13] produces a circuit with 1100 gates8; instead, our circuit generator (when given
the corresponding vnTinyRAM assembly) produces a much larger circuit: one with ≈ 107 gates.

On the other extreme, we consider a program making many random accesses to memory: pointer-chasing.
Given a permutation π of [N], start position i ∈ [N], and an integer k, the program outputs πk(i), the element
obtained by starting from i and following “pointers” for k times. Since no information about π is known at
compile time, the only way of obtaining π(j), the pointer to follow, in [PGHR13] is via a linear scan. On a
simple C program that does one linear scan of π to obtain each new pointer, [PGHR13]’s circuit generator
outputs a circuit with 2Nk + 1 gates (each of the k array accesses costs 2N gates).

In vnTinyRAM, the corresponding program P consists of 9 instructions, and the input x to it is N + 3
words. Booting vnTinyRAM with P and x requires 9 + N + 3 “boot stores” (see Section 3.2), and takes
5 + 4k cycles to execute (independent of N). Say that we fix k = 10; then, in our circuit generator (with
W = 32 and K = 16), each cycle costs about 2000 gates, and can perform a random access to memory.
Thus, pointer chasing in our case is cheaper than in [PGHR13] already for N > 5000, and the multiplicative
saving, which is about 20N

2000·(5+40) = N
4500 , grows unbounded as N increases.

Comparison with [BFRS+13]. The circuit generator of [BFRS+13] is also based on program analysis, but
provides an additional feature that allows data-dependent memory accesses: a program may access memory
by guessing the value and verifying its validity via a subcircuit that checks Merkle-tree authentication
paths. In [BFRS+13], memory consists of 230 cells, and each access costs many gates: 140K for a load,
and 280K for a store. In comparison, in our circuit generator for vnTinyRAM (with word size W = 32

8The circuit produced by [PGHR13] for int values, with “--bit-width= 16”, nonetheless performs arithmetic modulo
some large prime, without reductions modulo 216.

21

so that memory has 232 cells), each memory store/load costs less than 1000 gates out of about 2000 per
cycle (see Section 5.1). Besides the aforementioned feature, [BFRS+13] rely on program analysis, and
(as in [SVPB+12, SBVB+13, PGHR13]) only support bounded control flow. Thus, [BFRS+13] performs
better than our circuit generator for programs with bounded control flow and few data-dependent accesses to
memory.

It is an intriguing open question whether techniques underlying our circuit generator can be combined with
program analysis so to yield circuit generators achieving good efficiency both for restricted and rich programs,
and avoid the sharp functionality vs. efficiency tradeoffs that exist among current circuit generators.

5.4.2 Comparison with prior zk-SNARKs

Addressing the other component of our system, the zk-SNARK for circuits: Figure 3 compares our imple-
mentation with prior ones, on a 1-million-gate circuit with a 1000-byte input. As shown, we mildly improve
the key generation time and, more importantly, significantly improve the “online” costs of proving and
verification.

6 Conclusion
We have presented two main contributions: (i) a circuit generator for a von Neumann RISC architecture that
is universal and scales additively with program size; and (ii) a high-performance zk-SNARK for arithmetic
circuit satisfiability. These two components can be used independently to the benefit of other systems, or
combined into a zk-SNARK that can prove/verify correctness of computations on this architecture.

The benefits of universality. Universality attains the conceptual advance of once-and-for-all key generation,
allowing verifying all programs up to a given size. This removes major issues in prior systems: expensive
per-program key generation and the thorny issue of conducting it anew in a trusted way for every program.

The price of universality. We have demonstrated that our zk-SNARK scales, on a desktop computer, up to
computations of 32,000 cycles, for programs with up to 10,000 instructions, relative to a simple universal
computer (vnTinyRAM). Yet, the price of universality is still very high. Going forward, and aiming for
widespread use in security applications, more work is required to slash costs of key generation and proving so
to scale up to larger computations: e.g., billion-gate circuits, or millions of vnTinyRAM cycles, and beyond.
An interesting open problem is whether the “program analysis” techniques underlying most prior circuit
generators [SVPB+12, SBVB+13, PGHR13, BFRS+13], typically more efficient for restricted classes of
programs, can be used to construct universal circuits (for those same classes of programs).

Beyond vnTinyRAM. Finally, going beyond the foundation of a von Neumann RISC architecture, more work
lies ahead towards a richer architecture (e.g., efficient support for floating-point arithmetic and cryptographic
acceleration), code libraries, and tighter compilers.

Acknowledgments
We thank Daniel Genkin, Raluca Ada Popa, Ron Rivest, and Nickolai Zeldovich for helpful comments and
discussions, and Lior Greenblatt, Shaul Kfir, Michael Riabzev, and Gil Timnat for programming assistance.

This work was supported by: the Center for Science of Information (CSoI), an NSF Science and
Technology Center, under grant agreement CCF-0939370; the Check Point Institute for Information Security;
the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number
240258; the Israeli Centers of Research Excellence I-CORE program (center 4/11); the Israeli Ministry of
Science, Technology and Space; the Simons Foundation, with a Simons Award for Graduate Students in
Theoretical Computer Science; and the Skolkovo Foundation under grant agreement number 6926059.

22

A Other prior work
Prior work most relevant to us is about zk-SNARKs, and is discussed in Section 1.2. There are also numerous
works studying variations or relaxations of the goal we consider; here, we summarize some of them.

Interactive proofs for low-depth circuits. Goldwasser et al. [GKR08] obtained an interactive proof for
outsourcing computations of low-depth circuits. A set of works [CMT12, TRMP12, Tha13] has optimized
and implemented the protocol of [GKR08]. The protocol of [GKR08] can also be reduced to a two-message
argument system [KR09, KRR13]. Canetti et al. [CRR12] showed how to extend the techniques in [GKR08]
to also handle non-uniform circuits.

Batching arguments. Ishai et al. [IKO07] constructed a batching argument for NP, where, to simultaneously
verify that N circuits of size S are satisfiable, the verifier runs in time max{S2, N}.

A set of works [SBW11, SMBW12, SVPB+12, SBVB+13] has improved, optimized, and implemented
the batching argument of Ishai et al. [IKO07] for the purpose of outsourcing computation. In particular, by
relying on quadratic arithmetic programs of [GGPR13], Setty et al. [SBVB+13] have improved the running
time of the verifier and prover to max{S,N} · poly(λ) and Õ(S) · poly(λ) respectively.

Vu et al. [VSBW13] provide a system that incorporates both the batching arguments of [SBW11,
SMBW12, SVPB+12, SBVB+13] as well as the interactive proofs of [CMT12, TRMP12, Tha13]. The
system decides which of the two approaches is more efficient to use for outsourcing a given computation.

Braun et al. [BFRS+13] apply batching techniques (as well as zk-SNARKs) to verify MapReduce
computations, by relying on various verifiable data structures.

