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Abstract.

In a previous paper |BS] we proved, using the elements of
the theory of nilpatent groups, that some of the fundamen-
tal computational problems in matriz groups belong to NP.
These problems were also shown to belong to coNP,
assuming an unproven hypothesis concerning finste simple
groupa.

The aim of this paper is to replace most of the (proven
and unproven) group theory of {BS] by elcmentary com-
binatorial arguments. The result we prove is that relative
to a random oracle B, the mentioned matrix group prob-
lems belong to (NPNcoNP)P.

The problems we consider are membership in and order
of a matrix group given by a list of generators. These prob-
lems can be viewed as multidimensional versions of a close
relative  of the discrete logarithm  problem. Hence
NPNeo NP might be the lowest natural complexity class
they may fit in.

We remark that the results remain valid for black boz
groups where group operations are performed by an oracle.

The tools we introduce seem interesting in their own
right.. \We define a new hierarchy of complexity classcs
AME) "just above NF”, introducing Arthur vs. Merlin
games, the bounded-away version of Papadimitriou’s
Games against Nature. We prove that in spite of their
analogy with the polynomial time hierarchy, the finite lev-
cls of this hierarchy collapse to AM=—=AM?2). Using a com-
binatorial lerama on finite groups [BE], we construct a
game by which the nondeterministic player (Merlin) is able
to conviace the random player (Arthur) about the relation
|Gl=N provided Arthur trusts conclusions based on sta-
tistical cvidence (such as a Solovay-Strassen type " proof”
of primality).

One can prove that AM consists precisely of those
languages which belong to NP? for almast every oracle B.

Our hierarchy has an interesting, still unclarified rela-
tion to another hierarchy, obtained by removing the cen-
tral ingredient from the User vs. Ezpert games of
Goldwasser, Micali and Rackofl.
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1. Introduction

1.1. Randomness vs. mathematical intractabil-
ity: a tradeoff

Paul Erdos has taught us that randomness can do
miracles as long as we don't insist on explicit con-
structions. If we do, quite often much heavier
mathematics has to be invoked - if there is any help
at all. The few cases where randomness has success-
fully been eliminated, like for expanding graphs, point
to the difTiculty (cf. [Pin], [Pip} vs. [Mar], [GG]).

A random string can sometimes replace the most
formidable mathematical hypothesis. The Solovay-
Strassen Monte Carlo primality test [SS] vs. Gary
Miller's deterministic primality test, based on the
Jxtended Riemann Hypothesis [Mil], is one of the
famous examples.

The objective of this paper is to introduce some
new random tools to replace an unproven group
theoretic hypothesis.

1.2. Matrix groups

By far the most common way to represent
groups is by matrices. This is almost the only way
groups are being thought of in science. The term
"Representation Theory” refers to matrix representa-
tions, a central tool in the theory of finite groups, har-
monic analysis, quantum mechanics and other fields.

It appears that the main reason why computa-
tional group theory has so far mainly concentrated on
permutation groups is that while many of the basic
problems in permutation groups are solvable in poly-
nowial time (cf.[Sim|, (FHL], [BKL]), even the sim-
plest questions on matrix groups seem computation-
ally infeasible.

The membership problem (does a given matrix
belong to a group given by a list of generators?) is
undecidable for 4 by 4 integral matrices [Mih].

It seems therefore wise to restrict our attention
to matrix groups over finite fields. Here the basic
problems (membership, order) are at least finite and in
fact easily scen to belong to PSPACE. On the other
hand, finding a polynomial time algorithm seems
hopeless  even in  the one-dimensional (number
theoretic) case. Concerning the place of these




problems in the polynomial time hierarchy, the best
we may hope for is putting them in NPNcoNP.

We don't quite manage to achieve this goal but
we get about as close to it as a Monte Carlo primality
test to proving primality.

We shall introduce the complexity class AM
which is the randomized version of NP in the same
way as Gill's BPP is of P [Gi]. Our main result is
this.

Theorem 1.1. Membership in, and order of matrix
groups over finite fields belong to AMNcoAM.

We shall outline the proof of this result in Section
5. For the details see {Ba|. The necessary complexity
theoretic machinery will be treated in detail in Sec-
tions 2-4.

For comparison as well as for later use, let us
quote the two main results of [BS]. They assert that
the membership problem belongs to NP and so does
the problem of deciding whether an integer divides
the order of a group. Morcover, it has been proved in
[BS] that both problems belong to coNP as well if we
are willing to accept a reasonably plausible but prob-
ably very difficult new mathematical hypothesis on
finite simple groups (the Short Presentation Conjec-
ture [BS, p.238]).

1.3. The ingredients

We shall define a hierarchy of complexity classes
denoted A, M, MA, AM, MAM, AMA, ctc.: the
Arthur-Merlin  hierarchy.  Trivial inclusions will
correspond to substrings, e.g. MC MAC MAM. More-
over, A=BPP and M=NP. It will be straightforward
to show that AMC NP? for almost every oracle B.

The main component of the proof of Theorem 1.1
is an approximale upper bound algorithm of class
MAM. This algorithm almost certainly accepts the
pair (G.N) if |G|< N and almost certainly rejects it if
|G}>2N.

The algorithm is based on a combinatorial lemma
on finite groups [BE].

Another ingredient is the verificalion of the divi-
sors of the order of a group. This is in class NP by
{BS, Theorems 9.1 & 10.1]. One can, however, replace

the group theoretic methods of [BS] by an elementary
and much more general technique, due to Sipser [Sip]
and hased on the Carter-Wegman universal hash func-
tions [CW], to obtain a slightly weaker, AM class
divisibility verification.

A combination of divisibility and approximate
upper bound verifications puts verification of the

ezact order of a given group in MAM.

‘ The last crucial ingredient is that AfAM=AM or
more generally that the hierarchy above AM collapses
to AM. This result will be treated in detail in this

paper.
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2. A hierarchy of couiplexity clagses
2.1. Convincing a distrustful party

King Arthur recognizes the supernatural intellec-
tual abilities of Merlin but doesn't trust him. How
should Merlin convince the intefligent but impatient
King that a string z belongs to a given language L ?

i LENP, Merlin will be able to present a wifness
which Arthur can check in pelynomial time.

We shall define a hierarchy of complexity classes
"just above NP” which still allow Merlin to convince
Arthur about membership provided Arthur accepts
statistical evidence.

We define these rclatively low complexity classes
in terms of a combinatorial game played by Merlin
and Arthur.

2.2. Combinatorial games

The general definition of combinatorial games will
be given in 3.1.

Here we consider games whose rules depend in a
polynomially computable way on an input string z.
The precise definition is this.

In our games, two players alternate moves.

At the beginning of the game, on input z a deter-
ministic polynomial time bounded Turing machine
produces a nonnegative integer {={(|z]) and a
sequence of positive integers n;,...,n, such that
2:’:‘] n‘~<|z'|“"“'.

Each player, when it is his/her turn, outputs a 0-1
string. The player at turn s outputs a string of length
n;.

The history of the game (the sequence of previous

moves) is always known to each plaver.

After #|z]) moves the game terminates and a
deterministic polynomial time bounded Turing
machine, known to both players, evaluates z and the
sequence of moves and declares the winner.

The length of the game is f,the total number of
moves. The size of the game is |+ 3¢, n,.

2.3. Arthur vs. Merlin games

In a Game against Nature [Pa] we require that
player A ("Nature”) be indifferent:

(i) the moves of A are random (A just rolls the dice
and does not care whether he/she wins or loses).

Given such a game, let W(z) denote the probabil-
ity that a player M, capable of optimizing his/her
winning chances at each move, will be able to beat
the indifferent player A.

We shall call such a game an Arthur vs. Merlin
game if, in addition to (i), the following holds: ’

(ii) for any input string z, one of the following

holds:
(a) Wl2) > 2/3 or
{b) M1) < 1/3,

The language accepted by this game consists of
those strings z for which alternative {a) holds.



Let AM{(n)) denote the class of languages
accepted by Arthur-Merlin games of length |z]) with
Arthur  moving  first.  Analogously,  MA({(n)}
corresponds to games where Merlin moves first. Let

further

AM(P)=MA(P)=U{AM(n*):k>0}
{games of polynomial length). For f{n)=¢ (constant)
let us use strings of length ¢ to indicate the sequence
of players. For example

AM(3)=AMA, MA(4)=MAMA, MA(1)=M.