Arguments with competing provers. Canetti et al. [CRR11] use collision-resistant hashes to get a protocol
for outsourcing deterministic computations in a model where a verifier interacts with two computationally-
bounded provers at least one of which is honest [FK97]. The protocol in [CRR11] works directly for
random-access machines, and therefore does not require reducing random-access machines to any “lower-
level” representation (such as circuits). Canetti et al. implement their protocol for deterministic x86 programs.

Previous circuit generators. Some prior work addresses the problem of translating high-level languages
into low-level languages such as circuits. Most prior work only supports restricted classes of programs:
[SVPB+12, SBVB+13] present a circuit generator based on Fairplay [MNPS04, BDNP08], whose SFDL
language does not support important primitives and has inefficient support for others; [PGHR13] present
a circuit generator for programs without data dependencies (pointers and array indices must be known at
compile time, and so do loop iteration bounds).

Other works support more general functionality: [BCGTV13a] rely on nondeterministic routing to
support random-access machine computations [BCGT13a]; [BFRS+13] rely on online memory checking
[BEGKN91, BCGT13a] to support accessing untrusted storage from a circuit.

See [BFRS+13, Section 2] for a more detailed overview of some of the above techniques.

Other cryptographic tools. Fully-homomorphic encryption (FHE) [Gen09] and probabilistically-checkable
proofs [AS98, ALMSS98] are powerful tools that are often used in protocols for outsourcing computations
(with integrity or confidentiality guarantees, or both) [Kil92, Mic00, AIK10, GGP10, CKV10, KRR13,
GKPVZ13]. However, such constructions have so far not been explored in practice. Another powerful tool is
secure multi-party computation [GMW87, BOGW88], but most work in this area does not consider the goal
of succinctness.

23

B The PGHR zk-SNARK protocol
For the purposes of completeness and to fix notation, in Figure 10 below we recall the zk-SNARK protocol
of Parno et al. [PGHR13]. The zk-SNARK can be used to prove/verify satisfiability of Fr-arithmetic circuits,
where r is the order of the two cyclic groups G1 and G2, forming the domain of the pairing e : G1×G2 → GT .

We refer the reader to [PGHR13] for further details regarding the intuition for the protocol, as well as
the cryptographic assumptions on which its proof of security relies. (Briefly, security relies on the q-power
Diffie–Hellman, q-power knowledge-of-exponent, and q-strong Diffie–Hellman assumptions [Gro10b, BB04,
Gen04] for q that depends polynomially on the arithmetic circuit’s size.)

Public parameters. A prime r, two cyclic groups G1 and G2 of order
r with generators P1 and P2 respectively, and a pairing e : G1×G2 →
GT (where GT is also cyclic of order r).

(a) Key generator G

• INPUTS: circuit C : Fnr × Fhr → Flr
• OUTPUTS: proving key pk and verification key vk

1. Compute (~A, ~B, ~C,Z) := QAPinst(C); extend ~A, ~B, ~C via

Am+1 = Bm+2 = Cm+3 = Z ,

Am+2 = Am+3 = Bm+1 = Bm+3 = Cm+1 = Cm+2 = 0 .

2. Randomly sample τ, ρA, ρB, αA, αB, αC, β, γ ∈ Fr .

3. Set pk := (C, pkA, pk
′
A, pkB, pk

′
B, pkC, pk

′
C, pkK, pkH) where

for i = 0,1, . . . ,m+ 3:

pkA,i := Ai(τ)ρAP1 , pk′A,i := Ai(τ)αAρAP1 ,

pkB,i := Bi(τ)ρBP2 , pk′B,i := Bi(τ)αBρBP1 ,

pkC,i := Ci(τ)ρAρBP1 , pk
′
C,i := Ci(τ)αCρAρBP1 ,

pkK,i := β
(
Ai(τ)ρA +Bi(τ)ρB + Ci(τ)ρAρB

)
P1 ,

and for i = 0,1, . . . , d, pkH,i := τ iP1.

4. Set vk := (vkA, vkB, vkC, vkγ , vk
1
βγ , vk

2
βγ , vkZ, vkIC) where

vkA := αAP2 , vkB := αBP1 , vkC := αCP2

vkγ := γP2 , vk1βγ := γβP1 , vk2βγ := γβP2 ,

vkZ := Z(τ)ρAρBP2 ,
(
vkIC,i

)n
i=0

:=
(
Ai(τ)P1

)n
i=0

.

5. Output (pk, vk).

Key sizes. When invoked on a circuit C : Fnr × Fhr → Flr with a wires
and b (bilinear) gates, the key generator outputs:

• pk with (6a+ b+ l + 26) G1-elements and (a+ 4) G2-elements;

• vk with (n+ 3) G1-elements and 5 G2-elements.

Proof size. The proof always has 7 G1-elements and 1 G2-element.

(b) Prover P

• INPUTS: proving key pk, input ~x ∈ Fnr , and witness ~a ∈ Fhr
• OUTPUTS: proof π

1. Compute (~A, ~B, ~C,Z) := QAPinst(C).

2. Compute ~s := QAPwit(C, ~x,~a) ∈ Fmr .

3. Randomly sample δ1, δ2, δ3 ∈ Fr .

4. Compute ~h = (h0, h1, . . . , hd) ∈ Fd+1
r , which are the coefficients

of H(z) := A(z)B(z)−C(z)
Z(z)

where A,B,C ∈ Fr[z] are as follows:

A(z) := A0(z) +
∑m
i=1 siAi(z) + δ1Z(z) ,

B(z) := B0(z) +
∑m
i=1 siBi(z) + δ2Z(z) ,

C(z) := C0(z) +
∑m
i=1 siCi(z) + δ3Z(z) .

5. Set ˜pkA := “same as pkA, but with pkA,i = 0 for i = 0,1, . . . , n”.

Set ˜pk′A := “same as pk′A, but with pk′A,i = 0 for i = 0,1, . . . , n”.

6. Letting ~c := (1 ◦ ~s ◦ δ1 ◦ δ2 ◦ δ3) ∈ F4+m
r , compute

πA := 〈~c, ˜pkA〉, π
′
A := 〈~c, ˜pk′A〉, πB := 〈~c, pkB〉, π

′
B := 〈~c, pk′B〉,

πC := 〈~c, pkC〉, π
′
C := 〈~c, pk′C〉, πK := 〈~c, pkK〉, πH := 〈~h, pkH〉.

7. Output π := (πA, π
′
A, πB, π

′
B, πC, π

′
C, πK, πH).

(c) Verifier V

• INPUTS: verification key vk, input ~x ∈ Fnr , and proof π

• OUTPUTS: decision bit

1. Compute vk~x := vkIC,0 +
∑n
i=1 xivkIC,i ∈ G1.

2. Check validity of knowledge commitments for A,B,C:

e(πA, vkA) = e(π′A,P2) , e(vkB, πB) = e(π′B,P2) ,

e(πC, vkC) = e(π′C,P2) .