It is the condition that winning probabilities must
be bounded away from 1/2 that makes such a game a
"practical” way for Merlin to convince Arthur that z
belongs to L. Clearly, the bounded-awayness condi-
tion (ii) makes the classes AM{{(n)) much smaller than
the corresponding classes defined by Papadimitriou
|Pa). In fact, it seems very unlikely that coNP could
be part of AM{P).

2.4, The hierarchy collapses

We shall mainly be concerned with the finite lev-
els of this hierarchy. Clearly, M=NP (Merlin has the
power of nondeterminism) and A=BPP. Moreover,
obviously,

AM K UMA(k) CAMk+1)NMA(k+1).
What may be slightly surprising is that this hierarchy
collapses.

Theorem 2.1. For any constant k>2,
AM = AM(E) = MA(F+1).

Sections 3 and 4 are devoted to the proof of this
result.

Theorem 2.1 says that the advantage Merlin gains
if we force Arthur to reveal all his moves in advance
is not too great. Note, however, that the cost of this
reduction is a substantial increase of the size of the
game. We have to essentially square the game size for
each alternation saved. Thus, the following question
remains open.

Problem 2.2. Is AM= AMPFP)?

A short hierarchy still survives:
NPUBPPC MACAMC AMP)C PSPACE.

These inclusions seem more likely to be proper.
2.5. Relation to the polynomial time hierarchy

It is known, that BPP is contained within the
polynomial time hierarchy [Sip]; in fact it is contained
in T NI, (P. Gdcs, see [Sip]). Perhaps the most
elegant proof of this fact was given by Clemens Lau-
temann [Lau]. His proof directly generalizes to AM
and MA and gives the following result.

Proposition 2.3. (a} AMCIL.
(b} MACX,NI,.
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The idea of the proof is, that, as in the proof of
the result on BPP, the "random” quantifier { ) can
be replaced by an existential and a wuniversal
quantifiers, in either order. Membership of a string z

in a language LEAM can be defined by an expression
of the form%\ v-1 2¢(z,y,z), hence in this case ﬂy has to
be replaced by Yu-{v to yield (a). The proof of (b)
goes analogously, using, in addition, our result that
MAC AM. We omit the details. §

It remains an open pioblem whether the
unbounded levels of the Arthur-Merlin hierarchy are
contained in a finite level of the polynomial time
hierarchy. We believe the answer is yes.

Conjecture 2.4. AMP)CE; for some (finite) k.

Another relation we believe is true is that AM
{and even AM{P)) does not contain ecoNP. This, of
course would imply NPs£coNP. Nevertheless some
supporting evidence might be found. For instance one
might hope to be able to prove such a separation
result relative to a (random) oracle.

2.6. Random oracles

It is straightforward to prove that AM C NPP
for almost every oracle B.

Using methods standard in recursion theory (ef.
[Ku],[Sac, Ch. 10]}, one can actually prove the follow-
ing

Proposition 2.5.

(i) BPP consists of precisely those languages
which belong to P? for almost every oracle B.

(i) AM consists of precisely those languages
which belong to NP for almost every oracle B.

This observation shows that AM is a fairly
natural complexity class.

2.7. Another hierarchy

Our aim was to put matriz group order in as low
a complexity class as possible. This is how the class
AM arose.

Going in the other direction, one might wonder
what is the largest complexity class still giving Merlin
(or rather: the Expert) a chance to convince Arthur
{or rather: the User) that z€L.

"Interactive proofs with minimum information”,
a notion recently introduced by Goldwasser, Micali

and Rackoff [GMR}, motivate the following definition.
User and Expert are playing a cardgame {as opposed
to the chessgame of Arthur and Merlin). User draws
all the cards at random at her first move and hides
thein from Expert. When it is her turn, User feeds the
history of the game (including the input string z) into
a polynomial time bounded Turing machine (known
to Expert) and reveals the output of the computation
to Expert. Expert has unlimited computational power.
She prints a string of polynomial length. When the
game terminates, a polynomial time bounded Turing
machine, known to both players, evaluates the history




of the game and declares the winner.

We suggest to call such a game a
User vs. Expert game if Expert's chances of winning
are bounded away from 1/2. Thus we can define the
complexity classes EU[{n)) and UK {n)) in analogy
with the corresponding Arthur-Merlin classes.

It is clear that AM{H(2)}C UE(Y(n)),
MA({(n))C EUH(n)). Further, F=M=NP,
U=A=BPP, EU=MA. The first open question 1s

whether the inclusion AMCUE is proper. Perhaps
more intriguing is the question whether there is a col-
lapse in the User-Expert hierarchy. And the final ques-
tion: is UA(L’) (polynomial length User-Expert games)
the uitimate random version of NP ? Observe that
even UELP) is unlikely to contain coNP.

Finally, can one prove that at least for constant &
the class UE(k) is on a finite level of the polynomial
time hierarchy? (Recall that AMk}=AMCII,.)

3. Arthur-Merlin games

In this section we build the machinery for the
proof of Theorem 2.1. The proof will be completed in
Section 4.

3.1. Randomized combinatorial games

Let Dy, ...,D, be nonempty finite sets and [ a
function defined over the Cartesian product

dom(fy=D,X -+ * XD,

If the range of fis {0,1} then f defines a combina-
torial game. In this game, two players, henceforth
denoted M and A, alternate moves. (We identily our-
selves with Af ; A is the adversary) The ™ move of
the game consists of picking an clement z€D;. The
game terminates after the I move. Player M wins if
Az, ... ,1)==1. The sequence (zy, . . . ,7,) is the his-
tory of the game and dom{f}, the set of all possible his-
tories is the game space. The size of the game is
logldom{ f)] {base 2 logarithm).

A may or may not be the the first player. In order
to properly specify the mame we have to tell who
moves first. The game is specified by the pair (f,Q)
where @ is the first player. (@=A or M)

If the range of [ is the interval [0,1] then (fQ)
defines a randomized game played as follows. The two
players make a total of t moves as before and then the
referee flips a biased coin and with probability
p=Az, ... 7,) declares M to be the winner.

We call fthe payoff function of this game.

In such games, the strategy of M should aim at
maximizing the probability of winning.

3.2. Games against an indifferent adversary

We shall assume that the adversary (player A) is
indifferent, and selects a umformly distributed ran-
dom element of D; for the #* move. On the other
hand, M's moves wnll be assumed to be optimal (M has
immense computational power). In order to express
the winning chance of M in this game, the following
formalism will be helpful.
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For a function f taking real values over the
nonempty finite domain D=doem{f), we shall use the

notation Azflz) and Mzfiz) for the average and max-
imum aperators:

Al =Y.eral, Mefizi=max{Aale€D).

Functions flzy,...,7;) defined over the Cartesian
product D;X -+ - XD, of the respective domains of
the variables permit prefixes * of the form
iz, - - - @z, where Q=M or A.

in a game piayed optimally agz‘uusi an indifferent
adversary, the probability that M wins is clearly

Mz, AzoMzy - - - Qzfzy,...\2)

if M moves first (@ is A or M depending on the parity
of f), and

Ale.rgA;r:; c QZ‘AII,...,Z‘)
i A has the first move.

3.3. Simulation of biased games

We shall be interested in games where one of the
players has a significant advantage. These are the
games to be played between Arthur and Merlin;
Arthur’s moves are random. Note that in our model,
we know that the game is biased but not in whose
Javor.

Such games will be used to recognize, by a reliable
statistical test, which of the players has the advan-
tage. We define the uncertainty of the game to be

une(f, @)=min{p,1-p},

where p is the probability that M wins. (@ has the
first move, fis the payoff function.) The greater the
bias, the smaller is the uncertainty (of the outcome of
the game).

Our aim is to simulate the given game (f Q) by
another biased game (f°,Q’) with fewer moves, such
that the following requirements are met:

(i) The bias of the new game goes in favor of the
same player as in the original game.

(ii} The game space (the domain of the payoff func-
tion) does not increase significantly.

(iii) The uncertainty decreases (or at least does not
increase substantially).

(iv) It should be essy to simulate {* from [ What

this means is that given a bhistory u for f° one can
casily compute a small family of histories vy,...,v, for f
such that the referce’s dccision a in f* is an easily
computed Tunction of the decisions f; corresponding
to v; and possibly of additional independent coin
tosses. (The 4; and a are random 0-1 variables with
expected values flv;) and f*(u), resp.)