3. Check same coefficients were used:

e(πK, vkγ) = e(vk~x + πA + πC, vk
2
βγ) · e(vk1βγ , πB) .

4. Check QAP divisibility:

e(vk~x + πA, πB) = e(πH, vkZ) · e(πC,P2) .

5. Accept if and only if all the above checks succeeded.

Figure 10: The zk-SNARK protocol of Parno et al. [PGHR13]. (More precisely, the protocol above differs from that in [PGHR13] in
two ways. First, it does not assume that G1 = G2. Second, it obtains a verification key whose size grows as n+ o(n), rather than
3n+ o(n), by leveraging the non-degeneracy property in Lemma 2.4.)

24

C Additional experimental data
For completeness, we report additional experimental data, beyond that reported in Section 5.

Additional data for our circuit generator. In Section 5.1 we discuss the performance of our circuit
generator for vnTinyRAM, and provided per-cycle gate counts in Figure 7. In Figure 11 we provide an
extended version of Figure 7.

Additional data for our zk-SNARK for circuits. In Section 5.2 we discuss how we evaluated (G,P, V),
which is our zk-SNARK for arithmetic circuit satisfiability. In Figure 12 we report the unnormalized data
from which Figure 8 is derived: we report the costs of the key generator G and prover P for various circuit
sizes, and of the verifier V for various input sizes. We also provide information on various subcomputations,
split between the information-theoretic ones having to do with QAPs, and the cryptographic ones having to
do with exponentiations.

The reported key sizes assume that an element of G1 or G2 is compressed (i.e., a point (x0, y0) lying on
an elliptic curve y2 = x3 +Ax+B is encoded as (x0, b), where b is a bit distinguishing between the two
square roots of x30 + Ax0 + B); to use a key, one typically first decompresses each element (and this is a
one-time operation after transmission).

In the verifier, the reported running times assume that vk has been preprocessed (see Section 4.2), which
is a one-time operation that can be amortized across any number of verifications.

Additional data for the combined system. In Section 5.3 we discuss how we evaluated (KeyGen,Prove,
Verify), which is our zk-SNARK for vnTinyRAM. In Figure 13 we report part of the unnormalized data from
which Figure 9 is derived, and also provide the same data for word size W = 16 as a comparison (since
Figure 9 only reports W = 32). Concretely, we report the costs of KeyGen for various choices of program
size bound ` and time bound T , while keeping the input size bound n fixed at 100; similarly for Prove. As
for Verify, we report its running time for various choices of program size bound ` and input size bound n.

We also provide information on various subcomputations, specifically on how the running times are
divided between the circuit generator and the zk-SNARK (the two components from which (KeyGen,Prove,
Verify) is constructed). Namely, for KeyGen we report the subtime for running the circuit generator circ
and the remaining time, which is spent in the zk-SNARK key generator G. And for Prove we report the
subtime for running the witness map wit and the remaining time, which is spent in the zk-SNARK prover P .
For Verify, we report the subtime to derive the program-specific verification key vkP (see Section 5.3); this
represents the time that is saved if one wishes to verify multiple statements (P, x) for different inputs x.

25

Per-cycle gate count of C := circ(`, n, T) with vnTinyRAM parameters (W,K)

n = 102, K = 16

W = 16 W = 32

|C|/T |C|/T divided among Per
cycle

|C|/T divided among
boot exec. mem. routing boot exec. mem. routing

`
=

1
0
3

T = 215 1,337.8 1.41 777.0 429.1 130.3 1,968.6 2.44 1,114.0 721.9 130.3
T = 216 1,340.4 0.70 777.0 425.5 137.2 1,968.4 1.22 1,114.0 716.0 137.2
T = 217 1,345.8 0.35 777.0 423.8 144.6 1,972.2 0.61 1,114.0 713.0 144.6
T = 218 1,352.4 0.18 777.0 422.9 152.3 1,978.1 0.30 1,114.0 711.5 152.3
T = 219 1,359.7 0.09 777.0 422.4 160.2 1,985.1 0.15 1,114.0 710.7 160.2
T = 220 1,367.4 0.04 777.0 422.2 168.1 1,992.5 0.08 1,114.0 710.4 168.1
T = 221 1,375.2 0.02 777.0 422.1 176.0 2,000.3 0.04 1,114.0 710.2 176.0
T = 222 1,383.1 0.01 777.0 422.1 184.0 2,008.1 0.02 1,114.0 710.1 184.0
T = 223 1,391.0 0.01 777.0 422.0 192.0 2,016.1 0.01 1,114.0 710.0 192.0
T = 224 1,399.0 0.00 777.0 422.0 200.0 2,024.0 0.00 1,114.0 710.0 200.0
T = 225 1,407.0 0.00 777.0 422.0 208.0 2,032.0 0.00 1,114.0 710.0 208.0
T = 226 1,415.0 0.00 777.0 422.0 216.0 2,040.0 0.00 1,114.0 710.0 216.0
T = 227 1,423.0 0.00 777.0 422.0 224.0 2,048.0 0.00 1,114.0 710.0 224.0
T = 228 1,431.0 0.00 777.0 422.0 232.0 2,056.0 0.00 1,114.0 710.0 232.0
T = 229 1,439.0 0.00 777.0 422.0 240.0 2,064.0 0.00 1,114.0 710.0 240.0
T = 230 1,447.0 0.00 777.0 422.0 248.0 2,072.0 0.00 1,114.0 710.0 248.0

`
=

1
0
4

T = 215 1,426.2 13.25 777.0 487.0 149.0 2,105.5 23.11 1,114.0 819.4 149.0
T = 216 1,385.2 6.63 777.0 454.5 147.1 2,037.3 11.55 1,114.0 764.7 147.1
T = 217 1,368.4 3.31 777.0 438.3 149.9 2,007.0 5.78 1,114.0 737.4 149.9
T = 218 1,363.9 1.66 777.0 430.1 155.1 1,995.6 2.89 1,114.0 723.7 155.1
T = 219 1,365.5 0.83 777.0 426.1 161.6 1,993.9 1.44 1,114.0 716.8 161.6
T = 220 1,370.3 0.41 777.0 424.0 168.8 1,997.0 0.72 1,114.0 713.4 168.8
T = 221 1,376.7 0.21 777.0 423.0 176.4 2,002.5 0.36 1,114.0 711.7 176.4
T = 222 1,383.8 0.10 777.0 422.5 184.2 2,009.3 0.18 1,114.0 710.9 184.2
T = 223 1,391.4 0.05 777.0 422.3 192.1 2,016.6 0.09 1,114.0 710.4 192.1
T = 224 1,399.2 0.03 777.0 422.1 200.1 2,024.3 0.05 1,114.0 710.2 200.1
T = 225 1,407.1 0.01 777.0 422.1 208.0 2,032.2 0.02 1,114.0 710.1 208.0
T = 226 1,415.1 0.01 777.0 422.0 216.0 2,040.1 0.01 1,114.0 710.1 216.0
T = 227 1,423.0 0.00 777.0 422.0 224.0 2,048.0 0.01 1,114.0 710.0 224.0
T = 228 1,431.0 0.00 777.0 422.0 232.0 2,056.0 0.00 1,114.0 710.0 232.0
T = 229 1,439.0 0.00 777.0 422.0 240.0 2,064.0 0.00 1,114.0 710.0 240.0
T = 230 1,447.0 0.00 777.0 422.0 248.0 2,072.0 0.00 1,114.0 710.0 248.0