Condition (i) expresses that the new game simu-
lates the original one. Conditions (ii) - (iv) guarantee
that the complersty of the game does not increase
significantly.



3.4. Increasing the bias

The first step is to turn a modest bias into an
overwhelming one. This is easily accomplished by let-
ting the players play the game in parallel on several
"boards” and declaring M the winner if he wins on
more than half of the boards.

In order to formalize this, let us define the game
(/5,Q) as follows. The domain of [is

Dhx - - - XDk

The game has the same number of moves () as (£,Q).
Let us denote the * move by (z,...,2;) where 5, €D;.
Let p; = flzy,-., %) and let fH(211,--, %) be the proba-
bility that out of % independent random 0-1 variables
¢; where Elg;)=p;, more than half come out to be 1.

Proposition 8.1. Suppose unc(f,@) < 1/3. Then
ene(ff, Q) < ¢ where c=2v2/3 = 0.9428..< 1.

Proof. The number of boards where the favored
player loses is the number of successes in a sequence
of k Bernoulli trials each with probability of success
less than 1/3. Standard calculation shows that the
probability that this number is at least k/2 is less
than c*. ¢

Of course, similar result holds if we replace 1/3 by
any constant less than 1/2.

3.5. Switching moves

In this section we show, how a two-move biased
MA game (Merlin first, Arthur second) can be simu-
lated by a two-move AM game in the sense that con-
ditions (i) - (iv) will hold. We describe the simulation

after this handy preliminary lemma.

Switching Lemma 3.2. Let X and Y be two
nonempty finite sets and let H{z,y) be a non-negative
function defined over XX Y. Then

AyMzH(z,y) < | X|MzAyH(z,y).

Proof. For 1Y, let z{y) be Merlin's optimal reply in

the AM-game: MzH{2,y)=H(x{y),y). Let

Nz)={yeY | dy)=1}. Clearly, the Y{z) partition Y.
Let ¥=MzAyH(z,y). It follows that for every z€ X,

YienaH#1y).9) = Tenafllzy) <

Using this inequality we infer

AyMzH(z, )= AyH({ ), 9)= Lse Ylii(/lw(y),y) _
Hia{9),

Lé”el,’ﬁﬂw < T y=IXy. 8

X €X

Of course simply switching the order of moves will
give Merlin an unfair advantage, capable of reversing
the odds. In order to balance this advantage, we shall

ask Arthur to start with independent random first
moves on a large number of boards. Merlin will have
to give the same response on all boards and still win
the majority. We are going to formalize this idea.

Let X and Y again be two nonempty finite sets
and f{z,9) a payofl function on XX Y, ie. 0</lz,9)<1.
We shall simulate the MA-game (f,M) by the AM-
game (F,A) defined as follows.

The game (F,A). We select a positive integer m.
The game space will be dom{F) == Y"XX. A game
history is described by a sequence (¥,z) where 2€X

and F=(y;, " * ' ,¥m), WEY. Merlin is the winner if he
wins more then half of the (f,M)-games (z,y)
(i=1, - - - ,n). (These m events are independent; the

** one has probability fz,v;).)

Upper Bound Lemma 3.3. Let y=MzAyf(z,y) be
the probability that Merlin wins in the AMA-game (LM
(the game to be simulated). Then his chance of win-
ning in the simulating AM game (F,A) defined above
is

APMzF(T,2) < 2" Xy, (3.1)

Proof. Let [ denote a subset of size [m/2] of
{1,...,m}. Clearly, the probability F(¥,z) that Merlin
wins after game history (¥,z) is at most the sum over [/
of the probabilities that he wins all games {(z,y,):/€1}
in the (/,M)-game. The latter probability is
[L;eA2.3). We conclude that for every 2€X,

AYF2) < (Vger Xy a9/ 1 V™ =
2 Eyeyh H;e[ﬂzvyi)
7 ine
Since this inequality holds for every z, we obtain that
MzAFRF,2) < 2myp™2,

Now an application of the Switching Lemma to F
and Y™ in the roles of H and Y, resp., completes the
proof. B

=LAz < 2myml2.
1

The proof of the lower bound is more straightfor-
ward. We consider the same game (F,A) as above.
1-y=1-MzAyflz,y) is the chance that Merlin loses in
the (f,M)-game. We want to show that if 1-4¢ is small
then so is 1--AYMrF(¥,2).