`
=

1
0
5

T = 215 2,323.2 131.70 777.0 1,066.6 347.9 3,486.2 229.79 1,114.0 1,794.5 347.9
T = 216 1,833.1 65.85 777.0 744.3 246.0 2,727.1 114.90 1,114.0 1,252.2 246.0
T = 217 1,595.1 32.93 777.0 583.1 202.0 2,354.6 57.45 1,114.0 981.1 202.0
T = 218 1,478.6 16.46 777.0 502.6 182.5 2,170.8 28.72 1,114.0 845.6 182.5
T = 219 1,423.6 8.23 777.0 462.3 176.0 2,082.2 14.36 1,114.0 777.8 176.0
T = 220 1,399.7 4.12 777.0 442.1 176.4 2,041.5 7.18 1,114.0 743.9 176.4
T = 221 1,391.5 2.06 777.0 432.1 180.4 2,024.9 3.59 1,114.0 726.9 180.4
T = 222 1,391.4 1.03 777.0 427.0 186.3 2,020.6 1.80 1,114.0 718.5 186.3
T = 223 1,395.2 0.51 777.0 424.5 193.2 2,022.3 0.90 1,114.0 714.2 193.2
T = 224 1,401.1 0.26 777.0 423.3 200.6 2,027.2 0.45 1,114.0 712.1 200.6
T = 225 1,408.1 0.13 777.0 422.6 208.3 2,033.6 0.22 1,114.0 711.1 208.3
T = 226 1,415.5 0.06 777.0 422.3 216.2 2,040.8 0.11 1,114.0 710.5 216.2
T = 227 1,423.3 0.03 777.0 422.2 224.1 2,048.4 0.06 1,114.0 710.3 224.1
T = 228 1,431.1 0.02 777.0 422.1 232.0 2,056.2 0.03 1,114.0 710.1 232.0
T = 229 1,439.1 0.01 777.0 422.0 240.0 2,064.1 0.01 1,114.0 710.1 240.0
T = 230 1,447.0 0.00 777.0 422.0 248.0 2,072.1 0.01 1,114.0 710.0 248.0

Figure 11: Performance of our circuit generator for vnTinyRAM for various choices of (`, n, T).

26

Key generator G
80 bits of security 128 bits of security

Gate Total Subtime for computing pk vk Total Subtime for computing pk vk
count time QAP at τ pk vk size size time QAP at τ pk vk size size
210 0.2 s 2.1ms 0.2 s 5.4ms 254.8KB 2.8KB 0.2 s 3.2ms 0.2 s 3.9ms 311.4KB 3.6KB
211 0.4 s 4.1ms 0.4 s 5.4ms 514.6KB 2.8KB 0.4 s 6.3ms 0.4 s 3.8ms 629.6KB 3.6KB
212 0.7 s 8.1ms 0.6 s 5.4ms 1.0MB 2.8KB 0.7 s 12.4ms 0.7 s 3.8ms 1.3MB 3.6KB
213 1.2 s 16.2ms 1.2 s 5.4ms 2.1MB 2.8KB 1.3 s 24.8ms 1.3 s 3.7ms 2.5MB 3.6KB
214 2.3 s 32.4ms 2.3 s 5.7ms 4.2MB 2.8KB 2.5 s 49.7ms 2.5 s 3.7ms 5.1MB 3.6KB
215 4.3 s 64.8ms 4.2 s 5.3ms 8.3MB 2.8KB 4.8 s 99.4ms 4.7 s 3.5ms 10.2MB 3.6KB
216 8.0 s 129.2ms 7.8 s 5.2ms 16.6MB 2.8KB 9.0 s 198.5ms 8.8 s 3.5ms 20.4MB 3.6KB
217 15.1 s 259.3ms 14.8 s 5.4ms 33.3MB 2.8KB 17.1 s 0.4 s 16.7 s 3.4ms 40.7MB 3.6KB
218 28.1 s 0.5 s 27.6 s 5.2ms 66.5MB 2.8KB 32.1 s 0.8 s 31.2 s 3.4ms 81.5MB 3.6KB
219 53.3 s 1.0 s 52.1 s 5.2ms 133.0MB 2.8KB 61.8 s 1.6 s 60.0 s 3.3ms 162.9MB 3.6KB
220 102.5 s 2.1 s 100.1 s 5.1ms 266.1MB 2.8KB 121.0 s 3.2 s 117.4 s 3.3ms 325.8MB 3.6KB
221 194.4 s 4.2 s 189.6 s 5.1ms 532.1MB 2.8KB 223.4 s 6.3 s 216.2 s 3.2ms 651.7MB 3.6KB
222 366.2 s 8.3 s 356.7 s 5.1ms 1.1GB 2.8KB 444.7 s 12.7 s 430.3 s 3.2ms 1.3GB 3.6KB
223 707.8 s 16.6 s 688.7 s 5.1ms 2.1GB 2.8KB 861.4 s 25.5 s 832.6 s 3.4ms 2.6GB 3.6KB
224 1360.6 s 33.2 s 1322.3 s 5.1ms 4.3GB 2.8KB 1676.7 s 51.0 s 1619.2 s 4.5ms 5.2GB 3.6KB

Prover P
80 bits of security 128 bits of security

Gate Total Subtime for computing π Total Subtime for computing π
count time H(z) π size time H(z) π size
210 189.0ms 3.4ms 182.5ms 230B 214.3ms 5.5ms 206.2ms 288B
211 0.3 s 7.3ms 0.3 s 230B 0.4 s 11.8ms 0.4 s 288B
212 0.6 s 15.5ms 0.6 s 230B 0.7 s 25.1ms 0.7 s 288B
213 1.2 s 32.9ms 1.2 s 230B 1.4 s 53.1ms 1.3 s 288B
214 2.2 s 69.6ms 2.2 s 230B 2.6 s 112.8ms 2.5 s 288B
215 4.3 s 147.5ms 4.2 s 230B 5.1 s 238.7ms 4.8 s 288B
216 8.4 s 0.3 s 8.1 s 230B 10.1 s 0.5 s 9.6 s 288B
217 16.4 s 0.7 s 15.8 s 230B 19.9 s 1.1 s 18.8 s 288B
218 31.9 s 1.4 s 30.5 s 230B 39.3 s 2.2 s 37.1 s 288B
219 63.4 s 3.0 s 60.4 s 230B 77.2 s 4.8 s 72.5 s 288B
220 122.4 s 6.2 s 116.1 s 230B 152.7 s 10.0 s 142.7 s 288B
221 241.5 s 13.2 s 228.3 s 230B 302.8 s 20.9 s 281.9 s 288B
222 470.2 s 27.6 s 442.6 s 230B 605.0 s 43.6 s 561.4 s 288B
223 941.7 s 57.4 s 884.3 s 230B 1194.7 s 90.7 s 1104.0 s 288B
224 1835.6 s 119.1 s 1716.5 s 230B 2409.3 s 204.8 s 2204.4 s 288B

Verifier V
80 bits of security 128 bits of security

Input vk Total Subtime for computing vk Total Subtime for computing
size size time vk~x pairing checks size time vk~x pairing checks

2B 475B 4.8ms 0.1ms 4.7ms 494B 5.0ms 0.2ms 4.8ms
4B 475B 4.8ms 0.1ms 4.7ms 494B 4.9ms 0.2ms 4.8ms
8B 475B 4.8ms 0.1ms 4.7ms 494B 5.0ms 0.2ms 4.8ms
16B 475B 4.8ms 0.1ms 4.7ms 494B 5.0ms 0.1ms 4.8ms
32B 498B 4.9ms 0.2ms 4.7ms 525B 5.1ms 0.3ms 4.8ms
64B 521B 4.9ms 0.2ms 4.7ms 557B 5.2ms 0.4ms 4.8ms
128B 590B 4.9ms 0.2ms 4.7ms 621B 5.1ms 0.3ms 4.8ms
256B 728B 5.0ms 0.3ms 4.7ms 749B 5.2ms 0.4ms 4.8ms
512B 1.0KB 5.2ms 0.5ms 4.7ms 1.0KB 5.5ms 0.7ms 4.8ms
1.0KB 1.5KB 5.6ms 0.9ms 4.7ms 1.5KB 6.1ms 1.3ms 4.8ms
2.0KB 2.6KB 6.2ms 1.5ms 4.7ms 2.5KB 7.0ms 2.2ms 4.8ms
4.1KB 4.7KB 7.4ms 2.6ms 4.7ms 4.6KB 8.6ms 3.8ms 4.8ms
8.2KB 8.8KB 9.5ms 4.8ms 4.7ms 8.7KB 11.7ms 6.9ms 4.8ms
16.4KB 17.2KB 13.4ms 8.7ms 4.7ms 17.0KB 17.2ms 12.4ms 4.8ms
32.8KB 34.0KB 21.7ms 16.8ms 4.9ms 33.5KB 27.5ms 22.7ms 4.8ms
65.5KB 67.5KB 34.6ms 29.8ms 4.7ms 66.5KB 47.0ms 42.1ms 4.8ms
131.1KB 134.4KB 61.2ms 56.5ms 4.7ms 132.6KB 83.3ms 78.5ms 4.8ms
262.1KB 268.4KB 112.7ms 107.8ms 4.9ms 264.7KB 153.7ms 148.9ms 4.8ms
524.3KB 536.4KB 207.7ms 203.0ms 4.8ms 528.9KB 284.5ms 279.6ms 4.8ms
1.0MB 1.1MB 395.1ms 390.3ms 4.8ms 1.1MB 538.6ms 533.7ms 4.8ms

Figure 12: Performance of our zk-SNARK for arithmetic circuit satisfiability, for the two security levels we considered in this paper.
(N = 10 and std < 1%)

27

KeyGen

128-bit security, K = 16, n = 100
W = 16 W = 32

` = 2K ` = 4K ` = 2K ` = 4K
total subtime subtime total subtime subtime total subtime subtime total subtime subtime
time for circ for G time for circ for G time for circ for G time for circ for G

T = 4K 538.1 s 4.5 s 533.6 s 606.4 s 4.9 s 601.5 s 839.2 s 7.0 s 832.1 s 928.5 s 7.7 s 920.8 s
T = 8K 996.9 s 8.4 s 988.4 s 1040.9 s 8.9 s 1032.1 s 1527.0 s 12.7 s 1514.3 s 1647.4 s 13.9 s 1633.4 s
T = 16K 1927.7 s 16.2 s 1911.5 s 1980.1 s 16.8 s 1963.2 s 3125.6 s 24.7 s 3101.0 s 3170.2 s 25.3 s 3144.9 s
T = 32K 3896.0 s 32.0 s 3864.0 s 3956.9 s 32.5 s 3924.4 s 6593.1 s 48.9 s 6544.2 s 6669.5 s 50.7 s 6618.8 s

pk size vk size pk size vk size pk size vk size pk size vk size
T = 4K 1.5GB 8.7KB 1.7GB 16.8KB 2.3GB 17.0KB 2.6GB 33.1KB
T = 8K 2.8GB 8.7KB 3.0GB 16.8KB 4.4GB 17.0KB 4.7GB 33.1KB
T = 16K 5.5GB 8.7KB 5.7GB 16.8KB 8.6GB 17.0KB 8.9GB 33.1KB
T = 32K 10.9GB 8.7KB 11.1GB 16.8KB 17.1GB 17.0KB 17.3GB 33.1KB

Prove
128-bit security, K = 16, n = 100

W = 16 W = 32
` = 2K ` = 4K ` = 2K ` = 4K

total subtime subtime total subtime subtime total subtime subtime total subtime subtime
time for wit for P time for wit for P time for wit for P time for wit for P

T = 4K 204.5 s 7.0 s 197.6 s 260.8 s 7.7 s 253.1 s 302.7 s 11.1 s 291.6 s 346.8 s 12.2 s 334.6 s
T = 8K 414.7 s 13.3 s 401.4 s 417.4 s 14.1 s 403.3 s 553.6 s 20.6 s 533.0 s 637.5 s 22.5 s 615.1 s
T = 16K 1039.1 s 26.3 s 1012.8 s 1042.4 s 27.5 s 1014.9 s 1424.7 s 55.2 s 1369.5 s 1424.9 s 57.3 s 1367.5 s
T = 32K 2107.5 s 64.3 s 2043.2 s 2111.1 s 65.2 s 2045.9 s 3166.3 s 269.3 s 2897.0 s 3156.6 s 265.6 s 2890.9 s

Verify

128-bit security, K = 16, indep. of T
W = 16 W = 32

` = 2K ` = 4K ` = 2K ` = 4K
total subtime subtime total subtime subtime total subtime subtime total subtime subtime
time for vkP for rest time for vkP for rest time for vkP for rest time for vkP for rest

n = 0 13.1ms 7.5ms 5.6ms 19.1ms 13.5ms 5.6ms 19.0ms 13.4ms 5.6ms 30.0ms 24.4ms 5.6ms
n = 10 13.2ms 7.5ms 5.7ms 19.2ms 13.5ms 5.7ms 19.1ms 13.4ms 5.8ms 30.2ms 24.4ms 5.8ms
n = 102 13.5ms 7.5ms 6.0ms 19.6ms 13.5ms 6.0ms 19.6ms 13.3ms 6.3ms 30.7ms 24.4ms 6.3ms
n = 103 15.4ms 7.5ms 7.9ms 21.5ms 13.6ms 7.9ms 23.0ms 13.3ms 9.7ms 34.1ms 24.4ms 9.7ms
n = 104 29.4ms 7.5ms 21.9ms 35.3ms 13.5ms 21.8ms 48.9ms 13.3ms 35.6ms 60.0ms 24.5ms 35.6ms