Lower Bound Lemma 3.4. The probability that
Merlin loses in (F,A) is

L-AFMzRF,2) < 2m(1-¢)™2, (32)

Proof. Let ¥=AyMzF(7,z). Let z; be Merlin's
optimal opening move in the (f,M)-game. Clearly,
Y=Ayfl75,y) and ¥2>AYF1V,z5). The right hand side
in the last inequality is Mertlin's chance of winning in
(F,A) using the strategy that no matter what Arthur’s
opening move he selects z,. The probability that
Merlin loses at least half of m independent games
under this strategy is less than the sum over all sub-
sets [ of {1,...,m} of cardinality [m/2] of the probabil-
ity that Merlin loses each of the games indexed by
i€l ie 1-¥ < 30 (1-9)M < 2m(1-9)™2 ¢



4. The collapse

In this section we complete the proof of Theorem
2.1. We have to show how to simulate any combinatorial
game by an AM-game.

Let (g,A) be a game of length £>3 starting with
Arthur’'s move. Let dom{g)=D;X - - - XD, We shall
switch the second and third moves in this game in the
way (F,A) was constructed from {f,M) in Section 3.5.
Thus, we select a positive integer m and construct the
new game space

dom{ Gy=(Dy X D§) X Dy X [T'm D7

The parentheses indicate that the game {G,4) will
have one less move than (g,A).
For

%((zlv?:l)!hya’?&"' 1:?1) e don‘( G')

we define G(@) to be the probability that Merlin wins
more than half of the m (f,A)-games

T,=(2), 29, T35, Zgiy- o &y)  (=1,2....,m).

We shall prove that if unc{g,A4) is not too large and
m is chosen appropriately then G simulates g in the
sense of Section 3.

Let n=max{8, log|D2|]} (base 2 logarithm).

Recall that the size of a game is the base 2 loga-
rithm of the order of the game space.

Theorem 4.1. Let m=3n and assume une(g,A)<1/18
Then

(a) (G,A) simulates {g,A) (the same player has the
advantage in both).

(b) und G,A)<9unc(g,A).

(c) size(G,A)<(s1z¢(g,A))?, provided size(g,A)>20.

Proof. Checking (c) is simple arithmetic. To prove (a)
and (b), let @ be the favored player in {g,A) and let
e=unc{g,A). Then € is the probability that @ loses.
Notice that winning probabilities don’t change if we
truncate the game at any given level, assigning Merlin’s
winning probabilities at the leaves of the trumcated
game tree as payoff function values to the corresponding
(short) histories. Moreover, truncating after the third
move is interchangeable with the operation of construct-
ing G from g. Therefore we may henceforth assume (==3.
{Observe that the notion of randomized games enables
this simplification.)

For greater clarity, we shall write X for Dy, Y for D,
and Z for Dj.

Let z denote Arthur's opening move in the (g,A)
game. This can also be interpreted as part of the open-
ing move in the (G,A)-game. Once z is fixed, we are left
with- two two-move residual games: the MA-game (g,,M)
and the AM-game (G, ,A) defined on YX Z and Z™X Y,
resp. They are related to each other precisely in the way
(F,A) was constructed from (f,M) in Section 3.5.

Let w{z) and U{z) denote the probabilities that @
loses in (g,,M) and (G,,A), resp. Then a combination of
the Upper and Lower Bound Lemmas (3.3, 3.4) implies
that for every z€ X,

Ux)< 2™ Ye(z)™r 3 <2 (22, (4.1)
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It is easy to see that for 4(z)<1/8, the right hand
side of (4.1} is not greater than u{z). On the other hand,
for a random 2€X,

Prob(u{2)>1/8) <8E(1(1))=28¢ (4.2)

and therefore the probability that Q loses in the (G,A)-
game is

BU1) < H¥2)) + 8¢ = 9¢

By our assumption e<1/18this means that @ is still
the favored player, proving (a), and that une(G,A) is the
probability that @ loses, thus less than 9¢, proving (b). §

Corollary 4.2. Let (f,Q) be a biased #move combina-
torial game. Then (f,¢) can be simulated by a combina-
torial AM-game (F,A) such that

size(F) < efsize(f) )2'/2,

where ¢, is a constant, depending on ¢, the bias of (f,@Q)
and the desired bias of (F,Q).