Figure 13: Performance of our zk-SNARK for vnTinyRAM at the 128-bit security level, for word sizes W = 16 and W = 32.
(N = 10 and std < 1.5% for all, except that std < 5% whenever T = 32K)

28

D zk-SNARKs for vnTinyRAM
For completeness, we explain how a circuit generator for vnTinyRAM (see Section 3) can be combined with
a zk-SNARK for arithmetic circuit satisfiability to obtain a zk-SNARK for vnTinyRAM. We first informally
define zk-SNARKs for vnTinyRAM (Appendix D.1) and then we give the construction (Appendix D.2).

D.1 Informal definition
A zk-SNARK for vnTinyRAM is a cryptographic primitive that gives short and easy-to-verify non-interactive
zero-knowledge proofs of knowledge for the correct execution of programs on the machine vnTinyRAM.
Below, we only provide an informal definition; for details, we refer the reader to [BCIOP13], where a formal
definition for any random-access machine can be found. Below, the security parameter is implicit.

A zk-SNARK for vnTinyRAM is a triple of polynomial-time algorithms (KeyGen,Prove,Verify) work-
ing as follows.

• KeyGen(`, n, T) → (pk, vk). On input a program size bound `, time bound T , and primary-input size
bound n, the key generator KeyGen probabilistically samples a proving key pk and a verification key vk.

The keys pk and vk are published as public parameters and can be used, any number of times, to prove and
verify membership in the language L`,n,T as follows.

• Prove(pk,P, x,w)→ π. On input a program P with ≤ ` instructions, primary input x with ≤ n words,
and auxiliary input w such that P(x,w) accepts in ≤ T steps, the prover Prove outputs a non-interactive
proof π for the statement (P, x) ∈ L`,n,T .

• Verify(vk,P, x, π) → b. On input a program P with ≤ ` instructions, primary input x with ≤ n words,
and proof π, the verifier Verify outputs b = 1 if he is convinced that (P, x) ∈ L`,n,T .

The key generator KeyGen is universal: it does not depend on the program P or primary input x, but only on
their respective size bounds ` and n (as well as the time bound T).

A zk-SNARK satisfies the following properties.

Completeness. The honest prover can convince the verifier for any instance in the language. I.e., for every
(P, x) ∈ L`,n,T with a witness w,

Pr

[
Verify(vk,P, x, π) = 1

∣∣∣∣ (pk, vk)← KeyGen(`, n, T)
π ← Prove(pk,P, x,w)

]
= 1 .

Succinctness. An honestly-generated proof π has O(1) bits, and Verify(vk,P, x, π) runs in time O(`+ n).
In particular, verification time does not depend on the time bound T .

Proof of knowledge (and soundness). If the verifier accepts a proof, the prover “knows” a witness for the
instance. (Thus, soundness holds.) I.e., for every polynomial-size adversary A there is a polynomial-size
witness extractor E s.t.

Pr

Verify(vk,P, x, π) = 1(
(P, x),w

)
/∈ R`,n,T

∣∣∣∣∣∣
(pk, vk)← KeyGen(`, n, T)

(P, x, π)← A(pk, vk)
w← E(pk, vk)

 ≤ negl .

Zero knowledge. The proof π is statistical zero knowledge.

29

KeyGen
• INPUTS: bounds `, n, T
• OUTPUTS: proving key pk and verification key vk

1. Compute C := circ(`, n, T).
2. Compute (pk, vk) := G(C), and output (pk, vk).

Prove
• INPUTS: proving key pk and (P, x) ∈ L`,n,T with witness w
• OUTPUTS: proof π

1. Compute ~x := [[P]]`2Wr ◦ [[x]]nWr .
2. Compute ~a := wit(`, n, T,P, x,w).
3. Compute π := P (pk, ~x,~a), and output π.

Verify
• INPUTS: verification key vk and (P, x) ∈ L`,n,T
• OUTPUTS: decision bit

1. Compute ~x := [[P]]`2Wr ◦ [[x]]nWr .
2. Compute b := V (vk, ~x, π), and output b.

Figure 14: A zk-SNARK for vnTinyRAM is obtained by combining the circuit generator and the zk-SNARK for circuit satisfiability.

D.2 Construction
Let (G,P, V) be a zk-SNARK for Fr-arithmetic circuit satisfiability, and let (circ,wit) be a circuit generator
for vnTinyRAM over F′. (The prime r is typically determined by the order of the two cyclic groups G1 and
G2 that form the domain of the pairing e : G1×G2 → GT used to instantiate (G,P, V).) In Figure 14 below,
we give the construction of the three algorithms (KeyGen,Prove,Verify) of a zk-SNARK for vnTinyRAM.

30

E Case study: memcpy with just-in-time compilation
The function memcpy is a standard C function that works as follows: given as input two array pointers and a
length, memcpy copies the contents of one array to the other. Of course, with no data dependencies, copying
data in a circuit is trivial: you just connect the appropriate wires. However, when the array addresses and
their lengths are unknown, and memcpy is invoked as a subroutine in a larger program, the trivial solution
does not work, and an efficient implementation is needed.

A naive implementation of memcpy iterates, via a loop, over each array position i and copies the i-th
value from one array to the other. In vnTinyRAM each such loop iteration costs 6 instructions; 2 of these are
to increase the iteration counter and jump back to the start of the loop. Thus, for m-long arrays, copying takes
6m instructions (discounting loop initialization). A cost of 6m also holds for TinyRAM of [BCGTV13a].

But, in vnTinyRAM, one can do better: loop unrolling can be used to avoid paying for the 2 “control”
instructions. Asymptotically, the optimal number of unrollings depends on the array length: it is Θ(

√
m).

Thus, optimal unrolling requires dynamic code generation on a von Neumann architecture. We wrote a
54-instruction vnTinyRAM program for memcpy that uses dynamic loop unrolling to achieve an efficiency
of ≈ 4m + 11.5

√
m cycles for m-long arrays. For m ≥ 600, we get 1.25× speed-up over the naive

implementation, and 1.4× speed-up for m ≥ 3000.

31

References
[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verification via secure

computation. In Proceedings of the 37th International Colloquium on Automata, Languages and Programming,
ICALP ’10, pages 152–163, 2010.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n logn) sorting network. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, STOC ’83, pages 1–9, 1983.

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary version in FOCS ’92.

[ALNR11] Christophe Arène, Tanja Lange, Michael Naehrig, and Christophe Ritzenthaler. Faster computation of the Tate
pairing. Journal of Number Theory, 131(5):842–857, 2011.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP. Journal of the
ACM, 45(1):70–122, 1998. Preliminary version in FOCS ’92.

[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Proceedings of the
24th Annual International Cryptology Conference, CRYPTO ’04, pages 443–459, 2004.

[BC89] Jurjen Bos and Matthijs Coster. Addition chain heuristics. In Proceedings of the 9th Annual International Cryptology
Conference, CRYPTO ’89, pages 400–407, 1989.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping for
SNARKs and proof-carrying data. In Proceedings of the 45th ACM Symposium on the Theory of Computing,
STOC ’13, pages 111–120, 2013.

[BCGT13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs to delegatable
succinct constraint satisfaction problems. In Proceedings of the 4th Innovations in Theoretical Computer Science
Conference, ITCS ’13, pages 401–414, 2013.

[BCGT13b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency of probabilistically-
checkable proofs. In Proceedings of the 45th ACM Symposium on the Theory of Computing, STOC ’13, pages
585–594, 2013.

[BCGTV13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C: Verifying
program executions succinctly and in zero knowledge. In Proceedings of the 33rd Annual International Cryptology
Conference, CRYPTO ’13, pages 90–108, 2013.

[BCGTV13b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. TinyRAM architecture
specification v2.00, 2013. URL: http://scipr-lab.org/tinyram.

[BCIOP13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-interactive
arguments via linear interactive proofs. In Proceedings of the 10th Theory of Cryptography Conference, TCC ’13,
pages 315–333, 2013.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of elliptic
curves. In Proceedings of the 34th Annual International Cryptology Conference, CRYPTO ’14, pages 276–294,
2014.

[BDLSY11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security signatures.
In Proceedings of the 13th International Conference on Cryptographic Hardware and Embedded Systems, CHES
’11, pages 124–142, 2011.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure multi-party computation. In
Proceedings of the 15th ACM Conference on Computer and Communications Security, CCS ’08, pages 257–266,
2008.

[BDSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge. SIAM
Journal on Computing, 20(6):1084–1118, 1991.

[BÉ02] Bruno Beauquier and Darrot Éric. On arbitrary size Waksman networks and their vulnerability. Parallel Processing
Letters, 12(3-4):287–296, 2002.

[BEGKN91] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the correctness of memories.
In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, FOCS ’91, pages 90–99, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic
time. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91, pages 21–32, 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications. In Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, STOC ’88, pages 103–112, 1988.

32

http://scipr-lab.org/tinyram

[BFRS+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg, and Michael Walfish.
Verifying computations with state. In Proceedings of the 25th ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 341–357, 2013.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Proceedings of the 12th Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO ’92, pages 390–420, 1993.

[BGDMO+10] Jean-Luc Beuchat, Jorge E. González-Dı́az, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodrı́guez-Henrı́quez, and
Tadanori Teruya. High-speed software implementation of the optimal ate pairing over Barreto-Naehrig curves. In
Proceedings of the 4th International Conference on Pairing-Based Cryptography, Pairing ’10, pages 21–39, 2010.

[BGHSV05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short PCPs verifiable in
polylogarithmic time. In Proceedings of the 20th Annual IEEE Conference on Computational Complexity, CCC ’05,
pages 120–134, 2005.

[BGMW93] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David B. Wilson. Fast exponentiation with
precomputation. In Proceedings of the 11th Annual International Conference on Theory and Application of
Cryptographic Techniques, EUROCRYPT ’92, pages 200–207, 1993.

[BKLS02] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-based
cryptosystems. In Proceedings of the 22Nd Annual International Cryptology Conference, CRYPTO ’02, pages
354–368, 2002.

[BLS03] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with prescribed embedding
degrees. In Proceedings of the 3rd International Conference on Security in Communication Networks, SCN ’02,
pages 257–267, 2003.

[BLS04] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Efficient implementation of pairing-based cryptosystems.
Journal of Cryptology, 17(4):321–334, 2004.

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In Proceedings of the
12th International Conference on Selected Areas in Cryptography, SAC’05, pages 319–331, 2006.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, STOC ’88, pages 1–10, 1988.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation using fully homomorphic
encryption. In Proceedings of the 30th Annual International Cryptology Conference, CRYPTO ’10, pages 483–501,
2010.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with streaming
interactive proofs. In Proceedings of the 4th Symposium on Innovations in Theoretical Computer Science, ITCS ’12,
pages 90–112, 2012.

[CRR11] Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of computation using multiple servers. In
Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS ’11, pages 445–454,
2011.

[CRR12] Ran Canetti, Ben Riva, and Guy N. Rothblum. Two protocols for delegation of computation. In Proceedings of the
6th International Conference on Information Theoretic Security, ICITS 12, pages 37–61, 2012.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex Fourier series.
Mathematics of Computation, 19:297–301, 1965.

[Edw07] Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society, 44(3):393–
422, 2007.

[FCnKRH12] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodrı́guez-Henrı́quez. Faster hashing to G2. In Pro-
ceedings of the 18th International Conference on Selected Areas in Cryptography, SAC ’11, pages 412–430,
2012.

[FK97] Uriel Feige and Joe Kilian. Making games short. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, STOC ’97, pages 506–516, 1997.

[Gen04] Rosario Gennaro. Multi-trapdoor commitments and their applications to proofs of knowledge secure under
concurrent man-in-the-middle attacks. In Proceedings of the 24th Annual International Cryptology Conference,
CRYPTO ’04, pages 220–236, 2004.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC ’09, pages 169–178, 2009.

33

[GESA+09] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake
Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael
Bebenita, Mason Chang, and Michael Franz. Trace-based just-in-time type specialization for dynamic languages. In
Proceedings of the 2009 ACM SIGPLAN conference on Programming language design and implementation, PLDI
’09, pages 465–478, 2009.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: outsourcing computation
to untrusted workers. In Proceedings of the 30th Annual International Cryptology Conference, CRYPTO ’10, pages
465–482, 2010.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In Proceedings of the 32nd Annual International Conference on Theory and Application of
Cryptographic Techniques, EUROCRYPT ’13, pages 626–645, 2013.

[GHS02] Steven D. Galbraith, Keith Harrison, and David Soldera. Implementing the Tate pairing. In Proceedings of the 5th
International Symposium on Algorithmic Number Theory, ANTS ’02, pages 324–337, 2002.

[GKPVZ13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. Reusable garbled
circuits and succinct functional encryption. In Proceedings of the 45th ACM Symposium on the Theory of Computing,
STOC ’13, pages 555–564, 2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive proofs for
Muggles. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC ’08, pages 113–122,
2008.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989. Preliminary version appeared in STOC ’85.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness theorem
for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
STOC ’87, pages 218–229, 1987.

[Gro10a] Jens Groth. Short non-interactive zero-knowledge proofs. In Proceedings of the 16th International Conference on
the Theory and Application of Cryptology and Information Security, ASIACRYPT ’10, pages 341–358, 2010.