Note that here we insist that the games be combina-
torial, i.e. the values of the of the payoff functions are
0,1. This is necessary for the proof of Theorem 2.1.

Proof. First, at a price of an Of!) increase in size we
achieve that (f,Q) has uncertainty 9~ (Proposition 3.1).
Then we apply Theorem 4.1 repeatedly at most ¢/2-
times. (If @=M, we may introduce a dummy first move
for Arthur for convenience.) Finally we use Proposition
3.1 again to achieve the desired bias. Clearly both con-
structions used preserve the combinatorial nature (0-1
payofl) of the games {although the proof required a
detour into randomized games). §

This result immediately implies Theorem 2.1. §

Problem 4.3. Give some evidence, perhaps in a limited
model, that MA-games are not strong enough to simu-
late AM-games.

b. Statistical verification of the
order of a matrix group

5.1. Statement of the problems

We shall consider matrix groups G over a finite field
F. Each group will be given by a list of generators. We
are mainly concerned with the following two problems.

Membership: the set of pairs (g, G) where ¢€G.
Ezact order: the set of pairs (N,G) where |G]|=N.

In addition, we need the following classes. .
p-groups: {(p,G): |G| is a power of the prime p}.
Divisor of order:{(N,G): the integer N divides |G]}.
Lower bound: {(N,G): N<|G|}

Upper bound: {(N,G): |G| < N}.

It is easy to see that if ezact order belongs to NP
then it also belongs to coNP and so does membership as
well. If divisor of order belongs to NP then so does
lower bound. If both lower and upper bound belong to
NP then so does ezact order.

Furthermore, all these statements relativize to any
oracle and in particular remain true if NP is replaced by
AM everywhere.



5.2. Approximate bounds

The problems of verifying approximate upper or
lower bounds cannot be stated as language recognition
problems. Randomized complexity classes such as those
related to the Games against Nature - with a ”continu-
ous” spectrum of accepatance probabilities - are particu-
larly suited for formalization of approximate verification
problems.

Let C=AM{{( n)) or MA({(n)) be one of the complex-
ity classes discussed in Section 2.

We shall say that the approzimate upper bound
problem belongs to class C if there exists a correspond-
ing Game against Nature of length fn) (not necessarily
satisfying 2.3 (ii)) taking input strings of the form (N,G)
such that

(i) if |G} > 2N then WN,G)< 1/3;
(i) if |G]< N then W{N,G)> 2/3.

(Recall that W{N,G) denotes the probability that Merlin
is able to win on input (N, G).)
We define the complexity of approzimate lower

bounds analogously.

5.3. Main results

We outline those partial results which will add up
to a proof of Theorem 1.1. The central part is the fol-
lowing.

Theorem 6.1. The approzimate upper bound problem
belongs to MAM.

On the other hand, a technique of Sipser [Sip|
implies quite generally (not only for groups, but for
level-sets of any NP-set of strings) that

Theorem 6.2. The approzimate lower bound problem
belongs to AM,

A simple application of Sylow's Theorem and the
Reachability Theorem [BS, p.232] shows that Theorem
5.2 automatically implies its stronger version, namely

Corollary 5.8. Divisor of order belongs to AM.

Proof. In order to verify that N divides the order of G,
Merlin guesses and verifies the prime factorization of N.
For each prime power dividing N, he guecsses a
corresponding Sylow p-subgroup P of order, say, p*. He
verifies that P is a subgroup of G (membership test) and
that P is a p-group. (Both properties belong to NP [BS].)
Then he verifies (via Theorem 5.2) that |P|>p*/2. This
implies that p* divides |G]. §

Corollary 5.3 clearly implies that lower bound
belongs to AM.

We remark that divisor of order actually belongs to
NP (this is the main result of [BS]; its proof occupies the
first ten sections of that paper) but we don't need that
fact now.
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Finally, Corollary 5.3 and Theorem 5.1 immediately
imply that ezact order belongs to MAM. As a matter of
fact, if we know that the order of G is divisible by N
and is less than 2N then by Lagrange’s theorem we con-
clude that |G}=N.