[Gro10b] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of the 16th International
Conference on the Theory and Application of Cryptology and Information Security, ASIACRYPT ’10, pages
321–340, 2010.

[GS89] Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik ’89, Symposium on Logical Foundations of
Computer Science, pages 108–118, 1989.

[GS06] R. Granger and Nigel Smart. On computing products of pairings. Cryptology ePrint Archive, Report 2006/172,
2006.

[GS10] Robert Granger and Michael Scott. Faster squaring in the cyclotomic subgroup of sixth degree extensions. In
Proceedings of the 13th international conference on Practice and Theory in Public Key Cryptography, PKC’10,
pages 209–223, 2010.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short PCPs. In Proceedings of the
Twenty-Second Annual IEEE Conference on Computational Complexity, CCC ’07, pages 278–291, 2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, STOC ’92, pages 723–732, 1992.

[KKC13] Taechan Kim, Sungwook Kim, and Jung Hee Cheon. On the final exponentiation in Tate pairing computations.
IEEE Transactions on Information Theory, 59(6):4033–4041, 2013.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Proceedings of the 29th Annual
International Cryptology Conference, CRYPTO ’09, pages 143–159, 2009.

[KRR13] Yael Kalai, Ran Raz, and Ron Rothblum. Delegation for bounded space. In Proceedings of the 45th ACM Symposium
on the Theory of Computing, STOC ’13, pages 565–574, 2013.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In
Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography, TCC ’12, pages 169–189,
2012.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting
codes. In Proceedings of the 19th International Conference on the Theory and Application of Cryptology and
Information Security, ASIACRYPT ’13, pages 41–60, 2013.

34

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000. Preliminary
version appeared in FOCS ’94.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a secure two-party computation system.
In Proceedings of the 13th USENIX Security Symposium, SSYM ’04, pages 20–20, 2004.

[MR96] Madhav V. Marathe and S. S. Ravi. On approximation algorithms for the minimum satisfiability problem. Informa-
tion Processing Letters, 58(1):23–29, 1996.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, STOC ’90, pages 427–437, 1990.

[Ofm65] Yuri P. Ofman. A universal automaton. Transactions of the Moscow Mathematical Society, 14:200–215, 1965.
[PGHR13] Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical verifiable computation.

In Proceedings of the 34th IEEE Symposium on Security and Privacy, Oakland ’13, pages 238–252, 2013.
[Pip80] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM Journal on Computing, 9(2):230–250,

1980.
[Rob91] J. M. Robson. An O(T log T) reduction from RAM computations to satisfiability. Theoretical Computer Science,

82(1):141–149, May 1991.
[RP06] Armin Rigo and Samuele Pedroni. PyPy’s approach to virtual machine construction. In Companion to the 21st

ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages, and Applications, OOPSLA ’06,
pages 944–953, 2006.

[SB04] Michael Scott and Paulo S. L. M. Barreto. Compressed pairings. In Proceedings of the 24th Annual International
Cryptology Conference, CRYPTO ’04, pages 140–156, 2004.

[SBCDPK09] Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez Perez, and Ezekiel J. Kachisa. On the
final exponentiation for calculating pairings on ordinary elliptic curves. In Proceedings of the 3rd International
Conference Palo Alto on Pairing-Based Cryptography, Pairing ’09, pages 78–88, 2009.

[SBVB+13] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael Walfish. Resolving the
conflict between generality and plausibility in verified computation. In Proceedings of the 8th EuoroSys Conference,
EuroSys ’13, pages 71–84, 2013.

[SBW11] Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practical and unconditional verification of remote
computations. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems, HotOS ’11,
pages 29–29, 2011.

[Sch78] Claus-Peter Schnorr. Satisfiability is quasilinear complete in NQL. Journal of the ACM, 25:136–145, January 1978.
[Sco05] Michael Scott. Computing the Tate pairing. In Proceedings of the The Cryptographers’ Track at the RSA Conference

2005, CT-RSA ’05, pages 293–304, 2005.
[Sco07] Michael Scott. Implementing cryptographic pairings. In Proceedings of the 1st First International Conference on

Pairing-Based Cryptography, Pairing ’07, pages 177–196, 2007.
[SMBW12] Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. Making argument systems for

outsourced computation practical (sometimes). In Proceedings of the 2012 Network and Distributed System Security
Symposium, NDSS ’12, pages ???–???, 2012.

[Sol03] Jerome A. Solinas. Id-based digital signature algorithms. http://cacr.uwaterloo.ca/conferences/
2003/ecc2003/solinas.pdf, 2003.

[SVPB+12] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael Walfish. Taking
proof-based verified computation a few steps closer to practicality. In Proceedings of the 21st USENIX Security
Symposium, Security ’12, pages 253–268, 2012.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Proceedings of the 33rd Annual International
Cryptology Conference, CRYPTO ’13, pages 71–89, 2013.

[TRMP12] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Verifiable computation with massively
parallel interactive proofs. CoRR, abs/1202.1350, 2012.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In
Proceedings of the 5th Theory of Cryptography Conference, TCC ’08, pages 1–18, 2008.

[Ver10] Frederik Vercauteren. Optimal pairings. IEEE Transactions on Information Theory, 56(1):455–461, 2010.
[VSBW13] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid architecture for interactive verifiable

computation. In Proceedings of the 34th IEEE Symposium on Security and Privacy, Oakland ’13, pages 223–237,
2013.

[ZE13] Samee Zahur and David Evans. Circuit structures for improving efficiency of security and privacy tools. In
Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pages 493–507, 2013.

35

http://cacr.uwaterloo.ca/conferences/2003/ecc2003/solinas.pdf
http://cacr.uwaterloo.ca/conferences/2003/ecc2003/solinas.pdf

	Abstract
	1 Introduction
	1.1 Goal
	1.2 Prior work
	1.3 Limitations of prior work on zk-SNARKs
	1.4 Results
	1.5 Roadmap

	2 Preliminaries
	2.1 Notation
	2.2 Arithmetic circuits
	2.3 Quadratic arithmetic programs
	2.4 Pairings
	2.5 zk-SNARKs for arithmetic circuits
	2.6 A von Neumann RISC architecture

	3 Our circuit generator
	3.1 Past techniques
	3.2 Our construction

	4 Our zk-SNARK for circuits
	4.1 The PGHR protocol and the two elliptic curves
	4.2 An optimized verifier
	4.3 An optimized prover
	4.4 An optimized key generator

	5 Evaluation
	5.1 Performance of our circuit generator
	5.2 Performance of our zk-SNARK for circuit satisfiability
	5.3 Performance of the combined system
	5.4 Comparison with prior work

	6 Conclusion
	A Other prior work
	B The PGHR zk-SNARK protocol
	C Additional experimental data
	D zk-SNARKs for vnTinyRAM
	D.1 Informal definition
	D.2 Construction

	E Case study: memcpy with just-in-time compilation
	References