Therefore, by Theorem 2.1, ezact order belongs to
AM. Thus, in view of the comments in Section 5.1,
Theorem 1.1 follows. §

5.4. A combinatorial lemma

The approzimate upper bound algorithm of class
MAM will be based on the following elementary result.

Lemma 5.4. [BE] Let G be a finite group of order N
and let

t=|log N+log ln N+3}

Then there exist elements z,,...,z,€G such that every
member of G occurs among the 2' subproducts
7' ;' where ¢,= 0,1.

(log and In stand for base 2 and base e logarithms,
resp.)

65.5. The "approximate upper bound” game

We outline the proof of Theorem 5.1.

First we note, that for the parameters of Lemma
5.4, 2'/N <8 In N. Hence, "on average”, each element of
G is represented a small number of times; small meaning
at most a constant times the length of the input. (In a
uniform encoding, the strings representing the elements
of G cannot be shorter than log N. - The average
referred to above should be interpreted as harmonic
meean, i. e. the reciprocal of the arithmetic mean of the
reciprocals.)

This observation makes it possible for Merlin, having
guessed z,...,r, to convince Arthur that there are
unlikely to be more than, say, 9N/8 ¢lements of G
represented by the set S of the 2‘ subproducts of the z;
To this end, the players proceed as follows.

Merlin declares the values of N and ¢ and exhibits a
sequence 1;,...,z, of elements of G. Arthur picks m=#£
random subproducts s; of the z; (choosing any of the 2
possibilities with equa‘ probablllty each time). For each
J, Merlin exhibits a number 1<y, < £ of representations
of &; as products of different subsets of the z; The aver-
age "T of the numbers 2!/r; is calculated. If T<17N/16
then Merlin is declared the winner and Arthur accepts
the inequality |Gl <ON/8.

Clearly, Merlin’s optimal strategy is to exhibit as
many representations for cach s as possible. If o is
represented in n; different ways as a subproduct, let m;
= min{n, £}. lglaymg optlmally, Merlin demonstrates
that there are at least fi; representations of s;. It is easy
to see that the numbers 1/n; are unbiased estimators of
|8127%. Their variance is clearly less than their expected

value (this is true of any random variable with range
between 0 and 1). Therefore with increasing m, a con-
stant relative error becomes exponentially unlikely. The
effect of replacing n; by f; is clearly negligible if ¢ is
large. This argument proves that the above strategy

guarantees an almost certain win for Merlin if |S|<N



and no strategy will give him a non-pegligible winning
chance if |S)>9N/8.

The other task of Merlin is to convince Arthur that
S contains nearly all members of G, say |G| <8|5)/7.
One can prove that for sufficiently large ¢ the fol-
lowing two claims imply |G| <8|9]/7:
(i) the z; generate G ; and
(ii) for each z z, |S- Sz} < |8/

Merlin will have to produce a short proof of (i)
This is possible because membership belongs to NP [BS].

The verification of {ii} requires another AM class
statistical test (which can be performed in parallel with
the above described statistical verification of the ine-
quality [S|<9N/8). Arthur, as before, selects a large
number of random subproducts s; of the z, Merlin
responds by presenting‘ for each k, 1 <k<t and for each
of Arthur’s s’s a representation ol 8,7, s a member of
S, i.e. a subproduct of the z;. Merlin wms if he is able to
produce such a representatnon for each pair (J,k)
Clearly, if S=G then Merlin will be able to win
(always). If, however, (ii) fails, then he has a negligible
chance of winning.

Putting this all together we conclude that if Merlin
wins in both games then |G| must be less than 9N/7
unless Merlin was improbably lucky. On the other hand,
if |G|<N then Merlin is able to win in both games
almost always.This proves Theorem 5.1.8

6. Black box groups

As in [BS], matrices really have little to do with
these results. We only need two properties of the matrix
groups over finite fields:

(i) The elements of the group are encoded by strings
of uniform length.

(i1} Group operations are performed in polynomial
time.

Note that integer matrices violate (i).
A black boz group is defined by (i) and
{ii’) Group operations are performed by an oracle.

We should also assume (in contrast to [BS}) that the
codes are unique, i.e. each string corresponds to at most
one element of the group. (This is true for matrix
groups, but not for their factor groups. Induction argu-
ments involving factor groups motivated the omission of
this assumption in [BS].)

All results of this paper remain valid under these
virtually minimal assumptions.
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